Research Accomplishments

I am a theoretical physicist, who is interested in mathematical physics, in particular, topological string theory, matrix models and supersymmetric gauge theories. The following is an overview of my works. The reference numbers are the ones in "List of Publications".

CEO topological recursion. The CEO topological recursion by Chekhov-Eynard-Orantin can be considered, in general, for a 1D algebraic variety $\Sigma = \{(x, y) \in \mathbb{C}^2 | A(x, y) = 0\}$ which is called a spectral curve, and defines multilinear meromorphic differentials $\omega_h^{(g)}(z_1, \ldots, z_h), h \ge 1, g \ge 0$ on Σ , from the Liouville one-form $\omega_1^{(0)}(z) = ydx$ and the Bergman kernel $\omega_2^{(0)}(z_1, z_2)$ that are (classically) defined for Σ , where z is a local coordinate on Σ : x = x(z), y = y(z). The CEO topological recursion has its origin in the loop equations of matrix models, and there are various interesting applications to the models related to the topological string theory and 2D gravity. I will summarize my works relevant to the applications:

- For a class of local toric Calabi-Yau 3-folds (CY3s), the differentials $\omega_h^{(g)}(z_1, \ldots, z_h)$ are identified with generating functions of the open Gromov-Witten invariants for certain Lagrangian submanifolds. Furthermore, around 2010, via geometric engineering, it was conjectured that they also give correlation functions for a type of surface operators in 4D $\mathcal{N} = 2 SU(N)$ supersymmetric gauge theories. We explicitly checked and confirmed it for SU(2) gauge theories [2,4].
- Around 2009, by Dijkgraaf and Fuji, it was proposed an embedding of the volume conjecture in the 3D $SL(2, \mathbb{C})$ Chern-Simons gauge theories into the topological string theory. Here, the moduli space of flat connections (the space of classical solutions) in a Chern-Simons gauge theory is described by an algebraic variety called a $SL(2, \mathbb{C})$ character variety. Then, when the character variety is a 1D algebraic variety, it was interesting whether one can obtain some invariants in the Chern-Simons gauge theory by applying the CEO topological recursion to the character variety. We conjectured that for the character varieties of knots, the CEO topological recursion gives a (large color) asymptotic expansion of the colored Jones polynomials of knots, and checked it by non-trivial examples [3].
- A class of matrix models has free field realizations in 2D and is deeply related to 2D conformal field theories (CFTs). For instance, for such matrix models, the CEO topological recursion is derived as the loop equations, and the loop equations are also shown to be equivalent to the Virasoro constraints by the generators of Virasoro algebra in 2D CFT. We showed that an infinite family of quantum (spectral) curves, associated with a spectral curves in a hermitian matrix model, can be explicitly constructed by the CEO topological recursion, and identified with Belavin-Polyakov-Zamolodchikov differential equations for an infinite family of Virasoro singular vectors in 2D CFT [8]. We also discussed a supersymmetric generalization of the quantum curves [9,13].

Research by exact partition functions. Triggered by the work by Pestun in 2007 about the exact computation of the partition functions and correlation functions on S^4 in $\mathcal{N} = 2$ supersymmetric gauge theories, the supersymmetric localization technique used there has been applied to obtain exact results in supersymmetric quantum field theories in various dimensions and background geometries. I will summarize my works achieved using the exact results:

- The topological string theory is defined by topological twists of 2D $\mathcal{N} = (2, 2)$ non-linear sigma model (NLSM) that is realized at the IR fixed point of 2D $\mathcal{N} = (2, 2)$ gauged linear sigma model (GLSM), and so the GLSM is related, as a "UV completion" of the NLSM, to the topological string theory. In 2012, Jockers-Kumar-Lapan-Morrison-Romo conjectured that, when a GLSM describes a CY manifold, the GLSM partition function on S^2 gives the exact Kähler potential on quantum Kähler moduli space of the CY manifold, and also proposed a new method to compute the genus zero Gromov-Witten invariants. For that purpose, they used the exact GLSM partition functions on S^2 obtained by the supersymmetric localization technique. We applied their method to CY4s and conjectured an exact formula of the Kähler potential on the quantum Kähler moduli space of CY4s [5].
- By the exact partition function of the A-twisted GLSM obtained by the supersymmetric localization technique, we achieved the followings: Computation of the B-model Yukawa couplings on local toric CYs (a proposal of systematic introduction of the twisted masses to remedy the subtlety by the non-compactness) [15], Computation of the Givental *I*-functions for some of the determinantal CYs via "factorization" of the partition function of the A-twisted GLSM [16], Construction of the off-shell Bethe wavefunctions in su(N) XXX (XXZ) spin-chain, via the 2D (3D) Bethe/Gauge correspondence, as orbifold-type codimension-2 defects (generalization of earlier works in the case of su(2)) [17].