Plan of the study (Yosuke Saito)

For a complex number q satisfying |q| < 1 and $x \in \mathbb{C}$, set $(x;q)_{\infty} := \prod_{n \ge 0} (1 - xq^n)$ (q-infinite prod-

uct). For $x \in \mathbb{C} \setminus \{0\}$, set $\Theta_q(x) := (q;q)_{\infty}(x;q)_{\infty}(qx^{-1};q)_{\infty}$ (theta function). By setting $D_x = x \frac{\partial}{\partial x}$ (Euler derivative), we define $E_k(x;q) := -D_x{}^k \log \Theta_q(x)$ $(k \in \mathbb{Z}_{>0})$. For complex numbers q, p satisfying |q| < 1, |p| < 1 and $x \in \mathbb{C}$, set $(x;q,p)_{\infty} := \prod_{m,n \ge 0} (1 - xq^m p^n)$. For $x \in \mathbb{C} \setminus \{0\}$, set $\Gamma_{q,p}(x) := \frac{(qpx^{-1};q,p)_{\infty}}{(x;q,p)_{\infty}}$ (elliptic gamma function).

Let N be an positive integer, β be a complex number, and p be a complex number satisfying |p| < 1. The Hamiltonian of the elliptic Calogero-Moser system $H_N^{\text{CM}}(\beta, p)$ is defined by

$$H_N^{\rm CM}(\beta, p) := \sum_{i=1}^N D_{x_i}^2 - \beta(\beta - 1) \sum_{1 \le i \ne j \le N} E_2(x_i/x_j; p).$$

Then the following fact is known: the function $\Psi_N(x;\beta,p) := \prod_{1 \le i \ne j \le N} \Theta_p(x_i/x_j)^{\beta/2}$ satisfies

$$H_N^{\rm CM}(\beta, p)\Psi_N(x; \beta, p) = \{2N\beta D_p + C_N(\beta, p)\}\Psi_N(x; \beta, p), \cdots (*)$$

where $C_N(\beta, p)$ is a complex number determined by N, β, p . It is remarkable that the derivative $D_p = p \frac{\partial}{\partial p}$ is in the right hand side of (*). This means that the elliptic Calogero-Moser system has a solution which involves the infinitesimal deformation of the elliptic modulus p.

Let N be a positive integer, q, p be complex numbers satisfying |q| < 1, |p| < 1, and t be a complex number satisfying $t \in \mathbb{C} \setminus \{0\}$. The Hamiltonian of the elliptic Ruijsenaars system $H_N^{\mathrm{R}}(q, t, p)$ is defined by

$$H_N^{\mathrm{R}}(q,t,p) := \sum_{i=1}^N \prod_{j \neq i} \left(\frac{\Theta_p(tx_i/x_j)\Theta_p(qt^{-1}x_i/x_j)}{\Theta_p(x_i/x_j)\Theta_p(qx_i/x_j)} \right)^{\frac{1}{2}} T_{q,x_i},$$

where $T_{q,x}$ is the *q*-shift operator which is defined by $T_{q,x}f(x)=f(qx)$. Then the function $\Psi_N(x;q,t,p):=\prod_{1\leq i\neq j\leq N} \left(\frac{\Gamma_{q,p}(tx_i/x_j)}{\Gamma_{q,p}(x_i/x_j)}\right)^{1/2}$ satisfies

$$H_{N}^{R}(q,t,p)\Psi_{N}(x;q,t,p) = t^{\frac{-N+1}{2}} \sum_{i=1}^{N} \prod_{j \neq i} \frac{\Theta_{p}(tx_{i}/x_{j})}{\Theta_{p}(x_{i}/x_{j})} \Psi_{N}(x;q,t,p) \dots (**)$$

It is known that by setting $t=q^{\beta}$ and by taking the limit $q \to 1$ appropriately, the equation (**) degenerates to the equation (*). Thus it is probable that the equation (**) contains a certain difference deformation of the elliptic modulus p. By standing the point of view, the author will study the elliptic Ruijsenaars system.