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Introduction

The linear isotropy representations of Riemannian symmetric spaces are called s-
representations, and their orbits are called R-spaces. They provide various examples
of homogeneous submanifolds in the hypersphere of the Euclidean space and play
important role in the area of differential geometry. For example, we know the
following facts:

• It is a well-known fact due to Hsiang-Lawson [9] that all homogeneous hy-
persurfaces in the sphere can be obtained as principal orbits of s-representations
of Riemannian symmetric pairs of rank two.

• Dadok [6] showed that all polar presentations are orbit equivalent to s-
representations.

• All Kähler C-spaces, that are compact simply-connected homogeneous Kähler
manifolds, can be obtained as adjoint orbits of semisimple Lie groups.

• Thorbergsson [22] showed that irreducible isoparametric submanifolds in
the Euclidean space are R-spaces if their codimension is greater than 2 and
if they are not contained in any hyperplane.

• Ferus [8] introduced the notion of symmetric submanifold in a Riemann-
ian manifold. He proved that all symmetric submanifolds in the Euclidean
space are symmetric R-spaces. Recently, Naitoh [20] and Berndt-Eschenburg-
Naitoh-Tsukada [2] classified symmetric submanifolds in Riemannian sym-
metric spaces. In their proof, symmetric R-spaces played an essential role.

In the present paper, we shall study some differential geometric properties of
orbits of s-representations as submanifolds in the sphere.

Hirohashi-Song-Takagi-Tasaki [11] proved that in each strata of the stratifica-
tion of the orbit space of an s-representation there exists uniquely an orbit which
is a minimal submanifold in the sphere．However, in general we can not explicitly
point out which orbit among each strata is a minimal submanifold. Harvey-Lawson
[9] introduced the notion of austere submanifold, which is a minimal submanifold
whose second fundamental form has a certain symmetry. They showed that one
can construct special Lagrangian cones, therefore absolutely area-minimizing, in
the complex Euclidean space as the normal bundles of austere submanifolds in the
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sphere (see [9], [4]). In Section 2, we shall give the definition of weakly reflective sub-
manifold, which is an austere submanifold with a certain global symmetry. As we
mentioned above, the complete list of minimal orbits of s-representations in the hy-
persphere is unknown at the moment. Therefore we shall determine all orbits which
are austere submanifolds or weakly reflective submanifolds in the hypersphere.

A submanifold is called tangentially degenerate if its Gauss mapping is degen-
erate. Ferus [8] obtained a remarkable result for tangentially degeneracy of sub-
manifolds in the sphere. He showed that there exists a number, so-called the Ferus
number, such that if the rank of the Gauss mapping is less than the Ferus number,
then a submanifold must be a totally geodesic sphere. However, in general it is still
unknown whether there exist submanifolds which satisfy the Ferus equality, that is,
the equality of the Ferus inequality. In their papers [15, 16], Ishikawa, Kimura and
Miyaoka studied submanifolds with degenerate Gauss mappings in the sphere via
a method of isoparametric hypersurfaces. They showed that Cartan hypersurfaces
and some focal submanifolds of homogeneous isoparametric hypersurfaces are tan-
gentially degenerate. Moreover, some of them satisfy the Ferus equality. In Section
3, we shall study submanifolds with degenerate Gauss mappings via a method of
symmetric spaces. We give a classification of tangentially degenerate orbits of s-
representations. We note that these orbits are weakly reflective submanifolds. We
observe that these orbits provide many new examples of tangentially degenerate
submanifolds in the sphere which satisfy the Ferus equality.

In Section 4, we shall show some examples of austere orbits, weakly reflective
orbits or tangentially degenerate orbits of s-representations. In the last section, we
shall pose some open problems related to this article.

1. Orbits of s-representations

The linear isotropy representation of a Riemannian symmetric pair is called an
s-representation as we mentioned in Introduction. In the following sections, we will
study orbits of s-representations which are austere, weakly reflective or tangentially
degenerate in the hypersphere. For this purpose, we shall provide some fundamental
notions of orbits of s-representations in this section.

Let G be a compact, connected Lie group and K a closed subgroup of G. Assume
that θ is an involutive automorphism of G and G0

θ ⊂ K ⊂ Gθ, where

Gθ = {g ∈ G | θ(g) = g}

and G0
θ is the identity component of Gθ. Then (G,K) is a symmetric pair with

respect to θ. We denote the Lie algebras of G and K by g and k, respectively. The
involutive automorphism of g induced from θ will be also denoted by θ. Then g is
decomposed to

g = k + m

where m is the (−1)-eigenspace of θ. The tangent space of a compact symmetric
space G/K at the origin o = K can be identified with m in a natural manner. The
linear isotropy representation of G/K is isomorphic to the action of K on m by
the adjoint representation of G. Therefore we shall denote the orbit of K-action
through H ∈ m by AdG(K)H, or for simplicity by Ad(K)H. Since the action of K
on m is an orthogonal representation, Ad(K)H is a submanifold of the hypersphere
S in m of radius ∥H∥.
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Fix a maximal abelian subspace a in m. For λ ∈ a we set a subspace mλ of m by

mλ = {X ∈ m | [H, [H, X]] = −⟨λ, H⟩2X (H ∈ a)}

and define the restricted root system R of (g, k) by R = {λ ∈ a | mλ ̸= {0}}. We
take a fundamental system F of R and denote by R+ the set of all positive roots
with respect to F . Then we have the restricted root space decomposition of m as

m = a +
∑

λ∈R+

mλ.

We set a Weyl chamber C by

C = {H ∈ a | ⟨α,H⟩ > 0 (α ∈ F )}.

Then C is an open convex subset of a. From a fundamental result of compact
symmetric spaces, we have the following proposition.

Proposition 1.1.
Ad(K)C̄ = m,

where C̄ is the closure of C. More precisely, C̄ meets all orbits perpendicularly, and
each orbit Ad(K)H through only one point of C̄.

Hence, the orbit space of the action of K on the hypersphere S can be identified
with S ∩ C̄. Therefore we can assume that H is in S ∩ C̄.

For a subset ∆ ⊂ F , we define

C∆ = {H ∈ C̄ | ⟨α, H⟩ > 0 (α ∈ ∆), ⟨β, H⟩ = 0 (β ∈ F − ∆)}.

Lemma 1.2. (1) For ∆1 ⊂ F , the decomposition

C∆1 =
∪

∆⊂∆1

C∆

is a disjoint union. In particular, C̄ =
∪

∆⊂F

C∆ is a disjoint union.

(2) For ∆1, ∆2 ⊂ F , ∆1 ⊂ ∆2 if and only if C∆1 ⊂ C∆2 .

For H ∈ m we set
ZH

K = {k ∈ K | Ad(k)H = H}.
Then ZH

K is a closed subgroup of K. The orbit Ad(K)H through H can be expressed
as a homogeneous space Ad(K)H ∼= K/ZH

K .
For ∆ ⊂ F we set

N∆
K = {k ∈ K | Ad(k)C∆ = C∆},

Z∆
K = {k ∈ K | Ad(k)|C∆ = 1}.

Then N∆
K and Z∆

K are closed subgroups of K.

Proposition 1.3 ([10]). For ∆ ⊂ F and H ∈ C∆ we have

Z∆
K = ZH

K = N∆
K .

From Lemma 1.2, the orbit space of the action of K on the hypersphere S is
decomposed to

S ∩ C̄ =
∪

∆⊂F

(S ∩ C∆).
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From Proposition 1.3, we have that if ∆ ⊂ F and H1,H2 ∈ ∆, then ZH1
K = Z∆

K =
ZH2

K , hence Ad(K)H1 is diffeomorphic to Ad(K)H2. This means that all orbits are
the same isotropy type in each strata. Moreover we have that if ∆1 ⊂ ∆2 ⊂ F and
H1 ∈ ∆1,H2 ∈ ∆2, then C∆1 ⊂ C∆2 , hence ZH1

K = Z∆1
K ⊃ Z∆2

K = ZH2
K . Thus an

orbit which is in the interior S ∩ C of the orbit space is a principal orbit. If ∆ ⊂ F
is a proper subset, then the orbit through C∆ ∩S is a singular orbit. Consequently
we have the stratification of the isotropy types for the orbits of s-representations.

For orbits of s-representations which are minimal submanifolds in the hyper-
sphere, the following theorem is known.

Theorem 1.4 ([11]). For each subset ∆ ⊂ F , there exists a unique H ∈ C∆ ∩ S
such that Ad(K)H is a minimal submanifold in S.

2. Classification of weakly reflective orbits

As in Theorem 1.4, there exists a unique minimal orbit in each strata of the
stratification of the orbits space of an s-representation. However, it is difficult to
determine minimal orbits explicitly in general. In this section, we shall introduce
the notion of weakly reflective submanifold, which is an austere submanifold, hence
minimal, with a certain global symmetry. We shall give the classification of all
orbits of irreducible s-representations which are austere submanifolds or weakly
reflective submanifolds in the hypersphere S.

Definition 2.1. Let M be a submanifold of a Riemannian manifold M̃ . For each
normal vector ξ ∈ NxM at each point x ∈ M , if there exists an isometry σξ of M̃
which satisfies

(2.1) σξ(x) = x, (dσξ)xξ = −ξ, σξ(M) = M,

then we call M a weakly reflective submanifold and σξ a reflection of M with respect
to ξ.

A connected component M of the fixed point set of an involutive isometry σ
of a Riemannian manifold is called a reflective submanifold ([19]). For a reflective
submanifold M , the reflection σ satisfies the conditions (2.1) for all normal vectors
at all points in M . Hence it is evident that a reflective submanifold is a weakly
reflective submanifold.

Definition 2.2. Let M be a submanifold of a Riemannian manifold M̃ . We denote
the shape operator of M by A. M is called an austere submanifold if for each normal
vector ξ ∈ NxM , the set of eigenvalues with their multiplicities of Aξ is invariant
under the multiplication by −1. It is obvious that an austere submanifold is a
minimal submanifold.

For these classes of submanifolds the following relation holds.

Proposition 2.3. reflective ⊂ weakly reflective ⊂ austere ⊂ minimal

The following proposition was essentially proved by Podentà [21].

Proposition 2.4 ([21], [13]). Any singular orbit of a cohomogeneity one action on
a Riemannian manifold is a weakly reflective submanifold.

Cohomogeneity one actions on compact symmetric spaces were completely clas-
sified by Kollross [18]. And non-compact cases were studied by Berndt-Tamaru [3].



WEAKLY REFLECTIVE ORBITS AND TANGENTIALLY DEGENERATE ORBITS 5

From these results we obtain several examples of weakly reflective submanifolds in
Riemannian symmetric spaces.

Now we shall give the classification of orbits of irreducible s-representations
which are austere submanifolds or weakly reflective submanifolds in the hyper-
sphere. Since these two properties of orbits are invariant under scalar multiples on
the vector spaces, we do not discriminate the difference of the length of a vector.
We shall follow the notations of root systems in [1].

Theorem 2.5 ([13]). An orbit of an irreducible s-representation which is an austere
submanifold in the hypersphere is one of the following list:

(1) an orbit through a restricted root vector,
(2) the orbit through the vector 2e1 − e2 − e3 and the orbit through the vector

e1 + e2 − 2e3 of the linear isotropy representation of a compact symmetric
pair with the restricted root system {±(ei − ej)} of type A2,

(3) the orbit through the vector e1+e2−e3−e4 of the linear isotropy representa-
tion of a compact symmetric pair with the restricted root system {±(ei−ej)}
of type A3,

(4) the orbit through the vector e1 of the linear isotropy representation of a
compact symmetric pair with the restricted root system {±(ei ± ej)} of type
Dp,

(5) the orbit through the vector e1 +e2 +e3 +e4 and the orbit through the vector
e1+e2+e3−e4 of the linear isotropy representation of a compact symmetric
pair with the restricted root system {±(ei ± ej)} of type D4,

(6) the orbit through the vector e1 + e1+e2√
2

of the linear isotropy representation
of a compact symmetric pair with the restricted root system {±ei,±ei ± ej}
of type B2 whose multiplicities are constant,

(7) the orbit through the vector α1 + α2√
3

of the linear isotropy representation of
a compact symmetric pair with the restricted root system of type G2, where
α1 = e1 − e2 and α2 = −2e1 + e2 + e3.

Furthermore, in the case of (1)∼(5) the orbits are weakly reflective submanifolds in
S. In the case of (6) and (7) the orbits are not weakly reflective submanifolds.

Special Lagrangian normal bundles
Originally the notion of austere submanifold was introduced by Harvey-Lawson

[9] in order to construct special Lagrangian cones in Cn.
Let M be an austere submanifold in Sn. We denote by N1M the unit normal

bundle of M in Sn. We define a map

Φ : N1M × S1 −→ S2n+1 ⊂ Rn+1 × Rn+1

(vx, eiθ) 7−→ (cos θx, sin θvx).

Then Harvey-Lawson proved that Φ is minimal Legendrian if and only if M is an
austere submanifold in Sn. Therefore, then the cone over the image of Φ is special
Lagrangian in Cn. However, Φ fails to be an immersion in general. Later, Borrelli-
Gorodski [4] defined a map Ψ modifying Φ. They showed that if for any normal
vector ξ the shape operator Aξ of M does not have 0-eigenvalue, then Ψ is an
immersion. Hence, considering cones over these minimal Legendrian submanifolds
we obtain special Lagrangian cones with conical singularities.

As a natural generalization of Harvey-Lawson’s normal bundle construction, re-
cently Karigiannis and Min-Oo [17] showed that the normal bundle L = NM of a
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submanifold M in the sphere Sn is a special Lagrangian submanifold of the tangent
bundle TSn of Sn with Stenzel Calabi-Yau metric if and only if M is an austere
submanifold in Sn.

3. Classification of tangentially degenerate orbits

In this section we shall give the classification of all tangentially degenerate orbits
of s-representations. We will observe that all tangentially degenerate orbits are
weakly reflective submanifolds in our list.

Let f : M −→ Sn be an immersion of an l-dimensional manifold M into an
n-dimensional sphere Sn. The Gauss mapping γ of f is defined as a mapping from
M to a Grassmannian manifold Gl+1(Rn+1) of all (l +1)-dimensional subspaces in
Rn+1 by:

γ : M −→ Gl+1(Rn+1)
x 7−→ Rf(x) ⊕ Tf(x)(f(M)).

We denote by r the maximal rank of the Gauss mapping γ of an immersion f . If the
Gauss mapping is degenerate, i.e. r < l, then an immersed submanifold f(M) ⊂ Sn

is said to be tangentially degenerate. We note that γ is constant, i.e. r = 0, if and
only if f(M) is a part of a totally geodesic sphere.

We denote by h and A the second fundamental form and the shape operator of
f , respectively. Chern and Kuiper [5] introduced the notion of the index of relative
nullity at x ∈ M , that is the dimension of the vector space

Nx = {X ∈ Tx(M) | h(X, Y ) = 0, ∀Y ∈ Tx(M)}
=

∩
ξ∈NxM

ker(Aξ).

It is easy to show ker(dγ)x = Nx, therefore the index of relative nullity is equal to
the degeneracy of the Gauss mapping at each point.

Let f : M −→ Sn be an immersion of a compact, connected manifold M of
dimension l. Ferus [8] showed that there exists a number F (l), which only depends
on the dimension l of M , such that the inequality r < F (l) implies r = 0. Then
f(M) must be an l-dimensional great sphere in Sn. Here the number F (l) is called
the Ferus number and given by

F (l) = min{k | A(k) + k ≥ l},
where A(k) is the Adams number, that is the maximal number of linearly indepen-
dent vector fields at each point on the (k − 1)-dimensional sphere Sk−1.

Regarding the Ferus inequality, Ishikawa, Kimura and Miyaoka posed the fol-
lowing problem:

Problem 3.1 ([16]). (1) Is the inequality r < F (l) best possible for the impli-
cation r = 0? Do there exist tangentially degenerate immersions M l → Sn

with r = F (l)?
(2) If the above problem is true, classify tangentially degenerate immersions

M l → Sn with r = F (l).

For these problems, they obtained the following results using isoparametric hy-
persurfaces in the sphere. It is well-known that the number g of distinct principal
curvatures of an isoparametric hypersurface in the sphere is 1, 2, 3, 4 or 6. A
minimal isoparametric hypersurface with g = 3 is called a Cartan hypersurface.
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Theorem 3.2 ([15]). A homogeneous compact hypersurface in the real projective
space RPn which is tangentially degenerate is projectively equivalent to a hyperplane
or a Cartan hypersurface.

Theorem 3.3 ([16]). When M is a homogeneous isoparametric hypersurface in the
sphere with g = 6, then both focal submanifolds of M are tangentially degenerate.
Moreover, these submanifolds satisfy the Ferus equality.

Theorem 3.4 ([16]). When M is a homogeneous isoparametric hypersurface in the
sphere with g = 4, then one of focal submanifolds of M is tangentially degenerate,
and another one is not. Moreover, some of them satisfy the Ferus equality.

In their work they investigated tangentially degenerate submanifolds via a the-
ory of isoparametric hypersurfaces in the sphere. As we mentioned, all homoge-
neous isoparametric hypersurfaces can be obtained as orbits of s-representations of
Riemannian symmetric spaces of rank 2. Therefore here we shall investigate tan-
gentially degenerate submanifolds via a theory of symmetric spaces. As a result,
we have the following theorem.

Theorem 3.5 ([14]). An orbit of an s-representation is tangentially degenerate if
and only if it is through a long root (any root when all roots have the same length),
or a short root of restricted root system of type G2. Let λ ∈ R be such a root. Then
the tangentially degeneracy of the orbit Ad(K)λ is ker(dγ)λ = mλ.

Remark 3.6. From Theorem 2.5, we observe that all of these tangentially degenerate
orbits are weakly reflective submanifolds in S.

In Table 1, we give the list of symmetric pairs whose ranks are equal or greater
than 2 such that the orbits of their s-representations have degenerate Gauss map-
pings. All of them are orbits through long roots except the case of type G2. In the
case of type G2 both of orbits through a long root and a short root have degenerate
Gauss mappings, and both of them have the same dimension and the same rank of
Gauss mapping. In Table 1, we denote the dimension of the orbit by l and the rank
of Gauss mapping by r. Then tangentially degeneracy is equal to l− r. In this list,
we can find several orbits which satisfy the Ferus equality r = F (l).

4. Examples of weakly reflective orbits and tangentially
degenerate orbits

In this section we give some concrete examples of weakly reflective orbits and
tangentially degenerate orbits of s-representations.

First we consider the case of symmetric spaces of rank 2. In the case of type
A2 the restricted roots are as in Figure 1. The colored area is a Weyl chamber
C. In this case the arc S ∩ C̄ in C̄ can be identified with the orbit space of the
action of K on S. The orbit through a restricted root locates at the mid point of
the orbit space. This orbit is weakly reflective and tangentially degenerate. This
orbit is called a Cartan hypersurface, that is a isoparametric hypersurface with
three distinct principal curvatures. At the both of the end points of the orbit space
there are two singular orbits, which are congruent with each other. These orbits
are weakly reflective, but not tangentially degenerate. These orbits are projective
planes called Veronese surfaces.

Figures 2 and 3 are restricted roots of types B2 and G2, respectively. Similarly
the orbit spaces can be identified with the arcs S ∩ C̄ in C̄. In these cases there
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type rank g k l r l − r
A p su(p + 1) so(p + 1) 2p − 1 2p − 2 1

p su(p + 1)2 su(p + 1) 2(2p − 1) 2(2p − 2) 2
p su(2(p + 1)) sp(p + 1) 4(2p − 1) 4(2p − 2) 4
2 e6 f4 24 16 8

B p so(2p + 1)2 so(2p + 1) 8p − 10 8p − 12 2
p so(2p + n) so(p) ⊕ so(p + n) 4p + 2n − 7 4p + 2n − 8 1

C p sp(p) u(p) 2p − 1 2p − 2 1
p sp(p)2 sp(p) 4p − 2 4p − 4 2
p sp(2p) sp(p) ⊕ sp(p) 8p − 5 8p − 8 3
p su(2p) su(p) ⊕ su(p) ⊕ R 4p − 3 4p − 4 1
p so(4p) u(2p) 8p − 7 8p − 8 1
3 e7 e6 ⊕ R 33 32 1

D p so(2p) so(p) ⊕ so(p) 4p − 7 4p − 8 1
p so(2p)2 so(2p) 2(4p − 7) 2(4p − 8) 2

E6 6 e6 sp(4) 21 20 1
6 e6 ⊕ e6 e6 42 40 2

E7 7 e7 su(8) 33 32 1
7 e7 ⊕ e7 e7 66 64 2

E8 8 e8 so(16) 57 56 1
8 e8 ⊕ e8 e8 114 112 2

F4 4 f4 su(2) ⊕ sp(3) 15 14 1
4 f4 ⊕ f4 f4 30 28 2
4 e6 su(2) ⊕ su(6) 21 20 1
4 e7 su(2) ⊕ so(12) 33 32 1
4 e8 su(2) ⊕ e7 57 56 1

G2 2 g2 so(4) 5 4 1
2 g2 ⊕ g2 g2 10 8 2

BC p su(2p + n) su(p) ⊕ su(p + n) ⊕ R 4p + 2n − 3 4p + 2n − 4 1
p so(4p + 2) u(2p + 1) 8p − 3 8p − 4 1
p sp(2p + n) sp(p) ⊕ sp(p + n) 8p + 4n − 5 8p + 4n − 8 3
2 e6 so(10) ⊕ R 21 20 1

Table 1

are long roots and short roots. The orbits through restricted roots are weakly
reflective, which are singular orbits. In the case of type G2 both of two singular
orbits are tangentially degenerate. On the other hand, in the case of type B2

the orbit through a long root is tangentially degenerate, although one through a
short root is not tangentially degenerate. In the cases of G2 and B2 with constant
multiplicities, at the mid point of the orbit spaces, there exist principal orbits which
are austere but not weakly reflective.

Next we give the explicit homogeneous space expressions of weakly reflective
orbits in the case where (G,K) is a compact symmetric pair of classical type with
the restricted root system of type A. In this case a weakly reflective orbit is one of
(1) an orbit through a restricted root, (2) an orbit through 2e1 − e2 − e3 and an
orbit through e1+e2−2e3 when R = A2, (3) an orbit through e1+e2−e3−e4 when
R = A3. As in the following list, in the case of (2) we have Veronese surfaces, and
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Figure 1. restricted roots of type A2

Figure 2. restricted
roots of type B2

Figure 3. restricted
roots of type G2

in the case of (3) we have 2-plane Grassmannian manifolds. We should note that,
in the cases of (2) and (3), these orbits are not only weakly reflective submanifolds
but also symmetric R-spaces.

• Case of (G,K) = (SU(p + 1), SO(p + 1))
(1) (SU(p + 1), SO(p + 1)), H = e1 − e2 (restricted root)

Ad(K)H ∼= SO(p + 1)/S(O(1) × O(1) × O(p − 1)) ⊂ S
1
2 (p+1)(p+2)−2

(2) (SU(3), SO(3)), H = 2e1 − e2 − e3

Ad(K)H ∼= SO(3)/S(O(1) × O(2)) ∼= RP 2 ⊂ S4

(3) (SU(4), SO(4)), H = e1 + e2 − e3 − e4

Ad(K)H ∼= SO(4)/S(O(2) × O(2)) ∼= G2(R4) ⊂ S8

• Case of (G,K) = (SU(p + 1) × SU(p + 1), SU(p + 1)∗)
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(1) (SU(p + 1) × SU(p + 1), SU(p + 1)∗), H = e1 − e2 (restricted root)

Ad(K)H ∼= SU(p + 1)/S(U(1) × U(1) × U(p − 1)) ⊂ Sp2+2p−1

(2) (SU(3) × SU(3), SU(3)∗), H = 2e1 − e2 − e3

Ad(K)H ∼= SU(3)/S(U(1) × U(2)) ∼= CP 2 ⊂ S7

(3) (SU(4) × SU(4), SU(4)∗), H = e1 + e2 − e3 − e4

Ad(K)H ∼= SU(4)/S(U(2) × U(2)) ∼= G2(C4) ⊂ S14

• Case of (G,K) = (SU(2p + 2), Sp(p + 1))
(1) (SU(2p + 2), Sp(p + 1)), H = e1 − e2 (restricted root)

Ad(K)H ∼= Sp(p + 1)/Sp(1) × Sp(1) × Sp(p − 1) ⊂ Sp(2p+3)−1

(2) (SU(6), Sp(3)), H = 2e1 − e2 − e3

Ad(K)H ∼= Sp(3)/Sp(1) × Sp(2) ∼= HP 2 ⊂ S13

(3) (SU(8), Sp(4)), H = e1 + e2 − e3 − e4

Ad(K)H ∼= Sp(4)/Sp(2) × Sp(2)) ∼= G2(H4) ⊂ S26

5. Problems

At the end of this paper we shall pose some problems related to this article.
In Section 3 we constructed several new examples of tangentially degenerate

submanifolds in the sphere which satisfies the Ferus equality. But we do not know
whether the Ferus inequality is best possible or not. Thus we should try Problem
3.1.

In Section 2 we gave the classification of weakly reflective orbits of s-representations.
At this moment, all examples of weakly reflective submanifolds in Sn are orbits of
s-representations. Are there any other weakly reflective submanifolds in Sn? Fur-
thermore,

Problem 5.1. Classify all weakly reflective submanifolds in Riemannian symmetric
spaces.

For this purpose probably first we should try the following problem.

Problem 5.2. Are all weakly reflective submanifolds homogeneous?

At the end of Section 2 we mentioned that we can construct special Lagrangian
cones in Cn and special Lagrangian submanifolds in TSn from austere submanifolds
in Sn. Therefore, from Theorem 2.5, we can obtain several concrete examples of
special Lagrangian submanifolds.

Problem 5.3. Study the geometry of special Lagrangian submanifolds obtained as
the normal bundles of these austere orbits.
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