Generalized Lax-Milgram theorem in Banach spaces and its application to the elliptic system of boundary value problems.

小薗英雄 東北大学大学院理学研究科

This is the joint work with Prof.Taku Yanagisawa at Nara Women's University.

We generalize the well-known Lax-Milgram theorem on the Hilbert space to that on the Banach space. Suppose that $a(\cdot, \cdot)$ is a continuous bilinear form on the product $X \times Y$ of Banach spaces Xand Y, where Y is reflexive. If null spaces N_X and N_Y associated with $a(\cdot, \cdot)$ have complements in X and in Y, respectively, and if $a(\cdot, \cdot)$ satisfies certain variational inequalities both in X and in Y, then for every $F \in N_Y^{\perp}$, i.e., $F \in Y^*$ with $F(\phi) = 0$ for all $\phi \in N_Y$, there exists at least one $u \in X$ such that $a(u, \varphi) = F(\varphi)$ holds for all $\varphi \in Y$ with $||u||_X \leq C||F||_{Y^*}$. We apply our result to several existence theorems of L^r -solutions to the elliptic system of boundary value problems appearing in the fluid mechanics.