
Categorifying q-Fock space
via graded cyclotomic q-Schur algebras

Ben Webster

U. of Oregon

November 20, 2010

Ben Webster (U. of Oregon) Categorifying q-Fock space November 20, 2010 1 / 44



Fock space

One of the most wonderful objects of representation theory is the Fock space
of charge c. This is a vector space spanned by a basis sλ where λ ranges over
all partitions of all sizes.

Thought of bosonically, this is symmetric polynomials, and sλ is the
Schur function.

Thought of fermionically, this is a semi-infinite wedge space, and

sλ = xλ1+c ∧ xλ2−1+c ∧ xλ3−2+c ∧ · · ·
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The ŝln action

Fix once and for all a positive integer n. Given a partition λ, we fill its boxes
(i, j) with their content mod n which is i− j + c ∈ Z/nZ.
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n = 3, c = 1

There is a natural ŝln action on Fock space, where we identify the Dynkin
diagram of ŝln with Z/nZ so that i and i + 1 are adjacent.

The action of Fi sums over adding a box of content i in all possible ways;

The action of Ei sums over removing a box of content i in all possible
ways.

These are obviously adjoint for the inner product where the sλ are
orthonormal.
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diagram of ŝln with Z/nZ so that i and i + 1 are adjacent.

The action of Fi sums over adding a box of content i in all possible ways;

The action of Ei sums over removing a box of content i in all possible
ways.

These are obviously adjoint for the inner product where the sλ are
orthonormal.

Ben Webster (U. of Oregon) Categorifying q-Fock space November 20, 2010 3 / 44
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The ŝln action

Fix once and for all a positive integer n. Given a partition λ, we fill its boxes
(i, j) with their content mod n which is i− j + c ∈ Z/nZ.

1
1

1

1

2
2

2

0
0

0

0

0

2

n = 3, c = 1
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diagram of ŝln with Z/nZ so that i and i + 1 are adjacent.

The action of Fi sums over adding a box of content i in all possible ways;

The action of Ei sums over removing a box of content i in all possible
ways.

These are obviously adjoint for the inner product where the sλ are
orthonormal.

Ben Webster (U. of Oregon) Categorifying q-Fock space November 20, 2010 3 / 44
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The Heisenberg action

However, the Fock space is not irreducible as a module over ŝln. In fact, there
is an infinite-dimensional algebra of endomorphisms commuting with it.

Let pk denote the operator of multiplying by the degree k power sum function
(in the bosonic realization) if k ≥ 0, and its adjoint if k < 0.

Theorem
The operators pnk define an action of the Heisenberg Lie algebraH on Fock
space which commutes with ŝln and acts irreducibly on the space of highest
weight vectors.

One can think of ŝln ×H as ĝln, so this says that Fock space is irreducible
over ĝln.
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Generalizations

There are several directions one can take this picture:
You can deform and obtain q-Fock space.
You can categorify and obtain q-Schur algebras.

Oddly enough, it was known for many years how to do both of these
separately before we knew how to do both at once.

Fock space (’32)q-Fock space (’90)

q-Schur algebras (’89)graded q-Schur algebras (’09)

Since graded q-Schur algebras are so new, there are a lot of unresolved
questions about them:

relation to Rouquier-type categorification?
is there a natural graded presentation? a homogenous basis?
what about generalizations to higher level?
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Generalizations

My aim in this talk to answer (parts of) these questions.

Main idea: Develop graded Rouquier-style categorification of q-Fock space
from first principles, and than check isomorphism with q-Schur algebra.

So, which principles would those be?
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Categorification

It is an old observation that some numbers are really sets in disguise, and
some sets are categories in disguise. Of course, this added structure is a
choice, but we know of oodles of instances where it “feels right.”

What has taken a little longer to develop is the linearized version of the same
story.

Sometimes, a number doesn’t seem to be the size of any particular set,
but is the dimension of a vector space.

Abelian groups can be gotten as the Grothendieck group of a category
with some notion of exact sequence.

Some very important and popular abelian groups, the semi-simple Lie
algebras and their representations, managed to be the Grothendieck groups of
categories for 100 years without anyone noticing.
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The Grothendieck group

The Grothendieck group (GG) of a category C with a distinguished
collection of triples (A, B, C) ∈ Ob(C)3 is the abelian group generated by
symbols [A] for A ∈ Ob(C), modulo the relations

[A] + [C] = [B].

The most popular choice is for C to be modules over some ring, with
short exact sequences 0→ A→ B→ C→ 0.

Another option would be projective modules over a ring; now all short
exact sequences are split, so the triples are just (P1, P1 ⊕ P2, P2).

More exciting would be a derived category or homotopy category of
modules. In this case, triples are objects with representatives that fit in an
exact sequence.
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Universal enveloping algebras

Let g be your favorite symmetrizable Kac-Moody Lie algebra with Cartan
matrix C (for today, you should probably choose ŝln), root lattice Y and
weight lattice X.

This Lie algebra has a presentation of the form

[Hj, Ei] = cijEi [Hj, Fi] = −cijFi

[Ei, Fj] = δi
jHi adcij+1

Ej
Ei = adcij+1

Fj
Fi = 0

By definition, the universal enveloping algebra is the associative algebra
generated by these symbols subject to the relations above (where [−,−]
means commutator).
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Universal enveloping algebras

We actually want a slightly bigger algebra U̇, with some extra idempotents 1λ

for λ ∈ X. These satisfy the relations

1λ1λ′ = δλ
λ′1λ Hi1λ = 1λHi = λi

1λ.

Note that
1λEi = Ei1λ−αi 1λFi = Fi1λ+αi .

We can represent elements of this as pictures on a line

1λEiFjEj1λ−αi =
λ λ− αi λ− αiλ− αi + αj

i j j
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Categorifying UEAs

The remarkable insight of Khovanov and Lauda was that one could make
these into the objects of a category U , with morphisms given by pictures in
the plane (Chuang and Rouquier had the same idea first, but never drew the
pictures).

The morphisms of U are given by oriented 1-manifolds decorated with dots
and labeled with elements of [1, n− 1], whose boundaries are the given
objects (with orientations and labels), modulo certain relations.

λ λ− αi λ− αiλ− αi + αj

λ λ− αj λ− αiλ− αj − αi

i j j
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Relations in U (simply-laced case)

λ = λ
+

∑
a+b+c=α∨i (λ)−1

a

c

b λ

λ
=

∑
a+b=α∨i (λ)−1

b
λ

∑
k

k

λ
j− k =

{
1 j = α∨i (λ)− 1
0 j 6= α∨i (λ)− 1

λ

i j

= λ

i j

Qij(u, v) = Qji(v, u) =

{
1 i 6= j± 1
au + bv i = j + 1

i j

=

i j

unless i = j

i i

=

i i

+

i i

i i

= 0 and

i j

=

ji

Qij(y1, y2)

ki j

=

ki j

unless i = k 6= j

ii j

=

ii j

+

ii j

Qij(y3, y2)− Qij(y1, y2)

y3 − y1
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Relations in U

These relations are all a bit overwhelming at first, but actually they match up
surprisingly well with the relations of the universal enveloping algebra. Of
course, this correspondence is a bit subtle.

The thing to look for is writing the identity element of any object as maps
factoring through another; this is how we find direct sum decompositions.

λ

i j

= λ

i j

EiFj = FjEi

λ = λ
+

∑
a+b+c=λi−1 a

c

b λ

1λFiEi = 1λEiFi + 1λλi (λi > 0)

λ = λ
+

∑
a+b+c=−λi−1 a

c

b λ

1λEiFi = 1λFiEi − 1λλi (λi < 0)

i ii + 1

−

i ii + 1

=

i

a ·

ii + 1

FiFi+1Fi = Fi+1F(2)
i + F(2)

i Fi+1

The relations may look ad hoc, but actually every single one of them can be
guessed by looking at the geometry of quiver varieties.
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The category U

We let U be the idempotent completion of the category whose

objects are diagrams on a line shown above and

morphisms are the pictures in the plane, modulo the relations of the
previous slide.

Idempotent completion means adding a new object for each idempotent
which is the image of that idempotent as a projection.

Put another way, if we fix the weights at extreme left and right, then we get an
algebra spanned by diagrams modulo these relations λUµ. We look at the
categories of projective modules over these.
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The monoidal structure

The category U is monoidal; it has a tensor product. Visually, it’s quite
simple. You just put diagrams next to each other if the label at the edges
match, and get 0 if they don’t.

A
λ2λ1 ⊗ B

µ1 µ2
= A B

λ2 = µ1λ1 µ2

Put another way, there is a 2-category where

objects are weights λ ∈ X, and

morphisms from λ to µ are the category of projective modules over λUµ.

The multiplication of morphisms is given by extension of scalars by the map
λUµ ⊗ µUν → λUν shown above.
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The Grothendieck group

Let Eλ
i =

λ λ− αi

i
and Fλ

i =
λ λ + αi

i

Theorem (Khovanov-Lauda, W.)

The GG of U is U̇, via the isomorphism [Eλ
i ] 7→ 1λEi, [F

λ
i ] 7→ 1λFi.

For example,[
λ λ− αi λ− αiλ− αi + αj

i j j

]
7→ 1λEiFjEj1λ−αi

Note: I never imposed any of the relations of U̇! They all follow
(non-obviously) from the relations in U .
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Grading

That probably all went by a little fast, but actually the relations I showed you
are homogeneous for a particular grading; the category U actually has a
graded version Ũ .

deg
j i

= −〈αi, αj〉 deg
i

= 〈αi, αi〉.

Theorem (Khovanov-Lauda,W.)

The GG of Ũ is U̇q(g), the quantized universal enveloping corresponding to g.

As a general rule, it’s never harder to work with quantum groups in this
picture (sometimes, it even makes things easier); you just pay attention to the
grading.
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ĝln?

This is, of course, a beautiful story, and I’ll say a lot more about it before this
talk is over. But for our purposes, it’s not very satisfying, since it uses
extremely strongly that g has a Chevalley presentation, which ĝln doesn’t.

However, this is really a sign that our principles aren’t “first” enough yet.

Underlying all of this picture is geometry, which we haven’t delved into yet.

Ben Webster (U. of Oregon) Categorifying q-Fock space November 20, 2010 18 / 44



Quiver varieties

Assume from now on that our Cartan matrix is symmetric, and let Γ be an
orientation of the Dynkin graph of g. For ŝln, of course, we can choose

0n 1

··
·

· ·
·

Choose a dimension vector d : V(Γ)→ Z. Let

Ed =
⊕
i→j

Hom(Cdi , Cdj)

This is the universal d-dimensional representation of Γ since its points are
exactly the representations of Γ on

⊕
Cdi .
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Quiver flag varieties

Choose a sequence of dimension vectors D = (d1, · · · , dn) with d =
∑

dj,
and let FD denote the space of flags of subspaces

· · · ⊂ V j
i ⊂ V j+1

i ⊂ · · · ⊂ Cdi

such that dim V j+1
i /V j

i = dj
i. This is a parabolic homogeneous space for the

action of Gd =
∏

i∈Γ GLdi .

Definition
The quiver flag variety for the sequence QD is the subvariety

{(f , V∗∗ ) ∈ Ed ×FD|V j
∗ is a subrepresentation

and V j
∗/V j−1

∗ is a trivial representation for all j.}

This variety is Gd-invariant, and thus inherits a Gd-action.
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Quiver flag varieties

There are natural projection maps

QD

Ed FD

pD πD

The map πD is an affine bundle; its fiber is the space of quiver
representations preserving the given flag.
The map pD is proper, and in some circumstances is a resolution of
singularities of a subvariety of Ed. The image this map necessarily lies in
the space of nilpotent quiver representations.

In finite or affine type, the nilpotent representations have finitely many
Gd-orbits, and the closure each of these has a resolution of singularities of the
form QD, given by choosing the dimension vectors of the radical (or socle)
filtration.
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Convolution and Borel-Moore homology

Faced with a situation like this, it’s quite popular to study the equivariant
Borel-Moore homology of the fiber products QD ×Ed QD′ .

Theorem
The vector space

AS ∼=
⊕

D,D′∈S

HBM,Gd
∗ (QD ×Ed QD′ ; C)

for any set S of sequences is an algebra under convolution.

This algebra is isomorphic to

Ext•D(Ed/Gd)

( ⊕
D∈S

(pD)∗CQD

)
where D(Ed/Gd) denotes the equivariant derived category.
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Borel-Moore homology and categorification

Given two sequences C = (c1, . . . , cm) and D = (d1, . . . , dn) , let C ∪ D be
their concatenation.

Definition
Let QC;D ⊂ QC∪D be the subvariety where the mth subspace (the last from C)
is the standard coordinate subspace.

Pull-push on the diagram

QC ×QD ←− QC;D −→ QC∪D

defines a map AS ⊗ AS → AS for any set S closed under concatenation. We
call this map horizontal multiplication.
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Borel-Moore homology and categorification

The object
⊕

D∈S(pD)∗CQD is semi-simple by the decomposition theorem,
and thus its simple summands are the intersection cohomology sheaves of
some set of orbits of nilpotent orbits, and these sheaves categorify some piece
of the Hall algebra of nilpotent quiver representations.

Theorem (Lusztig)

If S = L is the set of sequences where every dj is a unit vector, AL

categorifies U̇(b), with product structure induced by horizontal
multiplication.

If S = M is all sequences, then the result is the same in finite type, but for
ŝln, AM is a categorification of U̇(b)⊗ Λ, an algebra whose twisted
Drinfeld double is U̇(ĝln).

Since Fock space is cyclic for the action of U̇(b)⊗ Λ, we should expect our
categorification of Fock space to be “cyclic” over the monoidal category of
modules over AM.
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Algebraic and geometric categorification

Now, you’ll note, I’ve now talked about categorifications arising from algebra
(the pictorial categorification) and from geometry (Lusztig’s perverse
sheaves).

Question
How are these related? Does one really get two different pictures?
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Algebraic and geometric categorification

If each dj is a unit vector, we can think of D as a sequence i = (i1, . . . , in) of
nodes. Associated to this sequence, we have an element Fi1 · · ·Fin ∈ U(g)
and its corresponding categorification Fi.

Theorem (Vasserot-Varagnolo/Rouquier)

We have an isomorphism HBM,Gd(Qi ×Ed Qi′) ∼= HomU−(Fi,Fi′) compatible
with horizontal and vertical multiplication. This isomorphism sends

a dot on the jth strand to the Euler class of the line bundle V j/V j−1 and

a crossing on the kth and k + 1st strands to the fundamental class of
Qi,k, the space of flags with Vk+1/Vk−1 trivial, the top of type i, and the
bottom of type (k, k + 1) · i of the form

Vk−2 Vk−1
Vk

Vk′
Vk+1 Vk+2⊂ ⊂⊂ ⊂· · · · · ·⊂ ⊂

⊂ ⊂
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The case of ĝln

Thus AL(d) is actually the algebra Khovanov and Lauda call R(
∑

diαi).

So, what about affine type A? Actually, it’s easier to come up with generators
of AM, since we can use any flags we want. There are two essential types: the
split and the join, which we denote pictorially by

c d

c + d c d

c + d

These are given by pull-push on the diagram

Q(c,d) ←− Fc,d −→ Qc+d = pt.

Horizontal and vertical compositions of these are written exactly as the name
suggests.
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The case of ĝln

Of course, we have to also include multiplication by classes in

HBM,Gd
∗ (QD) ∼= HBM,Gd

∗ (FD) ∼= H∗
PD

(pt)

where PD is the stabilizer of a flag of type D.

This ring is a polynomial ring freely generated by the Chern classes of
V j

i/V j−1
i for all i, j.

Theorem (Stroppel-W.)
Under horizontal and vertical composition, the split, join and Chern classes
generate AM. In fact, we can give an explicit basis of AM using these
diagrams.
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Relations

Now, you’ll note, I haven’t written down relations; that’s because I can’t.

In principle one can; we have a basis of the algebra, and an algorithm for
writing a product of basis vectors in terms of this basis, using localization in
equivariant cohomology.

Thus, an arbitrarily patient person can work out any particular case, but no
“closed form” is known.

Question
Is there a simple set of relations for AM in terms of these generators?

Given the success (and simplicity) of Khovanov and Lauda’s relations, there’s
reason to be optimistic, but certainly it’s a ticklish problem.

Remarkably, for our purposes, this point won’t matter much.
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Representations

One of the reasons people like Kac-Moody algebras is that it has a nice
representation theory. Every integrable irrep is generated by a unique line
killed by all Ei, and the representation Vλ is determined by the weight λ of
this line.

So, we can construct a representation Lλ of U by starting with a single object
V of weight λ with boring endomorphisms, and letting U act by horizontal
composition, subject to Ei ⊗ V = 0.

Objects:
λ− αjλ− αj − αiλ λ− αj

ijjλ

Morphisms:

λ− αjλ− αj − αiλ λ− αj

λ− αjλλ λ− αi

ijjλ
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V of weight λ with boring endomorphisms, and letting U act by horizontal
composition, subject to Ei ⊗ V = 0.

Objects:
λ− αjλ− αj − αiλ λ− αj

ijjλ

Morphisms:

λ− αjλ− αj − αiλ λ− αj

λ− αjλλ λ− αi

ijjλ
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Relations

Theorem (Rouquier/Brundan-Kleshchev)

The GG of Lλ is the irreducible representation of U̇ with highest weight λ,
and Lλ is essentially the unique such module category for U .

(You might think that this would give you the Verma module; it doesn’t!).

There’s just one new relation in this category, the “cyclotomic relation.”

0 = −

−λj

jλ

=

−λj

α∨j (λ)

jλ

The category Lλ is just projective modules over the algebra AL, the quotient
of Aλ

L by the two-sided ideal generated under vertical composition and
horizontal composition on the right by the relation above.

Ben Webster (U. of Oregon) Categorifying q-Fock space November 20, 2010 31 / 44



Representations

So, even if we don’t have a categorification of the full ĝln, we can still try to
define a categorification of Fock space as a representation over its lower half.

Definition

Let Aλ
M the quotient of AM by the two-sided ideal generated by the relation

above by horizontal composition on the right and vertical composition.

The categoryMλ of projective Aλ
m modules still has a monoidal action by U

given by adding black lines colored by simple roots (unit vectors).

Theorem (Stroppel-W.)
The graded GG ofMωi is isomorphic to q-deformed Fock space as a
ŝln ⊗ Λ-module.

The algebra Aωi
M
∼=

⊕∞
m=0 Sm(ζ) where ζ is a primitive nth root of unity.
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A cellular basis

At the core of the proof is the construction of a basis CS,T indexed by pairs
S, T of semi-standard tableaux of the same shape.

Let DT be the sequence of dimension vectors where the component of dj
T at

the node i is the number of boxes with label j in T with content i.

1
3

3

4

1
4

3

2
2
1

3
3

4

1
4

3

2
2

d1 = (0, 1, 1)
d2 = (2, 0, 0)
d3 = (0, 2, 1)
d4 = (0, 1, 1)

1
2

1

4

1
2

3

1
2
1 1

2

4

1
2

3

1
2

f1 = (1, 2, 1)
f2 = (1, 1, 1)
f3 = (0, 0, 1)
f4 = (0, 1, 0)

Let FT be the associated sequence for the ground-state tableau on the same
shape as T.
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A cellular basis

There is a natural element BT attached to each tableau; its top and bottom are
marked with DT and FT. The element itself is given by “connect each box to
its row.”

BT =

(1, 2, 1) (1, 1, 1) (0, 0, 1) (0, 1, 0)

(0, 1, 1) (2, 0, 0) (0, 2, 1) (0, 1, 1)

(1, 0, 0)

(0, 1, 0)

(1, 0, 0)

(0, 1, 0)

1
3

3

4

1
4

3

2
2

T =

Of course, this involves choices; essentially the choice of a special reduced
word for the permutation which puts the reading word into order. Fix a choice
once and for all; this won’t make any difference for our purposes.
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A cellular basis

We let B∗T be the reflection of this diagram, and let CS,T = BSB∗T. Of course, if
this element is non-zero, S and T must have the same shape.

(1, 1, 1) (1, 2, 1) (0, 0, 1) (0, 1, 0)

(1, 2, 1) (1, 1, 1) (0, 0, 1) (0, 1, 0)

(0, 1, 1) (2, 0, 0) (0, 2, 1) (0, 1, 1)

(1, 0, 0)

(0, 1, 0)

(1, 0, 0)

(0, 1, 0)

(0, 1, 0)

1
3

3

4

1
4

3

2
2T =

1
2

2

4

1
2

3

1
2S =
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A cellular basis

Theorem (Stroppel-W.)

The vectors CS,T form a basis of Aωi
M , which is cellular.

Under the isomorphism to the q-Schur algebra, the cellular ideals of this basis
coincide with those of the DJM cellular basis, and thus its cell modules are
sent to the Weyl modules.

Proof.
Geometric considerations and a few calculations show that these vectors
span.

Reduce to the case where D is a unit vector (i.e. both tableaux are
standard).

This is almost the cellular basis of Hu and Mathas on the cyclotomic
Khovanov-Lauda algebra (=cyclotomic Hecke algebra).
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Graphical permutation modules

Let eν for ν = (ν1, . . . , νn) a composition be the idempotent in AM which
picks out components where the flag has total type ν, that is

∑
dj

i = νj.

For example e(1d)AMe(1d) = AL. Thus, eνAωi
M e(1d) is a right module over

e(1d)A
ωi
M e(1d)

∼= Hd(q) by Brundan and Kleshchev’s isomorphism.

Theorem (Stroppel-W.)

This right module is isomorphic to the signed permutation module overHd(q)
for ν. The left action of Aωi

M on Aωi
M e(1d) induces the isomorphism to the

q-Schur algebra.

The appearance of the signed rather than usual permutation module is a
“mistake” of Brundan and Kleshchev; it’s not particularly intrinsic. You also
have to be very careful to pick the right one of their isomorphisms.
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What’s the point?

What’s achieved by obtaining a categorification like this? For me, a big part of
the motivation was categorified knot invariants, which I’ll talk about in Kyoto
next week. But this can also illuminate purely representation theoretic points.

Theorem
The functor HomAωi

M
(−, Aωi

M ) where the action is twisted by the vertical
reflection anti-automorphism categorifies the bar involution on q-Fock space.

This works for any module category over U with a nice enough equivalence to
its opposite; we always get an involution which is anti-linear and commutes
with Fi and Ei.

The indecomposable projectives are always invariant under this functor (in the
grading so that their quotients are self-dual), and thus will be a canonical basis
in the sense of Lusztig whenever we have some upper-triangularity.
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This works for any module category over U with a nice enough equivalence to
its opposite; we always get an involution which is anti-linear and commutes
with Fi and Ei.

The indecomposable projectives are always invariant under this functor (in the
grading so that their quotients are self-dual), and thus will be a canonical basis
in the sense of Lusztig whenever we have some upper-triangularity.
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Canonical bases

This upper-triangularity isn’t free; in fact, we have that

Theorem (W.)
The indecomposables of Lλ give Lusztig’s canonical basis in Vλ if and only if
Lλ is graded equivalent to representations of a positively graded algebra.

The hypothesis fails in most non-symmetric types. However, in symmetric
type, it follows from geometry by work of Vasserot and Varagnolo.

Theorem (Stroppel-W.)

The indecomposable projectives of Aωi
M (graded so that their cosocle is

self-dual) categorify the canonical basis of Leclerc-Thibon on q-Fock space.

In particular, this gives an (almost) purely combinatorial proof that the graded
decomposition numbers of q-Schur algebras are the coefficients of a canonical
basis (by BGG reciprocity).
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Higher levels

One very interesting thing to do is consider analogues of these results for
higher level q-Fock spaces. Of course, this would easier if people could agree
on what “higher level q-Fock spaces” meant.

One thing that you might mean is a highest weight representation of
Uq(ĝln); that’s categorified by representations of Aλ

M for other weights λ.
Another thing you could potentially mean is the tensor product (using the
usual Hopf algebra structure on Uq(ŝln)) of level 1 Fock spaces (or
ĝln-irreps as above); this is bigger than the one discussed above. This is
categorified by a similar diagrammatic algebra Aλ

M which is isomorphic
to the cyclotomic q-Schur algebra.

This new diagrammatic algebra now has multiple red lines, which we forbid
to cross. It arises from the geometry of quiver varieties with shadow vertices.

Ei(vλ1 ⊗ Fjvλ2)↔
λ1 + λ2
−αj + αi

λ1 + λ2
−αjλ2 λ2 − αj

iλ1jλ2
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Tensor products

The new relations one needs to add to Aλ
M are

i λ

=

λi

α∨i (λ)

λ i

=

iλ

α∨i (λ)

i λ

=

λi

λ i

=

iλ

ii

=

ii

+
∑

a+b=λi−1
b

i

a

i

ij

=

ij

= =

the right-most red
line is killed by Ei.

Theorem (W.)

The GG of Aλ
M -mod is the tensor product of Fock spaces for the weights λi.

The classes of indecomposables give the canonical basis for the bar
involution discussed earlier.
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Higher levels

Yet a third thing you could have in mind is the twisted higher-level spaces in
the sense of Uglov. These arise from choosing a list of integers (c1, . . . , c`),
and q-deform the tensor product of level 1 Fock spaces with these charges.

The key difference between Uglov’s space and the tensor product is that they
are associated to different partial orders on the set of `-multipartitions.
multi-partitions

The tensor product quantization corresponds to the usual dominance
order.

Uglov’s order corresponds to dominance order on anti-`-quotients (i.e.
λ ≺c λ′ if they are the `-quotients of partitions with the same relation in
dominance order).
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Higher levels

The categorifical manifestation of the first order is that the coarsest partial
order on the set of Weyl modules for which they form an exceptional
collection is the dominance order.

Thus, we can mutate our exceptional collection with respect to the change of
order from ≤ to ≺c, to obtain a new exceptional collection in Db(Aλ

M -mod)
which we call c-twisted Weyl modules.

In particular, this exceptional collection and its dual define a new t-structure
on Db(Aλ

M -mod), whose heart Vc is a highest weight category with standards
given by the c-twisted Weyl modules.

Conjecture
Uglov’s higher level Fock spaces are the GG’s of Vc, with standard vectors
given by the classes of c-twisted Weyl modules and the canonical basis given
by projective modules in Vc.
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Thanks for listening.
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