
HOLOMORPHIC SECTIONS OF A HOLOMORPHICFAMILY OF RIEMANN SURFACES INDUCED BY ACERTAIN KODAIRA SURFACEYOICHI IMAYOSHI, YOHEI KOMORI AND TOSHIHIRO NOGIAbstrat. In this paper we will onsider a holomorphi familyof losed Riemann surfaes of genus two whih is onstruted byRiera. The goal of this paper is to estimate the number of holo-morphi setions of this family.1. Introdution1.1. Holomorphi family of Riemann surfaes and its setions.Let M be a two-dimensional omplex manifold and B be a Riemannsurfae. We assume that a proper holomorphi mapping � : M ! Bsatis�es the following two onditions:(i) The Jaobi matrix of � has rank one at every point of M .(ii) The �ber Sb = ��1(b) over eah point b of B is a losed Riemannsurfae of genus g0.We all suh a triple (M;�;B) a holomorphi family of losed Riemannsurfaes of genus g0 over B.A holomorphi mapping s : B ! M is said to be a holomorphisetion of a holomorphi family (M;�;B) of Riemann surfaes if � Æ sis the identity mapping on B.Let S be the set of all holomorphi setions of (M;�;B). Denote by℄S the number of all holomorphi setions of S. Next result is alledMordell onjeture in the funtional �eld ase.Theorem 1.1 (Manin [13℄,Grauert [5℄, Imayoshi and Shiga [8℄, Noguhi[14℄). The number of all holomorphi setions of S is �nite.We remark that Shioda [17℄ has disussed holomorphi setions of arational ellipti surfae (S; f;P1) by using and developing his theory ofMordell-Weil lattie.Hene next it is important to estimate ℄S for (M;�;B).1.2. Kodaira surfaes. Kodaira onstruted a holomorphi family(M;�;B) whose base surfae and �ber are both ompat Riemann1



2 YOICHI IMAYOSHI, YOHEI KOMORI AND TOSHIHIRO NOGIsurfaes. We briey review its onstrution (.f. Atiyah [1℄, Kas [10℄,Kodaira [12℄).Let (C; �) be a ompat Riemann surfae of genus g0 � 2 with �xedpoint free involution � : C ! C. Let f : D ! C be a (Z=2Z)2g0-unbranhed overing orresponding to�1(C) �! H1(C;Z) �! H1(C;Z=2Z):The genus of D is g1 = 22g0(g0 � 1) + 1.We onsider the produt D � C and the graphs of f and � Æ f ,�f = f(u; f(u)) 2 D � C j u 2 Dg;��f = f(u; � Æ f(u)) 2 D � C j u 2 Dg:As � is �xed point free, �f \ ��f = ; in D � C. Beause �f + ��fis 2-divisible in H2(D � C;Z), we an �nd a square root L of theholomorphi line bundle O(�f + ��f ), i.e., L
2 �= O(�f + ��f ).Let s be a setion of O(�f+��f) vanishing at �f+��f , andM be theinverse image of s(D�C) under the square mapping L! O(�f+��f).Then the natural mapping � : M ! D indues the following diagram.
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CD D � Cs(D � C) � O(�f + ��f)� �0??y??y �! �Therefore (M;�;D) is a holomorphi family whose �ber ��1(u) is atwo-sheeted branhed overing of C �= fug � C in D � C branhed at(u; f(u)) and (u; � Æ f(u)).1.3. Estimation of ℄S for Kodaira surfae (M;�;D). For a Ko-daira surfae, we have an expliit estimation of ℄S as follows.First of all, a Kodaira surfae has \trivial" setions sf and s�Æfde�ned by sf (u) and s�Æf(u), where sf(u) is the branhed point of��1(u) over (u; f(u)) and s�Æf (u) is the branhed point of ��1(u) over(u; � Æ f(u)). Therefore ℄S � 2:Next, we estimate ℄S from above by onsidering the anonial map-ping S to the set Hol(D;C) of all holomorphi mappings from D toC, � : S ! Hol(D;C)s 7! �0 Æ s:



HOLOMORPHIC SECTIONS OF A HOLOMORPHIC FAMILY 3Sine the involution � : C ! C indues the overing transformation ofM ! D � C, � is 2 to 1 exept for sf and s�Æf .Thus we have ℄S = 2℄�(S)� 2:We denote the set of all non-onstant holomorphi mappings fromD toC by Holn::(D;C). Then the next laim is a key idea. (See Proposition3.1)Proposition 1.1. �(S) � Holn::(D;C).It is well known that ℄Holn::(D;C) is �nite, for example, Tanabe[18℄ gave an expliit estimation of ℄Holn::(D;C);℄Holn::(D;C) � (4g1 � 3)2g1 � 6(g1 � 1);where g1 is the genus of D. Sine g1 = 22g0(g0 � 1) + 1, we have℄Holn::(D;C) � f22g0+2(g0 � 1) + 1g22g0+1(g0�1)+2 � 3 � 22g0+1(g0 � 1):Therefore we have the following theorem.Theorem 1.2. The number ℄S of holomorphi setions an be esti-mated as follows.2 � ℄S = 2℄�(S)� 2� 2℄Holn::(D;C)� 2� f22g0+2(g0 � 1) + 1g22g0+1(g0�1)+2 � 3 � 22g0+2(g0 � 1)� 2:1.4. A Certain Kodaira Surfae due to Riera. In [15℄, Riera gavea holomorphi universal overing D of a Kodaira surfae. In partiular,D � C 2 is a Bergman domain and there exist disontinuous subgroupsE and _E of Aut(D) suh that
PSfrag replaementsM� LCDD � Cs(D � C)� O(�f + ��f)��0??y�! � D � C 2D=E �= MD= _E �= D � C:??y??y
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Moreover, he gave a \kind" of Kodaira surfae whose base surfae is aforth-puntured torus and �ber is a losed Riemann surfae of genustwo. This is our subjet in this paper. We remark that for a Kodaira



4 YOICHI IMAYOSHI, YOHEI KOMORI AND TOSHIHIRO NOGIsurfae, the genus of the base surfae must be greater than one (Kas[10℄, Theorem 1.1). We will estimate ℄S for this surfae. The detailonstrution will be reviewed in x2. Here we explain his idea oniselyto show it is a \ertain" Kodaira surfae.Let (bT ; 0) be a at torus with the marked point 0 and let b� : bR! bTbe a (Z=2Z)2-unbranhed overing orresponding to�1(bT ) �! H1(bT ;Z) �! H1(bT ;Z=2Z):We also onsider the onstant mapping 0 : bR ! bT ; r 7! 0. Sine twographs �b� of b� and �0 of 0 interset at four points in bR � bT , we antake R = bR n b��1(0) and � = b�jR, and onsider �� and �0 in R � bTwhere �� and �0 do not interset.Riera onstruted a two-sheeted overing M ! R � bT n (�� + �0)whih indues the next diagram.
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MR � bTR bT� �??y �! �Then (M;�;R) is a holomorphi family whose �ber ��1(r) is a two-sheeted branhed overing of bT �= frg � bT in R� bT branhed at (r; 0)and (r; �(r)).1.5. Estimation of ℄S for Riera's example (M;�;R). For the es-timation of ℄S, we make the following strategy whih is the same as inx1.2. We have \trivial" setions s� and s0 oming from � and 0 : R! bT ,hene ℄S � 2:Also we have the natural mapping� : S ! Hol(R; bT )s 7! � Æ sand the equality ℄S = 2℄�(S)� 2. Moreover, we will prove in x3.1 thefollowing:Proposition 3.1. �(S) n f0g � Holn::(R; bT ).But we an not go further beause bT is not hyperboli,℄Holn::(R; bT ) =1;hene the expliit estimation of ℄S does not ome from the idea in x1.3.



HOLOMORPHIC SECTIONS OF A HOLOMORPHIC FAMILY 5So we need another idea. First we show the following key theorem.Theorem 3.1. For any g 2 �(S) n f�; 0g, the mapping g has a holo-morphi extension bg : bR! bT .As a onsequene, we show in x3.1 thatProposition 3.2. For any g 2 �(S) n f�; 0g, the mapping g satis�es�g \ �� = ; and �g \ �0 = ;.Let us denote by Holdis(R; bT ) the set of all non-onstant holomorphimappings g : R ! bT whih extend to the mappings bg : bR ! bT andsatisfy �g \ �� = ; and �g \ �0 = ;.Then Proposition 3.2 implies that �(S) � Holdis(R; bT )[f�; 0g. Nowwe set �1 = i; �2 = e2�i=3 and put bTj = C z=�1;�j (j = 1; 2). The mainresult of this paper is as follows.Main Theorem . The number ℄Holdis(R; bT ) satis�es the equality(a) ℄Holdis(R; bT ) = 4, if bT 6�= bT1; bT2.Moreover,(b) ℄Holdis(R; bTj) = 12 for j = 1; 2.Sine f�; 0g � �(S) � Holdis(R; bT ) [ f�; 0g, we have the following:Corollary 3.1.(a) 2 � ℄�(S) � 6, if bT 6�= bT1; bT2.(b) 2 � ℄�(S) � 14, if bT �= bT1 or bT �= bT2.Sine ℄S = 2℄�(S)� 2, we an estimate ℄S asCorollary 3.2. The number ℄S of holomorphi setions an be esti-mated as follows.(a) ℄S = 2; 4; : : : ; 8 or 10, if bT 6�= bT1; bT2.(b) ℄S = 2; 4; : : : ; 24, or 26, if bT �= bT1 or bT �= bT2.The authors thank the referee for his (or her) hearty omments andadvies: The �rst and the third authors onsidered �(S) = f�; 0g inthe �rst version of this paper. That is, Riera's example (M;�;R) hasexatly two holomorphi setions. In the referee omments, he (or she)suggested them to reonsider the omplex struture on M arefully.After disussing with the seond author, �nally they had an idea toonsider Holdis(R; bT ) and proved that �(S) � Holdis(R; bT )[f�; 0g and℄Holdis(R; bT ) = 1 in general. But they ould not determine whether�(S) = Holdis(R; bT ) [ f�; 0g or not, in other words, there is \another"holomorphi setion for our ase, whih is our next problem.



6 YOICHI IMAYOSHI, YOHEI KOMORI AND TOSHIHIRO NOGI2. Constrution of a Holomorphi Family due to RieraIn [15℄, Riera explained how to onstrut the holomorphi universalovering of a Kodaira surfae whose �bers are branhed over hyperboliRiemann surfaes.Sine we onsider a ertain Kodaira surfae whose �bers are branhedover at tori, we must modify his onstrution as follows.2.1. Fiber as a Two-sheeted Branhed Covering Surfae of bT .Take a point � in the upper half-plane H . Let �1;� be the disretesubgroup of Aut(C w ) generated by w 7! w + 1; w 7! w + � . Let�1 : C w ! C w=�1;� be the anonial projetion. We denote the pair(C w=�1;� ; �1(0)) by (bT ; 0) and set T = bT n f0g.For any point t 2 T , we ut bT along a simple urve from 0 to t. Nextwe take two replias of the torus bT with the ut and all them sheet Iand sheet II. The ut on eah sheet has two sides, whih are labeled +side and � side. We attah the + side of the ut on I to the � side ofthe ut on II, and attah the � side of the ut on I to the + side of theut on II. Now we obtain a losed Riemann surfae St of genus two,whih is the two-sheeted branhed overing surfae St ! T̂ branhedover 0 and t.Note that the omplex struture on St depends not only on the pointt but also on the ut lous from 0 to t. Essentially there are four utsas in Figure 1 whih determine di�erent omplex strutures on St.
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HOLOMORPHIC SECTIONS OF A HOLOMORPHIC FAMILY 7Hene we an not onstrut a family whose �bers are St over T . Weonstrut a holomorphi family with �bers St. Let �2;2� be the disretesubgroup of Aut(C z ) generated by z 7! z + 2; z 7! z + 2� . Let�2 : C z ! C z=�2;2� be the anonial projetion and denote the pair(C z=�2;2� ; �2(0)) by ( bR; 0).De�ne e� : C z ! C w by e�(z) = z. Then e� indues a (Z=2Z)2-unbranhed overing b� : bR! bT whih orresponds to1 �! b�(�1( bR)) �! �1(bT ) �! (Z=2Z)2 �! 1:Set R = bR n b��1(0) and � = b�jR. For any point r 2 R, we take asimple urve eC from 0 to r suh that b�( eC) is a ut from 0 to b�(r). Byusing this ut, we onstrut a two-sheeted overing Sr := S�(r) ! bT .Now Sr is uniquely determined by r 2 R not depending on the ut eC.Hene we have a family whose �bers are Sr over R as a set.Next we introdue a omplex struture in this family.2.2. Quasi-onformal Deformation. We �x a point r0 2 R and asimple ar from 0 to r0 in R. The image of this under � is a urve Con bT from 0 to �(r0). Cutting bT along C, we have a losed Riemannsurfae Sr0 of genus two. We realize this two-sheeted branhed overingSr0 ! bT in terms of Fuhsian groups as follows.We hoose a Fuhsian group _G � PSL(2;R) whih satis�es thefollowing onditions:(i) there exist two ellipti elements _g1 and _g2 in _G suh that eahgj(j = 1; 2) has the �xed point zj in H ,(ii) H = _G is biholomorphially equivalent to bT ,(iii) The anonial projetion H ! H = _G sends z1 and z2 to 0 and�(r0) under a biholomorphial mapping from H = _G to bT , respe-tively.Then we an �nd an index 2 normal subgroup G1 of _G suh thatH =G1 ! H = _G realizes Sr0 ! bT . From the de�nition of �2, e� : C z ! C wde�ned by e�(z) = z is a lift of b� : bR! bT to the universal overings C zof bR and C w of bT , and let er0 be a point r0 = �2(er0).Let V : H ! C w be the mapping with V (z1) = 0 whih makes thenext diagram ommutative. Then V beomes a two-sheeted branhedovering with V ( _Gz1) = �1;�0 and V ( _Gz2) = �1;� e�(er0), where _Gzj isthe orbit under _G of zj, and �1;� e�(er0) and �1;�0 are the orbits under�1;� of e�(er0) for er0 2 C z and 0, respetively.



8 YOICHI IMAYOSHI, YOHEI KOMORI AND TOSHIHIRO NOGIH V���! C w??y ??yH = _G ���! bTWe onstrut for z 2 C z , a quasi-onformal mapping !z : C w ! C wsatisfying the following onditions:(i) !z(e�(er0)) = e�(z),(ii) !z Æ g Æ !�1z = g for all g 2 �1;� ,In order to onstrut suh a quasi-onformal mapping !z, we makethe following observations:First, let (t); 0 � t � 1 be a path from e�(er0) to e�(z) in C w whihontains no points of L(1; �) = fm + n� 2 C j m;n 2 Zg. For eaht, there exists a Dirihlet fundamental region Dt for �1;� entered at(t). Choose an Eulidean disk Bt entered at (t) suÆiently smallthat the losure Bt is ontained in Dt and has no points of L(1; �).Moreover we take a �nite overing of , say Bt1 ; : : : ; Btn+1 , suh that(t1) = e�(er0) and (tn+1) = e�(z) and (tj+1) 2 Btj+1 .Next, we set!j(�) = 8><>: � + (tj+1)� 2(tj)1 + 1r2j ((tj+1)� (tj))(� � (tj)) + (tj); on Btj�; on Dtj nBtj :where rj is the radius of Btj . Moreover put !j = g Æ!j Æ g�1 on g(Dtj)for all g 2 �1;� .A simple alulation shows that !j : C w ! C w is a quasi-onformalmapping with the Beltrami oeÆient�j(�) = (� 1r2j ((tj+1)� (tj))(!j(�)� (tj)); on Btj0; on Dtj nBtj :We remark that j(tj+1) � (tj)j < rj and j!j(�) � (tj)j < rj implyk�jk1 < 1. Moreover sine (tn+1) = e�(z), �j depends holomorphiallyon z in Btj .Finally, we set !z = !n Æ!n�1 Æ � � � Æ!1. By the onstrution of eah!j, we see that !z satis�es the onditions (i), and (ii). Hene we havethe desired quasi-onformal mapping !z.2.3. Constrution of D. For z 2 C z , we put�z(�) = �z(V (�))V 0(�)V 0(�);



HOLOMORPHIC SECTIONS OF A HOLOMORPHIC FAMILY 9then �z is the Beltrami oeÆient for _G. We de�ne W�z as a uniquequasi-onformal mapping of H whih has the omplex dilatation �z andleaves 0; 1, and 1 �xed, respetively. Setb�z(�) = (�z(�); � 2 H0; � 2 C n H(2.1)Then there exists a unique quasi-onformal mapping W �z of bC whihhas the omplex dilatation b�z and leaves 0; 1, and1 �xed, respetively.Now put D(�z) = W �z(H ). Then we have the following ommutativediagrams: H W�z���! H H W�z���! D(�z)??yV ??yVz ??yV ??yV zC !z���! C C !z���! Cwhere Vz = !z Æ V Æ (W�z)�1 and V z = !z Æ V Æ (W �z)�1 are branhedoverings branhed over the orbits �1;�w and �1;�0.Sine �z depends holomorphially on z, it is known that W �z alsodepends holomorphially on z. Thus we setD = f(z; �) j z 2 H ; � 2 D(�z)g:Then D beomes a domain in C 2 , so alled a Bergman domain.2.4. Constrution of E. Next we onstrut a subgroup E of automor-phisms of D whih ats properly disontinuously without �xed points.LetH be the overing transformation group of a four puntured torusR, that is R = H =H. Denote by mod(G1) the set of all equivalenelasses h!i of quasi-onformal mapping ! : H ! H with !G1!�1 =G1, where two quasi-onformal mappings !1 and !2 are said to beequivalent if !1 = !2 on R. Then there exists a homomorphism Æ :H ! mod(G1) suh thatW�h(z) = � ÆW�z Æ Æ(h)�1 (z 2 H ; h 2 H)(2.2)where � 2 Aut(H ) is hosen so that � ÆW�z Æ Æ(h)�1 �xes eah of 0; 1;and 1.It should be remarked that we have a homomorphism �2 : H !Aut(G1) given by �2(h)(g) = Æ(h)Æg Æ Æ(h)�1. By using this homomor-phism, we de�ne E to be the semidiret produt of H and G1. In orderto de�ne the ation of E on D, we make the following observations:First, we need the following result.



10 YOICHI IMAYOSHI, YOHEI KOMORI AND TOSHIHIRO NOGIProposition 2.1 (Bers [2℄, Lemma 3.1). Let [�℄ 2 T (G) and h!i 2mod(G). De�ne a quasi-onformal mapping W� by the formulaW� = � ÆW� Æ !�1;where � 2 Aut(H ) suh that � ÆW� Æ !�1 �xes eah of 0; 1; and 1.Then the mapping � 7! b� given byb� = W � Æ ! Æ (W �)�1(�)is a onformal bijetion from D(�) onto D(�).Moreover if [�℄ varies holomorphially aording to a parameter, sodoes b� for a �xed value of �.By (2.2) and Theorem 2.1, the mappingb� = W �h(z) Æ Æ(h) Æ (W �z)�1(�)is a onformal bijetion from D(�z) onto D(�h(z)). It follows from theseond part of Theorem 2.1 that b� depends holomorphially on z.Thus we de�ne the ation of E on D by(h; g1)(z; �) = (h(z);W �h(z) Æ g1 Æ (W �h(z))�1(b�))= (h(z);W �h(z) Æ g1 Æ Æ(h) Æ (W �z)�1(�));where (z; �) 2 D and (h; g1) 2 H n G1. We an hek this is a groupation.Let F (G1) be the Bers �ber spae over the Teihm�uller spae T (G1)de�ned by F (G1) = f([�z℄; �) j [�z℄ 2 T (G1); � 2 D(�z)g. Everyelement h!i of mod(G1) ats on F (G1) by([�z℄; �) 7! ([�z℄;W �z Æ ! Æ (W �z)�1(�)):We set A = f(z; ([�z℄; �)) j z 2 H ; ([�z℄; �) 2 F (G1)g:Then D is identi�ed with A under the mapping(z; �) 7! (z; ([�z℄; �));and the ation of E on A �= D an be written as(h; g1)(z; ([�z℄; �)) = (h(z); g1 Æ Æ(h)([�z℄; �));where g1 Æ Æ(h) is an element of mod(G1).Theorem 2.1 (Bers [2℄, Theorem 7). If dimC T (G) <1, then mod(G)ats properly disontinuously on F (G).Hene E ats properly disontinuously on D as dimC T (G1) = 3.Moreover the ation of E on D is �xed point free sine H and G1 are�xed point free.



HOLOMORPHIC SECTIONS OF A HOLOMORPHIC FAMILY 112.5. Holomorphi Family (M;�;R). The quotient spae D=E be-omes a 2-dimensional omplex manifold. We set M = D=E.The group _E = H n _G also ats on D and the quotient spae D= _Eis biholomorphially equivalent to R � bT . Therefore we have a two-sheeted branhed overing � : M ! R � bT branhed over two graphs�0 and ��.We de�ne � to be the omposite PR Æ � of the overing mapping� and the projetion PR : R � bT ! R, and � to be P bT Æ �, whereP bT : R � bT ! bT . Then the triple (M;�;R) is a holomorphi familysuh that for any point r 2 R, �jSr : Sr = ��1(r)! bT is a two-sheetedbranhed overing. 3. Proof of Main TheoremLet us reall Holdis(R; bT ) is the set of all holomorphi mappings g :R! bT whih extend to the mappings bg : bR! bT and satisfy �g\�� = ;and �g\�0 = ;. Set �1 = i; �2 = e2�i=3 and put bTj = C z=�1;�j ; j = 1; 2.
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Figure 2Main Theorem . The number ℄Holdis(R; bT ) satis�es the equality(a) ℄Holdis(R; bT ) = 4, if bT 6�= bT1; bT2.Moreover,(b) ℄Holdis(R; bTj) = 12 for j = 1; 2.Sine f�; 0g � �(S) � Holdis(R; bT ) [ f�; 0g, we have the following:Corollary 3.1. (a) 2 � ℄�(S) � 6, if bT 6�= bT1; bT2.(b) 2 � ℄�(S) � 14, if bT �= bT1 or bT �= bT2.Sine ℄S = 2℄�(S)� 2, we an estimate ℄S as



12 YOICHI IMAYOSHI, YOHEI KOMORI AND TOSHIHIRO NOGICorollary 3.2. The number ℄S of holomorphi setions an be esti-mated as follows.(a) ℄S = 2; 4; : : : ; 8, or 10, if bT 6�= bT1; bT2.(b) ℄S = 2; 4; : : : ; 24, or 26, if bT �= bT1 or bT �= bT2.3.1. Key Theorem.Proposition 3.1. �(S) n f0g � Holn::(R; bT ).Proof of Proposition 3.1. Assume there exists a onstant mappingg 2 �(S) n f0g whih is written as g(r) = , where  is not equal to0. Sine � : R ! T is surjetive, there exists a point r0 suh that�(r0) = , hene b�(r0) = . Sine e�(z) = z is a lift of b�, we an �ndz0 2 C z n L(1; �) suh that �2(z0) = r0 andz0 = :(3.1)For suÆiently small � > 0, �(z0; �) = fz 2 C z j jz � z0j < �g and�(; �) = fw 2 C w j jw� j < �g an be taken as loal harts at r0 2 Rand  2 bT , respetively. Then the graph �g = f(r; ) j r 2 Rg in R� bTan be loally written as w = in �(z0; �)��(; �). Thus M is loally represented asu2 = w � in C u��(z0; �)��(; �) (see Wavrik [19℄, Theorem in Appendix). Take�0 > 0 with �0 < �, and set z = z0 + �0ei�. By using (3.1), we haveu2 = w � = z0 + �0ei� � = �0ei�:When � goes from 0 to 2�, u = u(�) beomes two-valued whih meansthat s = s(�) is two-valued. We have a ontradition.Theorem 3.1. For any g 2 �(S) n f�; 0g, the mapping g has a holo-morphi extension bg : bR! bT .Proof of Theorem 3.1. First, we use the following theorem about theanonial extension of holomorphi families:Theorem 3.2 (Imayoshi [6℄,Theorem 4 and Theorem 5). Let (N; �;��f0g) be a holomorphi family of ompat Riemann surfaes of genus gover the puntured disk. If the homotopial monodromy is of in�niteorder, then (N; �;� � f0g) an be anonially ompleted in the holo-morphi family ( bN; b�;�) with a singular �ber over the origin, where



HOLOMORPHIC SECTIONS OF A HOLOMORPHIC FAMILY 13bN is a two-dimensional normal omplex spae. Moreover any holomor-phi setion s : � � f0g ! N has a unique holomorphi extensionbs : �! bN .To use this result, we need to show the following laim.Claim 1. For any punture p of R, the homotopial monodromy Mpof (M;�;R) around p is of in�nite order.Proof. First, we onsider the ase where p is 0. Fix a point r0 ina neighborhood of 0 in R and �x r0. When a point r moves from r0,and turns around 0 one, and omes bak to r0, the ut between 0 and�(r0) on T as in Figure 3 also turns around 0 one. Thus the urve `on T as in Figure 3 hanges to `0. When the point r moves as above,by the onstrution of the �ber Sr0 , the urve è on Sr0 as in Figure 4hanges to è0.Hene the monodromyM0 is the twie produt of a negative Dehntwist about the simple losed urve C1, where C1 is a separating urveas in Figure 5. ThereforeM0 is of in�nite order.Similarly, for another punture p of R with p 6= 0, we see that mon-odromy Mp is the twie produt of a negative Dehn twist about thesimple losed urve C2, where C2 is a non-separating urve as in Figure5. ThereforeMp is of in�nite order.
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` `0Figure 3By means of Theorem 3.2, we see that our family (M;�;R) an beanonially ompleted in the degenerated family (M; b�; bR), where Mis a ompat two dimensional normal omplex spae. Moreover everyholomorphi setion s : R ! M has a unique holomorphi extensionbs : bR ! M . Let bs0 : bR ! M be the holomorphi extension of thezero setion s0. Sine bR is ompat, two tori bs( bR) and bs0( bR) intersetseah other at most �nitely many times on M . Then the set S = g�1(0)is a �nite subset of R, hene the restrition of g to R n S indues theholomorphi mapping R n S ! bT n f0g between hyperboli Riemannsurfaes. Now we reall a generalization of the \big" Piard Theorem:
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Figure 5Theorem 3.3 (Royden [16℄). Let f be a holomorphi mapping of thepuntured disk �� into a hyperboli Riemann surfae W . Then eitherf extends to a holomorphi mapping of the disk � into W or else Wis ontained in a Riemann surfae W � = W [ fpg, so that f extendsto a holomorphi mapping of � into W �.From this result, the mapping R n S ! bT n f0g extends uniquely toa holomorphi mapping bg : bR! bT .Proposition 3.2. For any g 2 �(S) n f�; 0g, the mapping g satis�es�g \ �� = ; and �g \ �0 = ;.Proof of Proposition 3.2. Every element g in �(S)nf�; 0g is extendedto a holomorphi mapping bg from bR to bT by Theorem 3.1. We remarkthat bg beomes an unbranhed overing from bR onto bT by Riemann-Hurwitz formula. Let eg : C z ! C w be a lift of bg to the universaloverings of bR and bT whih satis�es �1 Æ eg = bg Æ �2. Sine bg is non-onstant, eg must be an automorphism of C , hene eg is written aseg(z) = Az +B;where A and B are omplex numbers and A 6= 0. It should be remarkedthat eg is not unique, beause we may replae eg by 1 Æ eg Æ 2, where1 2 �1;� and 2 2 �2;2� .
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Figure 6. Case (1)Case (1) In this ase, there exists a point r0 2 R suh that g(r0) =0, hene bg(r0) = 0. Then we an �nd z0 2 C z n L(1; �) suh that�2(z0) = r0 and Az0 +B = 0:(3.2)For suÆiently small � > 0, �(z0; �) = fz 2 C z j jz � z0j < �g and�(0; �) = fw 2 C w j jwj < �g an be taken as loal harts at r0 2 Rand 0 2 bT , respetively. Then the graph �0 = f(r; 0) j r 2 Rg in R� bTan be loally written as w = 0in �(z0; �)��(0; �). Thus M is loally represented asu2 = w



16 YOICHI IMAYOSHI, YOHEI KOMORI AND TOSHIHIRO NOGIin C u��(z0; �)��(0; �). Take �0 > 0 with �0 < �, and set z = z0+�0ei�.By using (3.2), we haveu2 = Az +B= A(z0 + �0ei�) +B= A�0ei�:By the same argument as in the proof of Proposition 3.1, we have aontradition.Case (2) In this ase, there exists a point r0 2 R suh that g(r0) =�(r0), hene bg(r0) = b�(r0). Sine e�(z) = z is a lift of b�, we an �ndz0 2 C z n L(1; �) suh that �2(z0) = r0 andAz0 +B = z0:(3.3)For suÆiently small � > 0, �(z0; �) and �(w0; �) an be taken asloal harts at r0 2 R and �(r0) 2 bT , respetively.Then �� = f(r; �(r)) j r 2 Rg in R� bT an be loally written asw = zin �(z0; �)��(w0; �). Thus M is loally represented asu2 = w � zin C u ��(w0; �)��(z0; �). Take �0 > 0 with �0 < �, set z = z0 + �0ei�.By using (3.3), we haveu2 = Az +B � z= A(z0 + �0ei�) +B � (z0 + �0ei�)= (A� 1)�0ei�:By the same argument as in the proof of Proposition 3.1, we have aontradition. Thus we have the assertion.3.2. Proof of Main Theorem. From now on, we assume � is in thedomain F in C de�ned by the following four onditions : (i) Im� > 0(ii) �1=2 � Re� < 1=2, (iii) j� j � 1, (iv) Re� � 0 if j� j = 1, sine anyat torus is biholomorphially equivalent to C =�1;� for some � 2 F .We reall L(1; �) = fm + n� 2 C j m;n 2 Zgand all an element of L(1; �) a lattie point, and setL(2; 2�) = f2m+ 2n� 2 C j m;n 2 Zg:



HOLOMORPHIC SECTIONS OF A HOLOMORPHIC FAMILY 17Every element g of Holdis(R; bT ) has a holomorphi extension bg : bR!bT . A lift eg be of bg is written aseg(z) = Az +B;where A and B are omplex numbers and A 6= 0.We need two lemmas.Lemma 3.1. A 6= 1.Proof of Lemma 3.1. Suppose A = 1. If B = 0 modulo A � �2;2� +�1;� = �1;� , then eg is a lift of �, while � is not an element of Holdis(R; bT ),a ontradition. Hene B is not equal to 0 modulo �1;� . Put z0 = �Bthen we have �2(z0) 2 R and g(�2(z0)) = 0, sine �1 Æ eg = bg Æ �2.Therefore the graphs of g and 0 in R � bT intersets eah other, whihontradits the assumption that g is ontained in Holdis(R; bT ).From now on, we may assume that A 6= 1.Lemma 3.2. eg an be written as eg(z) = A(z + !) where ! = 0; 1; �and 1 + � .Proof of Lemma 3.2. Take the point z0 = �B=(A�1). Then ~g(z0) =z0. If z0 2 C n �1;� , we see that �g \ �� 6= ;, a ontradition. Henez0 2 �1;� . Then there exist integers m;n suh that z0 = �B=(A� 1) =�m� n� . The result follows.To determine A, we may assume eg(z) = Az. Sine eg(L(2; 2�)) �L(1; �), we have 2A = p+ q�;(3.4) 2A� = u+ v�;(3.5)where p; q; u; and v are integers. The Eulidean areas of bR and bT , anddeg(bg) � 4 implies that 1 � pv � qu � 4:(3.6)and j2Aj = jp+ q� j � 2:(3.7)By (3.4) and (3.5), we getq� 2 + (p� v)� � u = 0:(3.8)Sine the assumption � 2 F implies that the disriminant is negative,we have (p+ v)2 < 4(pv � qu):(3.9)



18 YOICHI IMAYOSHI, YOHEI KOMORI AND TOSHIHIRO NOGIThe root � of (3.8) with Im(�) > 0 is given by(3.10) � = 8>><>>:v � p+p4(pv � qu)� (p+ v)2 i2q ; if q > 0;v � p�p4(pv � qu)� (p+ v)2 i2q ; if q < 0:First by the assumption � 2 F and (3.7), we see that the possibilitiesof p and q are follows.(i) If q = 0, then p = �1;�2.(ii) If q = 1, then p = 0;�1;�2.(iii) If q = 2, then p = 0;�1;�2.When q = 0, from (3.8) and � 2 F , we have (p; q; u; v) = (�1; 0; 0;�1),(�2; 0; 0;�2):When q 6= 0, for eah (p; q), we get v satisfying �1=2 � Re(�) < 1=2.Next for eah (p; q; v) we obtain u with (3.6). Finally, �nding (p; q; u; v)in these p; q; u; v suh that � represented in (3.10) is an element of F ,we have the list of p; q; u; v; �; 2A and a �xed point of eg in the followingTable 1 and 2.In these Tables, when some lift eg has a �xed point whih is notontained in L(1; �), we see that �g intersets ��, a ontradition.Next when (p; q; u; v) = (1;�1; 1; 2); (1;�1; 2; 2); (2; 1;�1; 1); (2; 1;�2; 1),we see that �g intersets �0, a ontradition. Finally when (p; q; u; v) =(2; 0; 0; 2), ~g is a lift of �, a ontradition. Consequently, we have thefollowing(a) ℄Holdis(R; T̂ ) = 4, if � 6= i; e2�i=3:(b) ℄Holdis(R; T̂ ) = 3� 4 = 12, if � = i or e2�i=3.Thefefore we have the assertion.



HOLOMORPHIC SECTIONS OF A HOLOMORPHIC FAMILY 19p q u v � 2A = p+ q� �xed point0 1 �1 0 i i (4 + 2i)=50 1 �2 0 p2i p2i (2 +p2i)=30 1 �3 0 p3i p3i (2 +p3i)=70 1 �4 0 2i 2i (1 + i)=20 1 �1 �1 e2�i=3 e2�i=3 (5 +p3i)=70 1 �2 �1 (�1 +p7i)=2 (�1 +p7i)=2 (5 +p7i)=80 1 �3 �1 (�1 +p11i)=2 (�1 +p11i)=2 (5 +p11i)=90 1 �4 �1 (�1 +p15i)=2 (�1 +p15i)=2 (5 +p15i)=100 �1 1 0 i �i 2(1 + 2i)=50 �1 2 0 p2i �p2i 2(1 +p2i)=30 �1 3 0 p3i �p3i 2(3 + 2p3i)=70 �1 4 0 2i �2i (1 +p3i)=20 �1 1 1 e2�i=3 �e2�i=3 (3�p3i)=30 �1 2 1 (�1 +p7i)=2 (1�p7i)=2 (5 +p7i)=40 �1 3 1 (�1 +p11i)=2 (1�p11i)=2 (3�p11i)=50 �1 4 1 (�1 +p15i)=2 (1�p15i)=2 (3�p15i)=60 2 �2 0 i 2i (1 + i)=20 2 �2 �1 (�1 +p15i)=4 (�1 +p15i)=2 (5 +p15i)=100 2 �2 �2 e2�i=3 2e2�i=3 p3i=30 �2 2 0 i �2i (1 + i)=20 �2 2 1 (�1 +p15i)=4 (1�p15i)=2 (3�p15i)=60 �2 2 2 e2�i=3 �2e2�i=3 lattie point1 0 0 1 any 1 lattie point1 1 �1 1 e2�i=3 1 + e2�i=3 (3 +p3i)=31 1 �2 0 (�1 +p7i)=2 (1 +p7i)=2 (3 +p7i)=41 1 �3 0 (�1 +p11i)=2 (1 +p11i)=2 (5 +p11i)=51 1 �4 0 (�1 +p15i)=2 (1 +p15i)=2 (3 +p15i)=61 1 �1 1 i 1 + i lattie point1 1 �2 1 p2i 1 +p2i (1 +p2i)=31 1 �3 1 p3i 1 +p3i (1 +p3i)=21 �1 1 1 i 1� i lattie point1 �1 2 1 p2i 1�p2i 2(1�p2i)=31 �1 3 1 p3i 1�p3i (1�p3i)=21 �1 1 2 e2�i=3 1� e2�i=3 lattie point1 �1 2 2 (�1 +p7i)=2 (3�p7i)=2 lattie point1 2 �2 �1 e2�i=3 1 + 2e2�i=3 2(2 +p3i)=71 2 �2 0 (�1 +p15i)=4 (1 +p15i)=2 (3 +p15i)=6Table 1. p = 0; 1



20 YOICHI IMAYOSHI, YOHEI KOMORI AND TOSHIHIRO NOGIp q u v � 2A �xed point�1 0 0 �1 any �1 2(1 + �)=3�1 1 �1 �2 e2�i=3 �1 + e2�i=3 (7 +p3i)=13�1 1 �2 �2 (�1 +p7i)=2 (�3 +p7i)=2 (7 +p7i)=14�1 1 �1 �1 i �1 + i (3 + i)=5�1 1 �2 �1 p2i �1 +p2i 2(3 +p2i)=11�1 1 �3 �1 p3i �1 +p3i (3 +p3i)=6�1 �1 1 �1 i �1� i 2(2 + i)=5�1 �1 2 �1 p2i �1�p2i 2(2 + 3p2i)=11�1 �1 3 �1 p3i �1�p3i (1 +p3i)=2�1 �1 1 0 e2�i=3 �1� e2�i=3 (5�p3i)=7�1 �1 2 0 (�1 +p7i)=2 �(1 +p7i)=2 (5�p7i)=8�1 �1 3 0 (�1 +p11i)=2 �(1 +p11i)=2 (5�p11i)=9�1 �1 4 0 (�1 +p15i)=2 �(1 +p15i)=2 (5�p15i)=10�1 �2 2 0 (�1 +p15i)=4 �(1 +p15i)=2 (5�p15i)=10�1 �2 2 1 e2�i=3 �1� 2e2�i=3 2(2�p3i)=72 0 0 2 any 2 lattie point2 1 �1 1 e2�i=3 2 + e2�i=3 lattie point2 1 �2 1 (�1 +p7i)=2 (3 +p7i)=2 lattie point2 2 �2 0 e2�i=3 2 + 2e2�i=3 lattie point�2 0 0 �2 any �2 1=2�2 �1 1 �1 e2�i=3 �2� e2�i=3 (7�p3i)=13�2 �1 2 �1 (�1 +p7i)=2 �(3 +p7i)=2 (7�p7i)=14�2 �2 2 0 e2�i=3 �2� 2e2�i=3 (3 +p3i)=6Table 2. p = �1;�2
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