Research Plan

Relation of Pisot finiteness properties

Let $\beta > 1$. Froughy and Solomyak introduced the following conditions:

(F₁)
$$\mathbb{Z} \subset \operatorname{Fin}(\beta)$$

(PF) $\mathbb{Z}_{+}[\beta^{-1}] \subset \operatorname{Fin}(\beta)$
(F) $\mathbb{Z}[\beta^{-1}] \subset \operatorname{Fin}(\beta)$

where Fin(β) is the set of real number x such that |x| has finite β -expansion. We know some interesting results on these finiteness properties. The following table shows previous research results:

	Number class	Structure of $Fin(\beta)$	Sufficiency for (F)	Sufficiency for (PF)
(F ₁)	Pisot	?	?	?
(PF)	Pisot	Closed under addition	$d_{\beta}(1)$ is finite	_
(F)	Pisot	Ring	_	_

(F₁) is not well-known as well as I know. So, I'll study relations between (F₁) and other *Pisot finiteness* properties. Also, I am interested in an algebraic structure of Fin(β) under (F₁).

Decidability of (F_1)

Let $\beta > 1$ be an algebraic integer with minimal polynomial $x^d - a_{d-1}x^{d-1} - \cdots - a_1x - a_0$ and define τ_{β} , which is a transformation on \mathbb{Z}^{d-1} , by

 $\tau_{\beta}(l_1, l_2, \cdots, l_{d-1}) \coloneqq (l_2, \cdots, l_{d-1}, -[l_1 a_0 \beta^{-1} + l_2 (a_1 \beta^{-1} + a_0 \beta^{-2}) + \cdots + l_{d-1} (a_{d-2} \beta^{-1} + \cdots + a_0 \beta^{-d+1})]).$ Then τ_{β} is a kind of generalization of β -transformation T when β is an algebraic integer with degree d. Define $\tau_{\beta}^*(l) = -\tau_{\beta}(-l)$ and

 $Q_{\beta} = \left\{ \boldsymbol{l} = (l_1, l_2, \cdots, l_{d-1}) \in \mathbb{Z}^{d-1} \middle| \exists \{\boldsymbol{l}_n\}_{n=1}^N \ s.t. \ \boldsymbol{l}_N = \boldsymbol{l}, \ \boldsymbol{l}_{n+1} \in \left\{ \tau_{\beta}(\boldsymbol{l}_n), \tau_{\beta}^*(\boldsymbol{l}_n) \right\} and \ \boldsymbol{l}_1 = (0, \cdots, 0, 1) \right\}.$

Then if β is a Pisot number, then Q_{β} is a finite set. Recently, I proved that for each $l \in Q_{\beta}$, there is $n \ge 0$ such that $\tau_{\beta}^{n}(l) = 0$ if and only if β has property (F), and there is $n \ge 0$ such that $(\tau_{\beta}^{*})^{n}(l) = 0$ if and only if β has property (PF). So, I expect the same statement for (F₁). Questions in the following table show my research aims.

	Structure of $Fin(\beta)$	Sufficiency for (F)	Sufficiency for (PF)	Decidability on Q_{β}
(F ₁)	?	?	?	?
(PF)	Closed under addition	$d_{\beta}(1)$ is finite	—	$\forall \boldsymbol{l} \in Q_{\beta}, \exists n; \left(\tau_{\beta}^{*}\right)^{n}(\boldsymbol{l}) = \boldsymbol{0}$
(F)	Ring	_	_	$\forall \boldsymbol{l} \in Q_{\beta}, \exists n; \tau_{\beta}^{n}(\boldsymbol{l}) = \boldsymbol{0}$