Research plan

Takanori Ayano

1. Degeneration of the inverse function of the hyperelliptic integrals.

Let $\alpha_{1}, \ldots, \alpha_{5}$ be five distinct complex numbers, V be the hyperelliptic curve of genus 2 defined by $y^{2}=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{5}\right)$, and α be a complex number such that $\alpha \neq \alpha_{i}$ for $i=1,2,3$. Let

$$
u=\int_{\left(\alpha_{1}, 0\right)}^{(x, y)}-\frac{x-\alpha}{2 y} d x
$$

We can regard x and y as functions of u. Since $y(u)$ can be expressed in terms of $x(u)$ and $x^{\prime}(u)$, by substituting this expression into the defining equation of V, we can obtain the differential equation satisfied by $x(u)$. In this research, we will derive the recurrence formulae with respect to the coefficients of the series expansion of $x(u)$ around $u=0$. When we take $\alpha_{4}, \alpha_{5} \rightarrow \alpha$, the curve V becomes a singular curve. This singular curve is birationally equivalent to the elliptic curve E defined by $y^{2}=$ $\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right)$. In this research, we will give relationships between the limit of $x(u)$ under $\alpha_{4}, \alpha_{5} \rightarrow \alpha$ and the Weierstrass elliptic function associated with E. Further, we will study whether the convergence of $x(u)$ under $\alpha_{4}, \alpha_{5} \rightarrow \alpha$ becomes the uniform convergence. The coefficients of the series expansion of $x(u)$ around $u=0$ are called generalized Bernoulli-Hurwitz numbers. The generalized Bernoulli-Hurwitz numbers appear in the definition of the universal Todd genus in algebraic topology. The inverse function of the hyperelliptic integrals is important in the Schwarz-Christoffel mapping in complex analysis. The study of the inverse function of the hyperelliptic integrals will contribute to these fields.

2. We will decompose a meromorphic function on \mathbb{C}^{2} into a product of a holomorphic function and a meromorphic function.

Let $f(x)$ be a polynomial of degree $5, V$ be the hyperellptic curve of genus 2 defined by $y^{2}=f(x)$, and $\sigma(u)=\sigma\left(u_{1}, u_{3}\right)$ be the sigma funciton associated with V. The function σ is a holomorphic function on \mathbb{C}^{2}. Let $\sigma_{i}=\frac{\partial}{\partial u_{i}} \sigma$ and $\wp_{i, j}=\frac{\partial}{\partial u_{i} \partial u_{j}}(-\log \sigma)$. Via the Abel-Jacobi map, the rational function x on V can be identified with the meromorphic functions $g(u)=\wp_{1,1}(2 u) / 2$ and $h(u)=-\sigma_{3}(u) / \sigma_{1}(u)$. Then there exists a meromorphic function k on \mathbb{C}^{2} such that the relation $g-h=\sigma k$ holds on \mathbb{C}^{2}. In this research, we will give an explicit expression of k in terms of σ.

3. Expressions of the Abelian functions of genus 2 in terms of the elliptic functions

In this research, when a hyperelliptic curve V of genus 2 admits a morphism of degree 2 to an elliptic curve, we expressed the Abelian functions associated with V in terms of the Weierstrass elliptic functions. On the other hand, T. Shaska derived a normal form of the defining equation of a curve of genus 2 which admits a morphism of degree 3 to an elliptic curve. By applying this result, when a hyperelliptic curve V of genus 2 admits a morphism of degree 3 to an elliptic curve, we will express the Abelian functions associated with V in terms of the Weierstrass elliptic functions.

