KAWAUCHI, Akio's Manuscript List

125. Ribbonness of a stable-ribbon surface-link.
124. Homological infinity of 4D universe for every 3-manifold.
123. Topology of a 4D universe for every 3-manifold.
122. Faithful equivalence of equivalent ribbon surface-links.
121. Complexities of a knitting pattern.
120. (with S. Kamada, J. Kim, and S. Y. Lee) Presentation of immersed surface-links by marked graph diagrams.
119. (with J. Kim) Immersed 2-knots with essential singularity.
118. (with K. Kauer, S. Kamada and M. Prabhacker) Generalized unknotting numbers of virtual knots.
117. (with A. Shimizu and Y. Yaguchi) Cross-index of a graph, Kyungpook Math. J.
116. Splitting criteria for a definite 4-manifold with infinite cyclic fundamental group.
103. On 4-dimensional universe for every 3-dimensional manifold, Topology and its Applications, 196 (2015), 575-593. DOI:10.1016/j.topol.2015.05.035.
88. What is Knot Theory ? Why Is It In Mathematics ? , in: Teaching and Learning of Knot

85 (with I. Tayama). Enumerating 3-manifolds with lengths up to 9 by a canonical order, Topology Appl. 157 (2010), 261-268.

83. Applying knot theory to sciences - mainly on knot models of a prion protein and a psychological mind (in Japanese), a civic lecture record, Sugaku Tushin, 14-4(February, 2010), 26-45.

81. (with I. Tayama) Enumerating homology spheres with lengths up to 10 by a canonical order, Proceedings of Intelligence of Low-Dimensional Topology 2009 in honor of Professor Kunio Murasugi’s 80th birthday, (2009), 83-92.

77. Rational-slice knots via strongly negative-amphicheiral knots, Communications in Mathematical Research 25(2009),177-192.

64. A tabulation of 3-manifolds via Dehn surgery, Boletin de la Sociedad Matematica Mexicana (3) 10 (2004), 279-304.
58. From linear algebra to homology (a monograph in Japanese), Baifukan Tokyo (2000).
52. Osaka City University Internet Lectures on knot theory (in Japanese, 1997).
47. Mutative hyperbolic homology 3-spheres with the same Floer homology, Geometriae Dedicata 61(1996), 205-217.
43. On coefficient polynomials of the skein polynomial of an oriented link, Kobe J. Math. 11(1994), 49-68.
42. Splitting a 4-manifold with infinite cyclic fundamental group, Osaka J. Math. 31(1994), 489-495.
16. The (2,1)-cable of the figure eight knot is rationally slice (in a handwritten manuscript)
(1980).
8. On n-manifolds whose punctured manifolds are imbeddable in $(n+1)$-sphere and spherical manifolds, Hiroshima Math. J. 9(1979), 47-57.