Results of my research

Shin'ya Okazaki

A genus 2 handlebody-knot is a genus 2 handlebody embedded in the 3 -sphere, denoted by H. Two handlebody-knots are equivalent if one can be transformed into the other by an isotopy of S^{3}. Cutting along a meridian disk system of H, if we have knotted solid tori in S^{3}, then we call the spine of the knotted solid tori a constituent link of H. The constituent link depend on choice of a meridian disk. There are infinite many meridian disks for a handlebody-knot. Thus, there are infinite many constituent links for a handlebody-knot.

The degree is well known as a classical invariant of a Laurent polynomial. We introduce the following invariant as a generalization of the degree for a Laurent polynomial $f=\sum_{i=1}^{n} c_{i} t_{1}^{a_{i}} t_{2}^{b_{i}} \in \mathbb{Z}\left[t_{1}^{ \pm 1}, t_{2}^{ \pm 1}\right]$.

$$
d(f):=\max \left\{\left.\left|\operatorname{det}\left(\left[\begin{array}{cc}
a_{i}-a_{j} & a_{i}-a_{k} \\
b_{i}-b_{j} & b_{i}-b_{k}
\end{array}\right]\right)\right| \right\rvert\, 1 \leq i, j, k \leq n\right\}
$$

The Alexander polynomial $\Delta_{(H, M)}\left(t_{1}, t_{2}\right)$ is an invariant of a pair consisting of handlebody-knot H and its meridian system M. Replacing a meridian system of a handlebody-knot acts on the Alexander invariant as an action of $G L(2, \mathbb{Z}) \cdot d\left(\Delta_{(H, M)}\left(t_{1}, t_{2}\right)\right)$ is an invariant for this action. Thus, the following theorem hold.

Theorem 1 [O.]
$d\left(\Delta_{(H, M)}\left(t_{1}, t_{2}\right)\right)$ is an invariant for H which does not depend on M.
Y. Diao showed that the lower bound of the crossing number $c(L)$ of a link L is obtained by the degree of the Alexander polynomial as $\operatorname{deg}\left(\Delta_{L}(t)\right) \leq$ $c(L)-b(L)$. Here, $b(L)$ is the braid index of L. The following theorem is an analogy of Diao's result.

Theorem 2 [O.]
For any constituent link L of H,

$$
d\left(\Delta_{(H, M)}\left(t_{1}, t_{2}\right)\right) \leq c(L)-b(L)
$$

We showed that for any $n \in \mathbb{N}$, there exists a handlebody-knot whose all of constituent links satisfy $c(L) \geq n$ by using Theorem 2 .

