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On the braid index of Kanenobu knots Every knot is presented as a closed braid. The braid index of a

knot is the minimum number of strings of a braid needed for the knot to be presented as a closed braid. A lower

bound of the braid index of a knot is given by applying the Khovanov-Rozansky homology. Since Kanenobu

knots k(n) (n = 0, 1, 2, . . . ) have the same Khovanov-Rozansky homology, it is not easy to determine the braid

index β(k(n)) of k(n). We give a sharper lower bound of β(k(n)) by applying the Γ2/q-polynomial.

The Γp/q-polynomial for mutant knots It is known that many knot invariants are invariant under

mutation, for example, the ∇p/q, Vp/q, P , F , P2/q, F2/q-polynomials are invariant under mutation. On the

other hand, the P3/q-polynomial distinguishes a mutant knot pair. We show that the Γ3/q-polynomial which is

contained in the P3/q-polynomial is invariant under mutation.

On the arc index of Kanenobu knots Every knot has an arc presentation. The arc index of a knot is the

minimum number of pages needed for the knot to be presented as an arc presentation. The Morton-Beltrami

inequality gives a lower bound of the arc index of a knot by applying the a-span of the Kauffman polynomial.

Since Kanenobu knots k(n) (n = 0, 1, 2, . . . ) have the same a-span of the Kauffman polynomials, it is not easy

to determine the arc index α(k(n)) of k(n). We construct “canonical cabling algorithm” which gives sharper

upper bounds of the arc index of cable knots and give a sharper lower bound of α(k(n)) by applying “canonical

cabling algorithm” and the Γ2/q-polynomial. (This is a joint work with Hwa Jeong Lee.)

A characterization of the Γ-polynomials of knots with clasp number at most two Every knot

bounds a singular disk with only clasp singularities, which is called a clasp disk. The clasp number of a

knot is the minimum number of clasp singularities among all clasp disks of the knot. It is known that the

Alexander-Conway polynomials of knots with clasp number at most two are characterized. We characterize the

Γ-polynomials of knots with clasp number at most two.

On knots with the trivial Γ2/1-polynomial For the trivial knot ⃝, ∇p/1(⃝) = Vp/1(⃝) = Γp/1(⃝) =

Qp/1(⃝) = Pp/1(⃝) = Fp/1(⃝) = 1 for any integer p(≥ 2). It is known that there exists a non-trivial knot

K such that ∇p/1(K) = 1 for any integer p(≥ 2). We consider whether there exist an integer p(≥ 2) and a

non-trivial knot K such that Ip/1(K) = 1 for I = V,Γ, Q, P, F . In particular, we show that there exist infinitely

many knots with the trivial Γ2/1-polynomial.

The Γ2/1-polynomial of knots up to ten crossings Since it is known that the Γ-polynomial is com-

putable in polynomial time, the Γp/q-polynomial is also computable in polynomial time. We show that the

Γ2/1-polynomial completely classifies the unoriented knots with up to ten crossings including the chirality

information.

The self-smoothing number of knots and links We call smoothing a self-crossing point of an oriented link

diagram self-smoothing. By self-smoothing repeatedly, we obtain an oriented link diagram without self-crossing

points. We show that every knot has an oriented diagram which becomes a two-component oriented link diagram

without self-crossing points by a single self-smoothing.

Classification of Abe-Tange’s ribbon knots Abe and Tange constructed a sequence of slice disks with

the same exterior. Moreover, they showed that these slice disks are ribbon disks. We call the boundaries of

the ribbon disks Abe-Tange’s ribbon knots. We classify Abe-Tange’s ribbon knots completely by using the

Γ-polynomial.

Vassiliev knot invariants derived from the Γp/q-polynomials We give some results on Vassiliev knot

invariants derived from the Γp/q-polynomials. In particular, we show that all Vassiliev knot invariants of order

≤ 4 are determined by the Γp/q-polynomials.

2n-moves and the Γ-polynomial for knots A 2n-move is a local change for knots and links which changes

2n half twists to 0 half twists or vice versa for a natural number n. In 1979, Yasutaka Nakanishi conjectured that

the 4-move is an unknotting operation. This is still an open problem. In particular, we show that the 4k-move

is not an unknotting operation for any integer k(≥ 2) by using the Γ-polynomial, and if Γ(K;−1) = 9 (mod 16)

then the knot K cannot be deformed into the unknot by a single 4-move. Moreover, we consider the 4-move

distance of knots, which is the minimal number of 4-moves needed to deform one into the other. In particular,

the 4-move unknotting number of a knot is the 4-move distance to the unknot. We give a table of the 4-move

unknotting number of knots with up to 9 crossings. (This is a joint work with Taizo Kanenobu.)


