On Weierstrass semigroup of a pointed curve on a $K 3$ surface (joint work with Professor Jiryo Komeda) We consider the follwing problem:

Problem: For a given numerical semigroup H, i.e., a subset of $\mathbb{N}_{0}:=\{0\} \cap \mathbb{N}$ such that the complement $\mathbb{N}_{0} \backslash H$ is finite, can one construct a pointed curve (C, P) lying on a $K 3$ surface such that the Weierstrass semigroup $H(P)$ coincides with H ?

Here, the Weierstrass semigroup $H(P)$ at a point P on a curve C is defined by

$$
H(P):=\left\{n \in \mathbb{N}_{0} \mid \exists f \in \mathbb{C}(C) \quad \text { s.t. } \quad(f)_{\infty}=n P\right\}
$$

where $\mathbb{C}(C)$ is the field of rational functions on C, and $(f)_{\infty}$ is the polar divisor of f.
In $[\mathrm{KM} 19]^{1}$, we construct pointed curves on a $K 3$ surface that admit the Weierstrass semigroups

$$
H=\langle 2 n, 8 n-2,12 n-1\rangle, \quad \text { and } \quad H=\left\langle\begin{array}{l}
8 n-8,8 n-6,8 n-4,8 n-2 \\
8 n, 16 n-5,16 n-3,16 n-1
\end{array}\right\rangle
$$

with $n \geq 3$.
We construct a $K 3$ surface S as the minimal model of the double covering of the weighted projective plane $\mathbb{P}(1,1,4)$ branching in $B \cup\{(0: 0: 1)\}$, where B is the curve of degree 12 defined by

$$
B: X_{2}\left(X_{2}-2 X_{0}^{4}-X_{1}^{4}\right)\left(X_{2}-X_{0}^{4}-2 X_{1}^{4}\right)=0
$$

Here, the weighted projective plane $\mathbb{P}(1,1,4)$ is defined by

$$
\mathbb{P}(1,1,4):=\operatorname{Proj} \mathbb{C}[x, y, z]
$$

with grading in $\mathbb{C}[x, y, z]$ being determined by taking the weights $\mathrm{wt} x=\mathrm{wt} y=1$, and $\mathrm{wt} z=4$ to the variables. For a curve $F \subset \mathbb{P}(1,1,4)$ (resp. a point $P \in F$), denote by \widetilde{F} (resp. \widetilde{P}) the pre-image of F (resp. of P) by the double covering.
(1) Take the Fermat curve of degree $4 n$ in $\mathbb{P}(1,1,4): F_{n}: x^{4 n}+y^{4 n}+z^{n}=0$ with a point $P_{n}=(1: \zeta: 0)$, where $\zeta^{4 n}=-1$ on it. By studying intersections of F_{n} with the branch locus, one can show that the pre-image $\widetilde{F_{n}}$ of F_{n} is lying on the $K 3$ surface S. Moreover, the Weierstrass semigroup of the pre-image $\widetilde{P_{n}}$ of the point P_{n} is given by

$$
H\left(\widetilde{P_{n}}\right)=\langle 2 n, 8 n-2,12 n-1\rangle
$$

(2) Take the following curve of degree $4 n$ in $\mathbb{P}(1,1,4): F_{n}: x^{4 n-4} z+y^{4 n}+z^{n}=0$ with a point $P=(1: 0: 0)$ on it. By studying intersections of F_{n} with the branch locus, one can show that the pre-image $\widetilde{F_{n}}$ of F_{n} is in the $K 3$ surface S. Moreover, the Weierstrass semigroup of the pre-image \widetilde{P}_{n} of the point P_{n} is given by

$$
H(\widetilde{P})=\left\langle\begin{array}{l}
8 n-8,8 n-6,8 n-4,8 n-2,8 n, \\
16 n-5,16 n-3,16 n-1
\end{array}\right\rangle
$$

[^0]
[^0]: ${ }^{1}$ J.KOMEDA and M.MASE, Curves on weighted $K 3$ surfaces of degree two with symmetric Weierstrass semigroups, Tsukuba J. Math. vol.43, No. 1, (2019), 55-70

