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Abstract. In this article we shall provide a survey on my recent works
and their environs on differential geometry of Lagrangian submanifolds in
specific symplectic Kähler manifolds. This article is mainly based on the
author’s joint work with Hui Ma (Tsinghua Univ., Peking).

The volume minimizing problem of Lagrangian submanifolds in Kähler
manifolds under Hamiltonian deformations was investigated first by Y. G.
Oh about the beginning of 1990’s. It is fundamental and interesting as
a geometric variational problem related to Lagrangian submanifolds. In
this article we shall discuss several nice classes of Lagrangian submani-
folds and their Hamiltonian stability problems in specific Kähler manifolds
such as complex space forms (complex Euclidean spaces, complex projec-
tive spaces, complex hyperbolic spaces), Hermitian symmetric spaces and
especially complex hyperquadrics, and so on. The relationship of minimal
Lagrangian submanifold in complex hyperquadrics with isoparametric hy-
persurfaces in spheres will be emphasized. We shall mention our recent
results on a classification of compact homogeneous Lagrangian submani-
folds in complex hyperquadrics and the Hamilitonian stability of compact
minimal Lagrangian submanifold embedded in complex hyperquadrics ob-
tained as the Gauss images of homogeneous isoparametric hypersurfaces in
spheres.

Introduction

The purpose of this article is to give a survey on my recent works and
their environs on differential geometry of Lagrangian submanifolds in specific
symplectic Kähler manifolds. This article is mainly based on the author’s joint
work with Hui Ma (Tsinghua Univ., Peking) on Lagrangian submanifolds in
complex hyperquadrics ([18]).

Let (M,ω) be a 2n-dimensional symplectic manifold with a symplectic form
ω. A Lagrangian immersion φ : L −→ M is a smooth immersion of an n-
dimensional smooth manifold L into M satisfying φ∗ω = 0. More generally
a submanifold φ : S −→ M (whose dimension is not necessary equal to n)
immersed in a symplectic manifold M satisfying φ∗ω = 0 is called an isotropic
submanifold of a sympletic manifold M and thus a Lagrangian submanifold
is an isotropic submanifold of maximal dimension in a symplectic manifold.

The author is supported by JSPS Grant-in-Aid for Scientific Research (A) No. 17204006.
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Lagrangian submanifolds are the most fundamental objects in symplectic ge-
ometry (cf. [29],[30],[31]).

On the other hand, let (M,J, g) be a 2n-dimensional almost Hermitian man-
ifold with an almost complex structure J and an almost Hermitian metric g.
A totally real immersion φ : L −→ M is defined as a smooth immersion sat-
isfying the condition g(Jφ∗X, φ∗Y ) = 0 for each X,Y ∈ TL. Totally real
submanifolds in not only Kähler manifolds but also non-Kähler Hermitian or
almost Hermitian manifolds (eg. the nearly Kḧler 6-dimensional sphere) have
also been extensively studied in Riemannian geometry by so many authors
(cf. [10], [11]).

Suppose that (M,J, g) is a Kähler manifold with a complex structure J and
a Kähler metric g. The Kähler form is a non-degenerate closed 2-form on M
defined by ω(X, Y ) := g(JX, Y ) for each X, Y ∈ TL and thus ω defines a
symplectic structure of M . The Lagrangian submanifold in a Kähler manifold
is nothing but a totally real submanifold of maximal dimension in a Kähler
manifold, which is one of very interesting objects in Riemannian geometry
of submanifolds (cf. [12], [11]). It is a fruitful subject to study Lagrangian
submanifolds in Kähler manifolds from both viewpoint of symplectic geometry
and Riemannian geometry.

Each one-parameter smooth family of Lagrangian submanifolds in a sym-
plectic manifold, that is, a Lagrangian deformation, is induced by a closed
1-form on L. The Hamiltonian deformation of a Lagrangian submanifold is
defined as a Lagrangian deformation induced by an exact 1-form on L. For
example, any smooth variation of a closed curve on the 2-dimensional standard
sphere S2 is a Lagrangian deformation, and but a Hamiltonian deformation
is a smooth variation consisting of closed curves preserving the areas of two
domains bisecting S2. It is very basic a characterization of the Hamiltonian
deformation in terms of the notion of an isomonodromy deformation (Lemma
1.1).

It is a natural and interesting question to find the best Lagrangian subman-
ifold under all Hamiltonian deformations. The minimal submanifold is defined
as a submanifold in a Riemannian manifold which has extremal volume under
every smooth variation and it is one of main subjects in Riemannian geome-
try as a generalization of minimal surfaces (cf. [10]). The volume minimizing
problem of Lagrangian submanifolds under Hamiltonian deformations were in-
troduced and investigated first by Y.-G. Oh about the beginning of 1990’s
([25],[26],[27],[28]).

A Lagrangian submanifolds in a Kähler manifold which has extremal vol-
ume under every Hamiltonian deformation is called Hamiltonian minimal, and
moreover a Hamiltonian minimal Lagrangian submanifold in a Kähler mani-
fold is called Hamiltonian stable if the second variation of the volume is non-
negative under every Hamiltonian deformation. For example, each great or
small circle on S2 is a 1-dimensional compact length minimizing Lagrangian
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submanifold under every Hamiltonian deformation (by the isoperimetric in-
equality on S2). In higher dimension it is known that the real projective
subspace RP n of the complex projective space CP n is a compact totally ge-
odesic Lagrangian submanifold which is Hamiltonian stable ([25]) and more
strongly is globally volume minimizing under every Hamiltonian deformation
(Y. G. Oh and B. Kleiner). The class of compact Hamiltonian stable min-
imal or H-minimal Lagrangian submanifolds seems to be a very restricted
class. More examples of compact Hamiltonian stable minimal or H-minimal
Lagrangian submanifolds and compact homogeneous Lagrangian submanifolds
embedded in complex projective spaces, more generally complex space forms
will be described and discussed. At present all known compact Hamiltonian
stable minimal or H-minimal Lagrangian submanifolds in complex projective
spaces (more generally, in Hermitian symmetric spaces etc.) are compact ho-
mogeneous Lagrangian submanifolds, that is, Lagrangian orbits of compact
Lie subgroups.

The n-dimensional complex hyperquadric Qn(C) is a compact complex alge-
braic hypersurface defined by the quadratic equation in the (n+1)-dimensional
complex projective space, which is isometric to the real Grassmann manifold
of oriented 2-planes and is a compact Hermitian symmetric space of rank 2.
hyper The Gauss map of any oriented hypersurface in the unit sphere Sn+1(1)
is always a Lagrangian immersion into Qn(C) and, as an application of Lemma
1.1, there is a correspondence between deformations of an oriented hypersur-
face in Sn+1(1) and Hamiltonian deformations of its Gauss map into Qn(C)
(Proposition 2.1). Geometry of compact Lagrangian submanifolds in com-
plex hyperquadrics can be investigated from the viewpoint of the theory of
isoparametric hypersurfaces, i.e., hypersurfaces with constant principal curva-
tures, in the unit spheres. Using homogeneous isoparametric hypersurfaces in
the unit spheres and the moment map technique, we provided a classification
theorem of compact homogeneous Lagrangian submanifolds in complex hyper-
quadrics and we obtain a new example of a one-parameter family of compact
homogeneous Lagrangian submanifolds in complex hyperquadrics (Thorem 3.1,
the case (iv)). Moreover we determined the Hamiltonian stability of compact
minimal Lagrangian submanifolds embedded in complex hyperquadrics which
are obtained as Gauss images of isoparametric hypersurfaces in spheres with
g(= 1, 2, 3, 6) distinct principal curvatures (Theorems 4.1 and 4.2). Very re-
cently we obtain both Hamiltonian stable and Hamiltonian unstable examples
in the case of g = 4 (Theorem 4.3).

This article is organized as follows : In Section 1 we recall the fundamen-
tal properties of of Lagrangian submanifolds in symplectic manifolds such as
Lagrangian deformations, Hamiltonian deformations and the moment maps.
Moreover we discuss Lagrangian submanifolds in Kähler manifolds and their
Hamiltonian minimality and Hamiltonian stability. And we review several
examples of compact Hamiltonian stable H-minimal or minimal Lagrangian
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submanifolds. In Section 2 we discuss the relationship of Lagrangian subman-
ifolds in complex hyperquadrics with isoparametric hypersurface geometry in
Sn+1(1). In Section 3 we state a classification of compact homogeneous La-
grangian submanifolds in complex hyperquadrics. In Section 4 we mention the
Hamiltonian Stability results of the Gauss images of isoparametric hypersur-
faces in spheres. In Section 5 we suggest some further problems related to this
work. In Appendix, we describe the proof of Lemma 1.1 explicitly.

This article is based on my lectures at the Min International Workshop on
“Lagrangian Submanifolds and Related Fields”at Kyungpook National Uni-
versity in Korea, on Dec. 6-7, 2007. The author would like to thank Professor
Young Jin Suh for his kind hospitality and and excellent organization. The
author also would like to thank Dr. Takashi Sakai for his interest in this work
and efforts to the KNU-OCAMI joint program.

1. Lagrangian Submanifolds and Hamiltonian Stability

Let (M,ω) be a 2n-dimensional symplectic manifold with a symplectic form
ω. A Lagrangian immersion φ : L −→ M is a smooth immersion of an n-
dimensional smooth manifold L into M satisfying φ∗ω = 0. There is a canoni-
cal linear isomorphism between φ−1TM/φ∗TL and T ∗L of L : φ−1TM/φ∗TL ∋
v 7−→ αv := ω(v, ·) ∈ T ∗L. A Lagrangian deformation is a smooth family of
Lagrangian immersions φt : L −→ M with φ = φ0. Denote its variational
vector field by Vt := ∂φt

∂t
∈ C∞(φ−1TM) and the corresponding 1-forms on L

by αVt ∈ Ω1(L). The Lagrangian deformation is characterized by the condition
that αVt is closed, that is αVt ∈ Z1(L), for each t. Furthermore, if αVt is exact,
that is αVt ∈ B1(L), for each t, then {φt} is called a Hamiltonian deformation
of φ = φ0.

Hamiltonian deformations in a class of Lagrangian deformations can be char-
acterized in terms of the notion of isomonodromy deformation as follows :

Lemma 1.1 ([41], [18]). Suppose that [ 1
2π

ω] ∈ H2(M ;R) is an integral co-
homology class, and thus there is a complex line bundle L over M with a
U(1)-connection whose curvature is

√
−1ω. Let {φt} be a Legrangian defor-

mation of φ0 = φ : L → M . Then {φt} is a Hamiltonian deformation if
and only if {φt} provides an isomonodromy deformation of the induced flat
U(1)-connections in φ−1

t L.

The proof of this lemma will be explained in detail in Appendix.

It is known that all Lagrangian orbits of a compact Hamiltonian group action
K on a compact symplectic manifold (M, ω) with moment map µ appears as
the level set µ(α) for some α ∈ z(k∗) := {α ∈ k∗ | Ad∗(a)α = α for all a ∈
K}. It is a natural question to study and classify Lagrangian orbits of the
Hamiltonian group actions on specific symplectic manifolds.

We shall assume that (M, ω, J, g) is a Kähler manifold and L is a Lagrangian
submanifold immersed in M . Let B be the second fundamental form of L in
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M and H be the mean curvature vector field of L in M . The mean curvature
form αH of L is a smooth 1-form on L defined by

αH(X) := ω(H, X) = g(JH,X)

for each X ∈ TL. A symmetric 3-tensor field S on L is defined by

S(X, Y, Z) := ω(B(X,Y ), Z) = g(JB(X,Y ), Z)

for each X, Y, Z ∈ TL. It is known that αH satisfies the identity ([13]), which
follows from the Codazzi equation :

(1.1) dαH = φ∗ρM ,

where ρM denotes the Ricci form of the Kähler manifold M .
The volume minimizing problem of Lagrangian submanifolds under Hamil-

tonian deformations was investigated first by Y. G. Oh ([25],[26],[27],[28]). A
Lagrangian immersion φ is called Hamiltonian minimal (H-minimal) if the first
variation of the volume vanishes under every Hamiltonian deformation of φ.
By the first variational formula for volume of submanifolds, the Hamiltonian
minimality equation is

(1.2) δαH = 0,

where δ denotes the codifferential operator of d relative to the induced metric
on L. An H-minimal Lagrangian immersion φ is called Hamiltonian stable
(H-stable) if the second variation of the volume is nonnegative under every
Hamiltonian deformation {φt} of φ. The second variational formula is as
follows ([27]) :

d2

dt2
Vol(L,φ∗

t g)|t=0

=

∫
L

(
⟨∆1

Lα, α⟩ − ⟨R̄α, α⟩ − 2⟨α ⊗ α ⊗ αH , S⟩ + ⟨αH , α⟩2
)
dv,

(1.3)

where we set α = αV0 ∈ B1(L). Here

⟨R̄α, α⟩ :=
n∑

i,j=1

RicM(ei, ej)α(ei)α(ej),

where {ei} is a local orthonormal frame on L and

S(X, Y, Z) := ω(B(X,Y ), Z) = g(JB(X,Y ), Z)

for each X, Y, Z ∈ TL, which is a symmetric 3-tensor field on L defined by the
second fundamental form B of L in M .

Problem 1.1. Investigate and classify compact Hamiltonian stable H-minimal
Lagrangian submanifolds in specific Kähler manifolds.

Assume that M is an Einstein-Kähler manifold M with Einstein constant κ
and L is a compact minimal Lagrangian submanifold immersed in M . Then
L is Hamiltonian stable if and only if the first eigenvalue λ1 of the Laplacian
of L on functions satisfies λ1 ≥ κ. See also [9].
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Proposition 1.1 ([34], [1]). Assume that M is a compact homogeneous Einstein-
Kähler manifold M with Einstein constant κ > 0 and L is a compact minimal
Lagrangian submanifold immersed in M . Then the first eigenvalue λ1 of the
Laplacian of L on functions satisfies λ1 ≤ κ. Moreover λ1 = κ if and only if
L is Hamiltonian stable. (It is possible to relax slightly the assumption on the
homogeneity of M .)

Problem 1.2. Investigate and classify compact minimal Lagrangian subman-
ifolds satisfying λ1 = κ in such Kähler manifolds.

Not so many examples of compact Hamiltonian stable Lagrangian subman-
ifolds are known for us.

Example 1.1. (1) Circles on plane S1 ⊂ C. In fact, it is Hamiltonian
volume minimizing (by the isoperimetric inequality).

(2) Great circles and small circles S1 ⊂ S2 = CP 1. In fact, it is Hamilton-
ian volume minimizing (by the isoperimetric inequality).

(3) Real projective subspaces RP n ⊂ CP n (Y. G .Oh), in fact Hamiltonian
volume minimizing (Y. G. Oh-B. Kleiner).

(4) Clifford tori : A product of n + 1 circles S1(r0) × · · · × S1(rn) ⊂ Cn+1

and the quotient space by the S1-action T n ⊂ CP n (Y. G. Oh). Note
that T n ⊂ CP n is minimal if and only if r0 = · · · = rn.

(5) Totally geodesic Lagrangian torus T 2 = S1 × S1 ⊂ S2 × S2(∼= Q2(C)),
in fact Hamiltonian volume minimizing (H.Iriyeh-H.Ono-T.Sakai [16]).

Theorem 1.1 (F. Urbano [40], S. Chang [8]). A minimal Lagrangian minimal
torus L in CP 2 is Hamiltonian stable if and only if L is a minimal Clifford
torus.

Example 1.2 ([1]). There are compact irreducible symmetric spaces stan-
dardly embedded in complex projective spaces as compact minimal Lagrangian
submanifolds. They all are Hamiltonian stable :

(a) SU(p)/SO(p)Zp ⊂ CP (p−1)(p+2)/2,

(b) SU(p)/Zp ⊂ CP p2−1,
(c) SU(2p)/Sp(p)Z2p ⊂ CP (p−1)(2p+1),
(d) E6/F4Z3 ⊂ CP 26.

These examples all satisfy the parallel property ∇S = 0 of the second funda-
mental form. It is trivial that the condition ∇S = 0 implies the Hamiltonian
minimality. However here we should note the following result :

Proposition 1.2. Any compact Hamiltonian minimal Lagrangian submani-
fold L with nonnegative sectional curvature immersed in complex space forms
satisfies ∇S = 0.

Proof. Since the mean cuvature form of L is a harmonic 1-form on a compact
Riemannian manifold L with nonnegative Ricci curvature, the mean cuvature
form of L is parallel, that is, L has parallel mean curavture vector. Hence,
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by the result of [32] and [39], L has parallel second fundamental form, that is,
∇S = 0. �

By using the classification theory of parallel Lagrangian submanifolds in
complex space forms (H. Naitoh-M. Takeuchi [22], [23], [24]), we extended the
above Hamiltonian stability results to

Theorem 1.2 ([2],[3]). Any compact Lagrangian submanifold L embedded in
CP n, Cn or CHn with ∇S = 0 is Hamiltonian stable.

But there exists a compact Hamiltonian stable minimal Lagrangian subman-
ifold embedded in a complex projective space with ∇S ̸= 0 as follows:

Example 1.3 ([5], [33]). Let ρ3 be the irreducible unitary representation of
SU(2) on the vector space V3 of complex homogeneous polynomials with two
variables z0, z1. Then

(e) ρ3(SU(2))[z3
0 + z3

1 ] ⊂ CP 3 is a 3-dimensional compact embedded Hamil-
tonian stable minimal Lagrangian submanifold with ∇S ̸= 0.

By using the classification theory of prehomogeneous vector spaces due to
M. Sato and T. Kimura [17], L. Bedulli and A. Gori [4] provided a classification
of compact homogeneous Lagrangian submanifolds in CP n which are obtained
as Lagrangian orbits of compact connected simple Lie subgroups of SU(n+1):

16 examples = [5 examples with∇S = 0 : RP n, (a) ∼ (d)]

+[11 examples with∇S ̸= 0 ∋ (e)].

Problem 1.3. Is it true that any compact minimal Lagrangian submanifold
embedded in complex projective space CP n satisfies λ1 = κ ?

However there exist compact Hamiltonian unstable minimal Lagrangian sub-
manifolds embedded in compact Hermitian symmetric spaces of rank greater
than or equal to 2. The Hamiltonian stability of all compact totally geodesic
Lagrangian submanifolds embedded in compact irreducible Hermitian sym-
metric spaces (with Einstein constant 1/2) are known as follows ([38],[1]) :
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M L Einstein λ1 H-stable stable
Gp,q(C), p ≤ q Gp,q(R) Yes 1

2
Yes No

G2p,2q(C), p ≤ q Gp,q(H) Yes 1
2

Yes Yes
Gm,m(C) U(m) No 1

2
Yes No

SO(2m)/U(m) SO(m),m ≥ 5 Yes 1
2

Yes No
SO(4m)/U(2m),m ≥ 3 U(2m)/Sp(m) No m

4m−2
No No

Sp(2m)/U(2m) Sp(m), m ≥ 2 Yes 1
2

Yes Yes
Sp(m)/U(m) U(m)/O(m) No 1

2
Yes No

Qp+q−2(C), q − p ≥ 3 Qp,q(R), p ≥ 2 No p
p+q−2

No No

Qp+q−2(C), 0 ≤ q − p < 3 Qp,q(R), p ≥ 2 No 1
2

Yes No
Qq−1(C), q ≥ 3 Q1,q(R) Yes 1

2
Yes Yes

E6/T · Spin(10) P2(K) Yes 1
2

Yes Yes
E6/T · Spin(10) G2,2(H)/Z2 Yes 1

2
Yes No

E7/T · E6 SU(8)/Sp(4)Z2 Yes 1
2

Yes No
E7/T · E6 T · E6/F4 No 1

6
No No

More generally, by the result of [6] Lagrangian submanifolds with ∇S = 0 in
Hermitian symmetric spaces are already classified and thus we know that any
compact Lagrangian submanifold with ∇S = 0 in a compact irreducible Her-
mitian symmetric space of rank ≥ 2 is an (extrinsic) symmetric submanifold
and it is obtained by a Lagrangian deformation of a totally geodesic Lagrangian
submanifold, which is a certain one-parameter family of Lagrangian subman-
ifolds with ∇S = 0 associated with an irreducible symmetric R-space of type
U(r).

Each Lagrangian submanifold in the above examples is a homogeneous La-
grangian submanifold in the sense that it is obtained as a Lagrangian orbit
of a compact Lie subgroup in the holomorphic isometry group of the ambient
Kähler manifolds.

Problem 1.4. Construct and classify compact homogeneous Lagrangian sub-
manifolds in Hermitian symmetric spaces, more generally in generalized flag
manifolds equipped with invariant symplectic(-Kähler) metrics.

Very recently R. Miyaoka has provided an interesting construction of com-
pact homogeneous Lagrangian submanifolds in a generalized flag manifold
G2/T

2 ([20]).

2. Lagrangian submanifolds in complex hyperquadrics and
hypersurface geometry in Sn+1(1)

We shall discuss Lagrangian submanifolds in complex hyperquadrics

G̃r2(R
n+2) ∼= Qn(C) ∼= SO(n + 2)/SO(2) × SO(n),
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which is a compact irreducible Hermitian symmetric space of rank 2. Here

G̃r2(R
n+2) denotes the real Grassmann manifold of oriented 2-planes in Rn+2

and Qn(C) denotes the complex hypersurface of CP n+1 defined by the alge-
braic equation z2

0 + z2
1 + · · · + z2

n+1 = 0. Let Nn ⊂ Sn+1(1) ⊂ Rn+2 be an
oriented hypersurface immersed in the unit standard sphere. Denote by x its
position vector of points p of Nn and by n the unit normal vector field of Nn

in Sn+1(1). Then we can define its “Gauss map ”as

G : Nn ∋ p 7−→ x(p) ∧ n(p) ∼= [x(p) +
√
−1n(p)] ∈ G̃r2(R

n+2) ∼= Qn(C).

Here x(p)∧n(p) denotes an oriented 2-plane in Rn+2 spanned by two orthonor-
mal vectors x(p) and n(p). Then G is a Lagrangian immersion. We should
note that the induced metric on Nn from Qn(C) is different from the original
metric on Nn in Sn+1(1). Using Lemma 1.1, we obtain

Proposition 2.1 ([18]). Any Hamiltonian deformation of G can be obtained
as a smooth family of the Gauss maps given by a deformation of Nn consisting
of oriented hypersurfaces in Sn+1(1) and the converse also holds.

The mean curvature formula was given by B. Palmer as follows :

Lemma 2.1 ([36]).

αH = d

(
Im

(
log

n∏
i=1

(1 +
√
−1κi)

))
,

where H denotes the mean curavture vector field of G and κi (i = 1, · · · , n)
denotes the principal curvatures of Nn ⊂ Sn+1(1).

In case n = 2, if N2 ⊂ S3(1) is a minimal surface, then G : N2 −→
G̃r2(R

4) ∼= Q2(C) ∼= S2 ×S2 is a minimal Lagrangian immersion. See also [7].
In general case n, suppose that Nn ⊂ Sn+1(1) is a compact oriented hyper-

surface with constant principal curvatures, so called an “isoparametric hyper-
surface ”in the unit standard sphere. Isoparametric hypersurfaces were origi-
nated and investigated by Elie Cartan. By the great results of H. F. Münzner
[21], an isoparametric hypersurface is always real algebraic and the number
g of distinct principal curvatures must be g = 1, 2, 3, 4, 6. Then the “Gauss
image ”of a minimal Lagrangian immersion G : Nn −→ Qn(C). is a compact
embedded minimal Lagrangian submanifold L = G(Nn) = Nn/Zg ⊂ Qn(C).
We can observe that

Proposition 2.2 ([18]). An isoparametric hypersurface Nn ⊂ Sn+1(1) is
homogeneous (i.e. an orbit of a compact Lie subgroup K ⊂ SO(n + 2) on
Sn+1(1)) if and only if its Gauss image G(Nn) is a homogeneous Lagrangian
submanifold in Qn(C) (i.e. an orbit of a compact Lie subgroup K ⊂ SO(n + 2)
on Qn(C)) .

All homogeneous isoparametric hypersurfaces in the standard spheres have
already been classified and in the case of g = 4 NON-HOMOGENEOUS
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isoparametric hypersurfaces in spheres were discovered first by H. Ozeki and
M. Takeuchi [35] and well-developed by D. Ferus, H. Karcher and H. F.
Münzner [14]. By results of W.-Y. Hsiang-H. B. Lawson, Jr. [15] and R. Takagi-
T. Takahashi [37], it is well-known that all compact homogeneous isoparamet-
ric hypersurfaces Nn ⊂ Sn+1(1) can be obtained as principal orbits of Rie-
mannian symmetric pairs (U,K) of compact type and of rank 2.

Let u = k + p be the canonical decomposition as a symmetric Lie algebra
and a be a maximal Abelian subspace of p. For each regular element H of
a∩Sn+1(1), we have a homogeneous isoparametric hypersurface in the standard
unit sphere Nn := (AdK)H ⊂ Sn+1(1) ⊂ Rn+2 ∼= p. Its Gauss image is

G(Nn) = (AdK)[a] ⊂ G̃r2(p) ∼= Qn(C). Then the moment map µ of the
action of K on Qn(C) induced by the adjoint action of K on p is given as

follows : µ : Qn(C) ∼= G̃r2(p) ∋ [a +
√
−1b] = [V ] 7−→∈ [a,b] ∈ k ∼= k∗, where

{a,b} is an orthonormal basis of V ⊂ p compatible with its orientation. Hence
we have G(Nn) = µ−1(0).

g Type (U,K) dim N m1,m2 N = K/K0

1 S1× (S1 × SO(n + 2), SO(n + 1)) n n Sn

BDII (n ≥ 1)
2 BDII (SO(p + 2) × SO(n + 2 − p), n p, n − p Sp × Sn−p

×BDII SO(p + 1) × SO(n + 1 − p))
(1 ≤ p ≤ n − 1)

3 AI2 (SU(3), SO(3)) 3 1, 1 SO(3)
Z2+Z2

3 a2 (SU(3) × SU(3), SU(3)) 6 2, 2 SU(3)
T 2

3 AII2 (SU(6), Sp(3)) 12 4, 4 Sp(3)
Sp(1)3

3 EIV (E6, F4) 24 8, 8 F4

Spin(8)

4 b2 (SO(5) × SO(5), SO(5)) 8 2, 2 SO(5)
T 2

4 AIII2 (SU(m + 2), S(U(m) × U(2))) 4m − 2 2, S(U(m)×U(2))
SU(m−2)×T 2

(m ≥ 2) 2m − 3

4 BDI2 (SO(m + 2), SO(m) × SO(2)) 2m − 2 1, SO(m)×SO(2)
SO(m−2)×Z2

(m ≥ 3) m − 2

4 CII2 (Sp(m + 2), Sp(m) × Sp(2)) 8m − 2 4, Sp(m)×Sp(2)
Sp(m−2)×Sp(1)2

(m ≥ 2) 4m − 5

4 DIII2 (SO(10), U(5)) 18 4, 5 U(5)
SU(2)×SU(2)×T 1

4 EIII (E6, Spin(10) · T ) 30 6, 9 Spin(10)·T
SU(4)·T

6 g2 (G2 × G2, G2) 12 2, 2 G2

T 2

6 G (G2, SO(4)) 6 1, 1 SO(4)
Z2+Z2
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3. Classification of compact homogeneous Lagrangian
submanifolds in complex hyperquadrics

Theorem 3.1 ([18]). Let L be a compact homogenoeus Lagrangian submani-
fold in Qn(C). Then there is uniquely a compact homogeneous isoparametric
hypersurface Nn in Sn+1(1) corresponding to a compact Riemannian symmet-
ric pair (U,K) of rank 2 such that L is obtained from Nn in the following way
(1) or (2) :

(1) L = G(Nn) = µ−1(0) ⊂ Qn(C), which is a compact homogeneous
minimal Lagrangian submanifold.

(2) L = µ−1(ξ) ⊂ Qn(C) for some ξ ∈ c(k) and so L can be obtained as a
Lagrangian deformation of G(Nn).

Actually there exists such a non-trivial Lagrangian deformation of G(Nn) only
when (U,K) is one of

(i) (S1 × SO(3), SO(2)),
(ii) (SO(3) × SO(3), SO(2) × SO(2)),
(iii) (SO(3) × SO(n + 1), SO(2) × SO(n)) (n ≥ 3),
(iv) (SO(m + 2), SO(2) × SO(m)) (n = 2m − 2, m ≥ 3).

(i) : If (U,K) is (S1 × SO(3), SO(2)), then L is a small or great circle in
Q1(C) ∼= S2.

(ii) : If (U,K) is (SO(3) × SO(3), SO(2) × SO(2)), then L is a product of
small or great circles of S2 in Q2(C) ∼= S2 × S2.

(iii) : If (U,K) is (SO(3) × SO(n + 1), SO(2) × SO(n)) (n ≥ 2) , then

L = K · [Wλ] ⊂ Qn(C) for some λ ∈ S1 \ {±
√
−1},

where K · [Wλ] (λ ∈ S1) is the S1-family of Lagrangian or isotropic K-orbits
satisfying

(1) K · [W1] = K · [W−1] = G(Nn) is a totally geodesic Lagrangian sub-
manifold in Qn(C).

(2) For each λ ∈ S1 \ {±
√
−1},

K · [Wλ] ∼= (S1 × Sn−1)/Z2
∼= Q2,n(R)

is a Lagrangian orbit in Qn(C) with ∇S = 0.
(3) K · [W±

√
−1] are isotropic orbits in Qn(C) with dim K · [W±

√
−1] = 0.

(iv) : If (U,K) is (SO(m + 2), SO(2) × SO(m)) (n = 2m − 2), then

L = K · [Wλ] ⊂ Qn(C) for some λ ∈ S1 \ {±
√
−1},

where K · [Wλ] (λ ∈ S1) is the S1-family of Lagrangian or isotropic orbits
satisfying

(1) K · [W1] = K · [W−1] = G(Nn) is a minimal (NOT totally geodesic)
Lagrangian submanifold in Qn(C).

11



(2) For each λ ∈ S1 \ {±
√
−1},

K · [Wλ] ∼= (SO(2) × SO(m))/(Z2 × Z4 × SO(m − 2))

is a Lagrangian orbit in Qn(C) with ∇S ̸= 0.
(3) K · [W±

√
−1]

∼= SO(m)/S(O(1) × O(m − 1)) ∼= RPm−1 are isotropic
orbits in Qn(C) with dim K · [W±

√
−1] = m − 1.

4. Hamiltonian Stability of the Gauss images of isoparametric
hypersurfaces

Let Nn be a compact isoparametric hypersurface embedded in Sn+1(1).
Palmer [36] showed that its Gauss map G : Nn −→ Qn(C) is Hamiltonian
stable if and only if Nn = Sn ⊂ Sn+1(1) (g = 1).

Question. Hamiltonian stability of its Gauss image G(Nn) ⊂ Qn(C) ?

g = 1 : G(Nn) ∼= Nn ∼= Sn is Hamiltonian stable. More strongly, it is stable
as a minimal submanifold and homologically volume-minimizing because it is
a calibrated submanifold.

g = 2 : Nn = Sm1×Sm2 Clifford hypersurface (n = m1+m2, 1 ≤ m1 ≤ m2)
and G(Nn) = Qm1+1,m2+1(R) ∼= (Sm1 × Sm2)/Z2 ⊂ Qn(C). If m2 − m1 ≥ 3,
then G(Nn) ⊂ Qn(C) is NOT Hamiltonian stable. Otherwise G(Nn) ⊂ Qn(C)
is Hamiltonian stable. The spherical harmonics of degree 2 on the sphere of
smaller dimension give volume-decreasing Hamiltonian deformations of G(Nn).

Theorem 4.1 (Hui Ma-O.[18]). If g = 3, then L = G(Nn) ⊂ Qn(C) is
(strictly) Hamiltonian stable.

Remark. In case g = 3, each induced metric from Qn(C) is a normal homoge-
neous metric. It does not hold at all in cases g = 4, 6

Theorem 4.2 (Hui Ma-O.). If g = 6 and Nn is homogeneous, then L =
G(Nn) ⊂ Qn(C) is (strictly) Hamiltonian stable.

More recently, in the case when g = 4 and Nn is homogeneous, we obtain

Theorem 4.3 (Hui Ma-O.).

G(Nn) = SO(5)/T 2 · Z4

is (strictly) Hamiltonian stable, but

G(Nn) = (SO(2) × SO(m))/(Z2 × SO(m − 2)) · Z4 (m ≥ 3)

is NOT Hamiltonian stable if and only if m ≥ 6, i.e. m2−m1 = (m−2)−1 ≥ 3.

In the forthcoming joint paper with Dr. Hui Ma, we will mention further
results on the Hamiltonian stability of their Gauss images in the case when
g = 4 and Nn is homogeneous.

12



5. Further Problems

(1) Hamiltonian stability in the case when N is a non-homogeneous isopara-
metric hypersurface with g = 4 ?

(2) Investigate the properties of minimal Lagrangian submanifolds G(Nn) ⊂
Qn(C) for (homogeneous or non-homogeneous) isoparametric hypersurfaces
Nn ⊂ Sn+1(1) ?

(3) How about geometry of Lagrangian submanifolds in other compact Her-
mitian symmetric spaces such as a classification of compact homogeneous
Lagrangian submanifolds, Hamiltonian stability problems and so on ? The
case when M is a complex Grassmann manifold Gr2(C

n+2) of complex 2-
dimensional vector subspaces of Cn+2 seems to be very interesting to be studied
next.

6. Appendix : Proof of Lemma 1.1

Here for readers we shall describe an elementary computation for the proof
of Lemma 1.1. This argument is motivated by and based on [41].

Let φ : Ln → (M,ω) be a Lagrangian immersion. Suppose that φt : Ln →
(M, ω) (t ∈ I) is a smooth family of Lagrangian immersions with φ0 = φ. For
each t ∈ I, set Vt := ∂φt

∂t
∈ C∞(φ∗

t TM) as the variational vector field of {φt}.
Define Φ : I × L → M by Φ(t, p) := φt(p) ∈ M for each (t, p) ∈ I × M .

For each [γ] ∈ π1(L), using an expression γ = γ(v) (0 ≤ v ≤ 1), we define

(A(t))([γ]) : =

∫ t

0

∫ 1

0

ω(Vu, (φt)∗γ̇(v))dudv,

=

∫ t

0

(∫
γ

αVu

)
du =

∫
[0,1]×γ

Φ∗ω.

Note that (A(t))([γ]) is independent of the choice of representatives in [γ] ∈
π1(L), because of the Lagrangian property of φt. Then we see that A(t) :
π1(L) → R defines a group homomorphism and A(0) = 0. Hence we obtain

Lemma 6.1. The following conditions are equivalent each other :

(1) A(t) ≡ 0.
(2) A(t) is independent of t ∈ I.
(3)

∫
γ
αVt = 0 for each t ∈ I and each [γ] ∈ π1(L).

(4) αVt is exact for each t ∈ I.
(5) {φt} is a Hamiltonian deformation.

For each t, let ρt : π1(L) → U(1) denote the holonomy homomorphism of
the induced flat U(1)-connection ∇t = φ−1

t ∇ in φ−1
t L. Then we shall prove

the formula

(6.1) ρt([γ])−1 d

dt
ρt([γ]) = −

√
−1

∫
γ

αVt

for each [γ] ∈ π1(L).
13



Let [γ] ∈ π1(L) be an arbitrary element of the fundamental group of L. We
express γ as γ = γ(v) (0 ≤ v ≤ 1) with γ(0) = γ(1) = p ∈ L.

Let sU be a local orthonormal frame field of L defined in a neighborhood U
of M . The connection form θU on U , which is a 1-form on U with values in√
−1R, is defined as

(6.2) ∇sU = θU ⊗ sU .

Then the curvature form Θ defined by dθU = Θ is a 2-form on the whole M
with values in

√
−1R and it coincides with

√
−1ω.

Let ξ = ξ(v) (0 ≤ v ≤ 1) be a smooth section of φ−1
t L along γ−1(φ−1

t (U)).
Note that there is a smooth function q : (φt ◦ γ)−1(U) → C such that ξ(v) =
q(v)sγ(v) for each v ∈ γ−1(φ−1

t (U)). Then the section ξ = ξ(v) is parallel with
∇t if and only if

(6.3) (∇t)γ̇ξ = 0,

that is, (
dq(v)

dt
+ q(v)θ(γ̇(v))

)
sγ(v) = 0,

and thus

(6.4)
dq(v)

dt
+ q(v)θ(γ̇(v)) = 0.

Using the equation (6.4), since

log
q(v)

q(0)
= log(q(v)) − log(q(0)) =

∫ v

0

d

dv
log q(v)dv

= −
∫ v

0

θ(γ̇(v))dv,

we have

(6.5) q(v) = q(0) exp

(
−
∫ v

0

θ(γ̇(v))dv

)
.

Next we shall discuss the explicit expression of a holonomy homomorphism
ρt : π1(L) → U(1) of the flat U(1)-connection φ−1

t ∇.
First we choose a contractible neighborhood U1, U2 in M such that

(6.6)
∪
|t|≤ε

φt(γ([0,
1

2
])) ⊂ U1,

∪
|t|≤ε

φt(γ([
1

2
, 1])) ⊂ U2.

We express a smooth section ξ as

ξ = ξ(t, v) ∈ (φ−1
t L)γ(v)

for each t with |t| ≤ ε and each v with 0 ≤ v ≤ 1.
Let s(1) be a local orthonormal frame field of L defined on U1. Over U1, ξ

can be expressed as

ξ(t, v) = q(1)(t, v)(s(1) ◦ φt)(γ(v)) ∈ (φ−1
t L)γ(v) (0 ≤ v ≤ 1

2
),

14



where q(1)(t, v) ∈ C. Let s(2) be a local orthonormal frame field of L defined
on U2. Over U2, ξ can be expressed as

ξ(t, v) = q(2)(t, v)(s(2) ◦ φt)(γ(v)) ∈ (φ−1
t L)γ(v) (0 ≤ v ≤ 1

2
),

where q(2)(t, v) ∈ C. Over U1 ∩ U2, if we set s(2) = q21s(1), then we have

q(2)(t, v) = q21(t.v)q(1)(t, v).

Now we assume that

(6.7) ξ(t, 0) = s(1)(φt(p)) ∈ (φ−1
t L)p (|t| ≤ ε),

that is, q(1)(t, 0) = 1 (|t| ≤ ε), and

(6.8) ∇tξ = ∇tξ(t, v) = 0,

that is, ξ is parallel with respect to each ∇t. Then we have

(6.9) ξ(t, 1) = ρt([γ])ξ(t, 0) ∈ (φ−1
t L)p and ρt([γ]) ∈ U(1).

Over U1, (6.8) is equivalent to

(6.10)
dq(1)

dv
+ q(1)(φ∗

t θ
(1))(γ̇(v)) = 0,

and thus
d

dv
log q(1) = −(φ∗

t θ
(1))(γ̇(v))∫ 1/2

0

d

dv
log q(1)dv = −

∫ 1/2

0

(φ∗
t θ

(1))(γ̇(v))dv.

Hence we have

q(1)(t, 1/2) = q(1)(t, 0) exp

(
−
∫ 1/2

0

(φ∗
t θ

(1))(γ̇(v))dv

)

= exp

(
−
∫ 1/2

0

(φ∗
t θ

(1))(γ̇(v))dv

)
.

(6.11)

Over U2, (6.8) is equivalent to

(6.12)
dq(1)

dv
+ q(2)(φ∗

t θ
(2))(γ̇(v)) = 0,

and thus
d

dv
log q(2) = −(φ∗

t θ
(2))(γ̇(v))∫ 1

1/2

d

dv
log q(2)dv = −

∫ 1

1/2

(φ∗
t θ

(2))(γ̇(v))dv.

Hence we have

(6.13) q(2)(t, 1) = q(2)(t, 1/2) exp

(
−
∫ 1

1/2

(φ∗
t θ

(2))(γ̇(v))dv

)
.
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Since by (6.11) we compute

q(2)(t, 1/2)

=q(1)(t, 1/2)(q21(φt(1/2)))−1

=q(1)(t, 0) exp

(
−
∫ 1/2

0

(φ∗
t θ

(1))(γ̇(v))dv

)
(q21(φt(1/2)))−1,

we have

q(2)(t, 1)

=q(1)(t, 0) exp

(
−
∫ 1/2

0

(φ∗
t θ

(1))(γ̇(v))dv

)
(q21(φt(1/2)))−1

× exp

(
−
∫ 1

1/2

(φ∗
t θ

(2))(γ̇(v))dv

)
=q(1)(t, 0)(q21(φt(1/2)))−1

× exp

(
−
∫ 1/2

0

(φ∗
t θ

(1))(γ̇(v))dv

)
exp

(
−
∫ 1

1/2

(φ∗
t θ

(2))(γ̇(v))dv

)
=q(1)(t, 0)(q21(φt(1/2)))−1

× exp

(
−
∫ 1/2

0

(φ∗
t θ

(1))(γ̇(v))dv −
∫ 1

1/2

(φ∗
t θ

(2))(γ̇(v))dv

)
=(q21(φt(1/2)))−1

× exp

(
−
∫ 1/2

0

(φ∗
t θ

(1))(γ̇(v))dv −
∫ 1

1/2

(φ∗
t θ

(2))(γ̇(v))dv

)
.

(6.14)

Since we use

ξ(t, 1) = q(2)(t, 1)(s(2) ◦ φt)(γ(1))

= q(2)(t, 1)(s(2) ◦ φt)(p)

= q(2)(t, 1)q21(φt(p))(s(1) ◦ φt)(p)

= q(2)(t, 1)q21(φt(p))ξ(t, 0),

ξ(t, 0) = q(1)(t, 0)(s(1) ◦ φt)(p)

= (s(1) ◦ φt)(p),

(6.15)

16



by (6.14) we obtain

ξ(t, 1)

=q21(φt(γ(
1

2
)))−1q21(φt(p))

× exp

(
−
∫ 1/2

0

(φ∗
t θ

(1))(γ̇(v))dv −
∫ 1

1/2

(φ∗
t θ

(2))(γ̇(v))dv

)
ξ(t, 0)

(6.16)

and hence

ρt([γ])

=q21(φt(γ(1/2)))−1q21(φt(p))

× exp

(
−
∫ 1/2

0

(φ∗
t θ

(1))(γ̇(v))dv −
∫ 1

1/2

(φ∗
t θ

(2))(γ̇(v))dv

)
.

(6.17)

We shall compute the derivative of ρt([γ]) with respect to t :

d

dt
ρt([γ]) = ? .

Define Φ : [−ε, ε] × L → M by Φ(t, x) := φt(x). Then we compute

d

dt

∫ 1/2

0

φ∗
t θ

(1)(γ̇(v))dv

=

∫ 1/2

0

(L ∂
∂t

Φ∗θ(1))(γ̇(v))dv

=

∫ 1/2

0

(d ◦ ι ∂
∂t

+ ι ∂
∂t
◦ d)Φ∗θ(1)(γ̇(v))dv

=

∫ 1/2

0

d(θ(1)(Vt))(γ̇(v))dv +

∫ 1/2

0

√
−1(Φ∗ω)(

∂

∂t
, γ̇(v))dv

=

∫ 1/2

0

d(θ(1)(Vt))(γ̇(v))dv +

∫ 1/2

0

√
−1αVt(γ̇(v))dv

=θ(1)(Vt)(γ(1/2)) − θ(1)(Vt)(γ(0)) +

∫ 1/2

0

√
−1αVt(γ̇(v))dv

=θ(1)(Vt)(γ(1/2)) − θ(1)(Vt)(p) +

∫ 1/2

0

√
−1αVt(γ̇(v))dv.

(6.18)

Similarly, we compute

d

dt

∫ 1

1/2

φ∗
t θ

(2)(γ̇(v))dv

=θ(2)(Vt)(γ(1)) − θ(2)(Vt)(γ(1/2)) +

∫ 1

1/2

√
−1αVt(γ̇(v))dv.

(6.19)
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Combining (6.18) and (6.19), we have

d

dt

∫ 1/2

0

φ∗
t θ

(1)(γ̇(v))dv +
d

dt

∫ 1

1/2

φ∗
t θ

(2)(γ̇(v))dv

=θ(1)(Vt)(γ(1/2)) − θ(1)(Vt)(p) + θ(2)(Vt)(γ(1)) − θ(2)(Vt)(γ(1/2))

+

∫ 1/2

0

√
−1αVt(γ̇(v))dv +

∫ 1

1/2

√
−1αVt(γ̇(v))dv

=θ(1)(Vt)(γ(1/2)) − θ(1)(Vt)(p) + θ(2)(Vt)(γ(1)) − θ(2)(Vt)(γ(1/2))

+

∫ 1

0

√
−1αVt(γ̇(v))dv

=θ(1)(Vt)(γ(1/2)) − θ(1)(Vt)(p) + θ(2)(Vt)(p) − θ(2)(Vt)(γ(1/2))

+
√
−1

∫
γ

αVt .

(6.20)

Since

θ(2)(Vt)(p)

=(q21(φt(p)))−1(dq21)φt(p)(Vt) + θ(1)(Vt)(p),

θ(2)(Vt)(γ(1/2))

=(q21(φt(γ(1/2))))−1(dq21)φt(γ(1/2))(Vt) + θ(1)(Vt)(γ(1/2)),

(6.20) becomes

d

dt

∫ 1/2

0

φ∗
t θ

(1)(γ̇(v))dv +
d

dt

∫ 1

1/2

φ∗
t θ

(2)(γ̇(v))dv

=(q21(φt(p)))−1(dq21)φt(p)(Vt)

− (q21(φt(γ(1/2))))−1(dq21)φt(γ(1/2))(Vt)

+
√
−1

∫
γ

αVt .

(6.21)

On the other hand we see

d

dt
q21(φt(γ(1/2)))−1

= − q21(φt(γ(1/2)))−1(dq21)φt(γ(1/2))(Vt)q
21(φt(γ(1/2)))−1,

d

dt
q21(φt(p)) = (dq21)φt(p)(Vt).

(6.22)

Now, using (6.21) and (6.22), we can compute the derivative of (6.17) with
respect to t as follows :
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d

dt
ρt([γ])

=q21(φt(γ(1/2)))−1 · q21(φt(p))

× exp

(
−
∫ 1/2

0

(φ∗
t θ

(1))(γ̇(v))dv −
∫ 1

1/2

(φ∗
t θ

(2))(γ̇(v))dv

)
× (−q21(φt(p))−1(dq21)φt(p)(Vt) + q21(φt(γ(1/2))−1(dq21)φt(γ(1/2))(Vt)

−
√
−1

∫
γ

αVt)

+
d

dt
q21(φt(γ(1/2))−1) · q21(φt(p))

× exp(−
∫ 1/2

0

(φ∗
t θ

(1))(γ̇(v))dv −
∫ 1

1/2

(φ∗
t θ

(2))(γ̇(v))dv

+ q21(φt(γ(1/2))−1 · d

dt
q21(φt(p))

× exp

(
−
∫ 1/2

0

(φ∗
t θ

(1))(γ̇(v))dv −
∫ 1

1/2

(φ∗
t θ

(2))(γ̇(v))dv

)
=q21(φt(γ(1/2)))−1 · q21(φt(p))

× exp

(
−
∫ 1/2

0

(φ∗
t θ

(1))(γ̇(v))dv −
∫ 1

1/2

(φ∗
t θ

(2))(γ̇(v))dv

)
× (−q21(φt(p))−1 · (dq21)φt(p)(Vt) + q21(φt(γ(1/2)))−1 · (dq21)φt(γ(1/2))(Vt)

−
√
−1

∫
γ

αVt)

− q21(φt(γ(1/2)))−1 · (dq21)φt(γ(1/2))(Vt) · q21(φt(γ(1/2)))−1 · q21(φt(p))

× exp

(
−
∫ 1/2

0

(φ∗
t θ

(1))(γ̇(v))dv −
∫ 1

1/2

(φ∗
t θ

(2))(γ̇(v))dv

)
+ q21(φt(γ(1/2)))−1 · (dq21)φt(p)(Vt)

× exp

(
−
∫ 1/2

0

(φ∗
t θ

(1))(γ̇(v))dv −
∫ 1

1/2

(φ∗
t θ

(2))(γ̇(v))dv

)
=q21(φt(γ(1/2)))−1 · q21(φt(p))

· exp

(
−
∫ 1/2

0

(φ∗
t θ

(1))(γ̇(v))dv −
∫ 1

1/2

(φ∗
t θ

(2))(γ̇(v))dv

)
·
(
−
√
−1

∫
γ

αVt

)
.

Hence we obtain the formula

(6.23) ρt([γ])−1 d

dt
ρt([γ]) = −

√
−1

∫
γ

αVt .
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Therefore we conclude

Theorem 6.1. The following conditions are equivalent each other :

(1) The holonomy homomorphisms ρt (|t| ≤ ε) are same, that is,

d

dt
ρt([γ]) ≡ 0 for each [γ] ∈ π1(L).

(2) For each t with |t| ≤ ε and each [γ] ∈ π1(L),∫
γ

αt = 0.

(3) {φt | |t| ≤ ε} is a Hamiltonian deformation.
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