
CLASSIFICATION OF REAL BOTT MANIFOLDS

MIKIYA MASUDA

Abstract. A real Bott manifold is the total space of a sequence
of RP 1 bundles starting with a point, where each RP 1 bundle is
the projectivization of a Whitney sum of two real line bundles.
A real Bott manifold is a real toric manifold which admits a flat
riemannian metric. An upper triangular (0, 1) matrix with zero di-
agonal entries uniquely determines such a sequence of RP 1 bundles
but different matrices may produce diffeomorphic real Bott mani-
folds. In this paper we determine when two such matrices produce
diffeomorphic real Bott manifolds. The argument also proves that
any graded ring isomorphism between the cohomology rings of real
Bott manifolds with Z/2 coefficients is induced by an affine diffeo-
morphism between the real Bott manifolds. In particular, this
implies the main theorem of [3] which asserts that two real Bott
manifolds are diffeomorphic if and only if their cohomology rings
with Z/2 coefficients are isomorphic as graded rings. We also prove
that the decomposition of a real Bott manifold into a product of
indecomposable real Bott manifolds is unique up to permutations
of the indecomposable factors.

1. Introduction

A real Bott tower of height n, which is a real analogue of a Bott
tower introduced in [2], is a sequence of RP 1 bundles

Mn
RP 1

−→ Mn−1
RP 1

−→ · · · RP 1

−→ M1
RP 1

−→ M0 = {a point}
such that Mj → Mj−1 for j = 1, . . . , n is the projective bundle of
the Whitney sum of a real line bundle Lj−1 and the trivial real line
bundle over Mj−1, and we call Mn a real Bott manifold. A real Bott
manifold naturally supports an action of an elementary abelian 2-group
and provides an example of a real toric manifold which admits a flat
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2 M. MASUDA

riemannian metric invariant under the action. Conversely, it is shown
in [3] that a real toric manifold which admits a flat riemannian metric
invariant under an action of an elementary abelian 2-group is a real
Bott manifold.

Real line bundles are classified by their first Stiefel-Whitney classes
as is well-known and H1(Mj−1; Z/2), where Z/2 = {0, 1}, is isomorphic
to (Z/2)j−1 through a canonical basis, so the line bundle Lj−1 is deter-
mined by a vector Aj in (Z/2)j−1. We regard Aj as a column vector
in (Z/2)n by adding zero’s and form an n × n matrix A by putting Aj

as the j-th column. This gives a bijective correspondence between the
set of real Bott towers of height n and the set B(n) of n × n upper
triangular (0, 1) matrices with zero diagonal entries. Because of this
reason, we may denote the real Bott manifold Mn by M(A).

Although M(A) is determined by the matrix A, it happens that two
different matrices in B(n) produce (affinely) diffeomorphic real Bott
manifolds. In this paper we introduce three operations on B(n) and
say that two elements in B(n) are Bott equivalent if one is transformed
to the other through a sequence of the three operations. Our first main
result is the following.

Theorem 1.1. The following are equivalent for A,B in B(n):

(1) A and B are Bott equivalent.
(2) M(A) and M(B) are affinely diffeomorphic.
(3) H∗(M(A); Z/2) and H∗(M(B); Z/2) are isomorphic as graded

rings.

Moreover, any graded ring isomorphism from H∗(M(A); Z/2) to
H∗(M(B); Z/2)) is induced by an affine diffeomorphism from M(B)
to M(A).

In particular, we obtain the following main theorem of [3].

Corollary 1.2 ([3]). Two real Bott manifolds are diffeomorphic if and
only if their cohomology rings with Z/2 coefficients are isomorphic as
graded rings.

It is asked in [3] whether Corollary 1.2 holds for any real toric man-
ifolds but a counterexample is given in [5].

We say that a real Bott manifold is indecomposable if it is not dif-
feomorphic to a product of more than one real Bott manifolds. Using
Corollary 1.2 together with an idea used to prove Theorem 1.1, we are
able to prove our second main result.

Theorem 1.3. The decomposition of a real Bott manifold into a prod-
uct of indecomposable real Bott manifolds is unique up to permutations
of the indecomposable factors.
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In particular, we have

Corollary 1.4 (Cancellation Property). Let M and M ′ be real Bott
manifolds. If S1 ×M and S1 ×M ′ are diffeomorphic, then M and M ′

are diffeomorphic.

It would be interesting to ask whether Theorem 1.3 and Corollary 1.4
hold for any real toric manifolds.

The author learned from Y. Kamishima that Corollary 1.4 can also
be obtained from the method developed in [4] and [7] and that the
cancellation property above fails to hold for general compact flat rie-
mannian manifolds, see [1].

This paper is organized as follows. In Section 2 we describe M(A)
and its cohomology rings explicitly in terms of the matrix A. In Sec-
tion 3 we introduce the three operations on B(n). To each operation
we associate an affine diffeomorphism between real Bott manifolds in
Section 4, which implies the implication (1) ⇒ (2) in Theorem 1.1. The
implication (2) ⇒ (3) is trivial. In Section 5 we prove the latter state-
ment in Theorem 1.1. The argument also establishes the implication
(3) ⇒ (1). In the proof we introduce a notion of eigen-element and
eigen-space in the first cohomology group of a real Bott manifold using
the multiplicative structure of the cohomology ring and they play an
important role on the analysis of isomorphisms between cohomology
rings. Using this notion, we prove Theorem 1.3 in Section 6.

2. Real Bott manifolds and their cohomology rings

As mentioned in the Introduction, a real Bott manifold M(A) of
dimension n is associated to a matrix A ∈ B(n). In this section we
give an explicit description of M(A) and its cohomology ring.

We set up some notation. Let S1 denote the unit circle consisting of
complex numbers with unit length. For elements z ∈ S1 and a ∈ Z/2
we use the following notation

z(a) :=

{
z if a = 0

z̄ if a = 1.

For a matrix A we denote by Ai
j the (i, j) entry of A and by Ai (resp.

Aj) the i-th row (resp. j-th column) of A.
Now we take A from B(n) and define involutions ai’s on T n := (S1)n

by

(2.1) ai(z1, . . . , zn) := (z1, . . . , zi−1,−zi, zi+1(A
i
i+1), . . . , zn(Ai

n))

for i = 1, . . . , n. These involutions ai’s commute with each other and
generate an elementary abelian 2-group of rank n, denoted by G(A).
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The action of G(A) on T n is free and the orbit space is the desired real
Bott manifold M(A).

M(A) is a flat riemannian manifold. In fact, Euclidean motions si’s
(i = 1, . . . , n) on Rn defined by

si(u1, . . . , un) := (u1, . . . , ui−1, ui +
1

2
, (−1)Ai

i+1ui+1, . . . , (−1)Ai
nun)

generate a crystallographic group Γ(A), where the subgroup generated
by s2

1, . . . , s
2
n consists of all translations by Zn, and the action of Γ(A)

on Rn is free and the orbit space Rn/Γ(A) agrees with M(A) through an
identification R/Z with S1 via an exponential map u → exp(2π

√
−1u).

M(A) admits an action of an elementary abelian 2-group defined by
(u1, . . . , un) → (±u1, . . . ,±un) and this action preserves the flat rie-
mannian metric on M(A).

Let Gk (k = 1, . . . , n) be a subgroup of G(A) generated by a1, . . . , ak.
Needless to say Gn = G(A). Let T k := (S1)k be a product of first k-
factors in T n = (S1)n. Then Gk acts on T k by restricting the action of
Gk on T n to T k and the orbit space T k/Gk is a real Bott manifold of
dimension k. Natural projections T k → T k−1 for k = 1, . . . , n produce
a real Bott tower

M(A) = T n/Gn → T n−1/Gn−1 → · · · → T 1/G1 → {a point}.
The graded ring structure of H∗(M(A); Z/2) can be described explic-

itly in terms of the matrix A. We shall recall it. For a homomorphism
λ : G(A) → Z2 = {±1} we denote by R(λ) the real one-dimensional
G(A)-module associated with λ. Then the orbit space of T n ×R(λ) by
the diagonal action of G(A), denoted by L(λ), defines a real line bundle
over M(A) with the first projection. Let λj : G(A) → Z2 (j = 1, . . . , n)
be a homomorphism sending ai to −1 for i = j and 1 for i 6= j, and we
set

xj = w1(L(λj))

where w1 denotes the first Stiefel-Whitney class.

Lemma 2.1 (see [3, Lemma 2.1] for example). As a graded ring

H∗(M(A); Z/2) = Z/2[x1, . . . , xn]/(x2
j = xj

n∑
i=1

Ai
jxi | j = 1, . . . , n).

Let B be another element of B(n). Since M(A) = T n/G(A) and

M(B) = T n/G(B), an affine automorphism f̃ of T n together with a
group isomorphism φ : G(B) → G(A) induces an affine diffeomorphism

f : M(B) → M(A) if f̃ is φ-equivariant, i.e., f̃(gz) = φ(g)f̃(z) for
g ∈ G(B) and z ∈ T n. Since the actions of G(A) and G(B) on T n are
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free, the isomorphism φ will be uniquely determined by f̃ if it exists.
We shall use bi and yj for M(B) in place of ai and xj for M(A).

Lemma 2.2. If φ(bi) =
∏n

j=1 a
F i

j

j with F i
j ∈ Z/2, then f∗(xj) =∑n

i=1 F i
jyi.

Proof. A map T n × R(λ ◦ φ) → T n × R(λ) sending (z, u) to (f̃(z), u)
induces a bundle map L(λ ◦ φ) → L(λ) covering f : M(B) → M(A).
Since (λj ◦ φ)(bi) = F i

j , this implies the lemma. ¤

3. Three matrix operations

In this section we introduce three operations on matrices used in later
sections to analyze when M(A) and M(B) (resp. H∗(M(A); Z/2) and
H∗(M(B); Z/2)) are diffeomorphic (resp. isomorphic) for A,B ∈ B(n).
In the following A will denote an element of B(n).

1st operation (Op1). For a permutation matrix S of size n we define

ΦS(A) := SAS−1.

To be more precise, there is a permutation σ on a set {1, . . . , n} such
that Si

j = 1 if i = σ(j) and Si
j = 0 otherwise. We note that if we set

B = ΦS(A), then SA = BS and

(3.1) Ai
j = (SA)

σ(i)
j = (BS)

σ(i)
j = B

σ(i)
σ(j).

ΦS(A) may not be in B(n) but we will perform the operation ΦS on A
only when ΦS(A) stays in B(n).

2nd operation (Op2). For k ∈ {1, . . . , n} we define a square matrix
Φk(A) of size n by

(3.2) Φk(A)j := Aj + Ak
j Ak for j = 1, . . . , n.

Φk(A) stays in B(n) and since the diagonal entries of A are all zero
and we are working over Z/2, the composition Φk ◦ Φk is the identity;
so Φk is bijective on B(n).

3rd operation (Op3). Let I be a subset of {1, . . . , n} such that
Ai = Aj for i, j ∈ I and Ai 6= Aj for i ∈ I and j /∈ I. Since the
diagonal entries of A are all zero, the condition Ai = Aj for i, j ∈ I
implies that Ai

j = 0 for i, j ∈ I. Let C = (Ci
k)i,k∈I with Ci

k ∈ Z/2 be

an invertible matrix of size |I|. Then we define a square matrix ΦI
C(A)

of size n by

(3.3) ΦI
C(A)i

j :=

{∑
k∈I Ci

kA
k
j (i ∈ I)

Ai
j (i /∈ I).
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ΦI
C(A) stays in B(n) and since C is invertible, ΦI

C is bijective on B(n).

Definition. We say that two elements in B(n) are Bott equivalent
if one is transformed to the other through a sequence of the three
operations (Op1), (Op2) and (Op3).

Example 3.1. B(2) has two elements and they are not Bott equiva-
lent. B(3) has 23 = 8 elements and they are classified into four Bott
equivalence classes as follows:

(1) The zero matrix of size 3

(2)

(
0 1 0

0 0 0
0 0 0

) (
0 0 1

0 0 0
0 0 0

) (
0 0 0

0 0 1
0 0 0

) (
0 0 1

0 0 1
0 0 0

)
(3)

(
0 1 1
0 0 0
0 0 0

)
(4)

(
0 1 0
0 0 1

0 0 0

) (
0 1 1
0 0 1

0 0 0

)
B(4) has 26 = 64 elements and one can check that it has twelve Bott
equivalence classes, see [3] and [7]. Furthermore, B(5) has 210 = 1024
elements and one can check that it has 54 Bott equivalence classes. The
author learned from Admi Nazra that he classified real Bott manifolds
of dimension 5 up to diffeomorhism from a different viewpoint (see
[4], [7]) and found the 54 Bott equivalence classes in B(5). The author
does not know the number of Bott equivalence classes in B(n) for n ≥ 6
although it is in between 2(n−2)(n−3)/2 and 2n(n−1)/2 (see Example 3.3
below).

Example 3.2. Let Bk(n) (1 ≤ k ≤ n − 1) be a subset of B(n) such
that A ∈ B(n) is in Bk(n) if and only if A has exactly k non-zero
columns. There is only one Bott equivalence class in B1(n) and the
corresponding real Bott manifold is the product of a Klein bottle and
(RP 1)n−2. B2(3) has two Bott equivalence classes represented by(

0 1 1
0 0 0
0 0 0

) (
0 1 0
0 0 1
0 0 0

)
But B2(n) for n ≥ 4 has four Bott equivalence classes; two of them
are represented by n×n matrices with the above 3× 3 matrices at the
right-low corner and 0 in others, and the other two are represented by
n×n matrices with the following 4×4 matrices at the right-low corner
and 0 in others 0 0 0 1

0 0 1 0
0 0 0 1
0 0 0 0

 0 0 0 1
0 0 1 0
0 0 0 0
0 0 0 0
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Example 3.3. Let ∆(n) be a subset of B(n) such that A ∈ B(n) is
in ∆(n) if and only if Ai

i+1 = 1 for i = 1, . . . , n− 1. Only the operation
(Op2) is available on ∆(n) and one can change (i, i + 2) entry into 0
for i = 1, . . . , n − 2 using the operation, so that A is Bott equivalent
to a matrix Ā of this form

Ā =



0 1 0 Ā1
4 Ā1

5 . . . Ā1
n−1 Ā1

n

0 0 1 0 Ā2
5 . . . Ā2

n−1 Ā2
n

...
...

. . . . . . . . . . . .
...

...
0 0 . . . 0 1 0 Ān−4

n−1 Ān−4
n

0 0 . . . 0 0 1 0 Ān−3
n

0 0 . . . 0 0 0 1 0
0 0 . . . 0 0 0 0 1
0 0 . . . 0 0 0 0 0


Ā is uniquely determined by A and two elements A,B ∈ ∆(n) are

Bott equivalent if and only if Ā = B̄. Therefore there are exactly
2(n−2)(n−3)/2 Bott equivalent classes in ∆(n) for n ≥ 2.

Remark. As remarked above ΦS(A) may not stay in B(n). This awk-
wardness can be resolved if we consider the union of ΦS(B(n)) over
all permutation matrices S. The three operations above preserve the
union and are bijective on it. This union is a natural object. In fact,
it is shown in [6, Lemma 3.3] that a square matrix A of size n with
entries in Z/2 lies in the union if and only if all principal minors of
A + E (even the determinant of A + E itself) are one in Z/2 where E
denotes the identity matrix of size n.

4. Affine diffeomorphisms

In this section we associate an affine diffeomorphism between real
Bott manifolds to each operation introduced in the previous section,
and prove the implication (1) ⇒ (2) in Theorem 1.1, that is

Proposition 4.1. If A,B ∈ B(n) are Bott equivalent, then the asso-
ciated real Bott manifolds M(A) and M(B) are affinely diffeomorphic.

We set B = ΦS(A), Φk(A), ΦI
C(A) respectively for the three opera-

tions introduced in the previous section. In order to prove the propo-
sition above, it suffices to find a group isomorphism φ : G(B) → G(A)

and a φ-equivariant affine automorphism f̃ of T n which induces an
affine diffeomorphism from M(B) to M(A).

The case of the operation (Op1). Let S and σ be as before. We
define a group isomorphism φS : G(B) → G(A) by

(4.1) φS(bσ(i)) := ai
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and an affine automorphism f̃S of T n by

f̃S(z1, . . . , zn) := (zσ(1), . . . , zσ(n)).

Then it follows from (2.1) (applied to bσ(i)) that the j-th component

of f̃S(bσ(i)(z)) is zσ(j)(B
σ(i)
σ(j)) for j 6= i and −zσ(i) for j = i while that of

ai(f̃S(z)) is zσ(j)(A
i
j) for j 6= i and −zσ(i) for j = i. Since Ai

j = B
σ(i)
σ(j)

by (3.1), this shows that f̃S is φS-equivariant.
It follows from Lemma 2.2 and (4.1) that the affine diffeomorphism

fS : M(B) → M(A) induced from f̃S satisfies

(4.2) f ∗
S(xj) = yσ(j) for j = 1, . . . , n.

The case of the operation (Op2). We define a group isomorphism
φk : G(B) → G(A) by

(4.3) φk(bi) := aia
Ai

k
k

and an affine automorphism f̃k of T n by

f̃k(z1, . . . , zn) := (z1, . . . , zk−1,
√
−1zk, zk+1, . . . , zn).

We shall check that f̃k is φk-equivariant, i.e.,

(4.4) f̃k(bi(z)) = aia
Ai

k
k (f̃k(z)).

The identity is obvious when i = k because Ak
k = 0 and Bk

j = Ak
j for

any j by (3.2). Suppose i 6= k. Then the j-th component of the left
hand side of (4.4) is given by

zj(B
i
j) for j 6= i, k,

−zi for j = i,√
−1(zk(B

i
k)) for j = k,

while that of the right hand side of (4.4) is given by
zj(A

i
j + Ak

j A
i
k) for j 6= i, k,

−zi(A
k
i A

i
k) for j = i,

(−1)Ai
k(
√
−1zk)(A

i
k) for j = k.

Since Bi
j = Ai

j + Ak
j A

i
k by (3.2), the j-th components above agree for

j 6= i, k. They also agree for j = i because either Ak
i or Ai

k is zero. We
note that Bi

k = Ai
k by (3.2), and the k-th components above are both√

−1zk when Bi
k = Ai

k = 0 and
√
−1z̄k when Bi

k = Ai
k = 1. Thus the

j-th components above agree for any j.
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Since Ai
k = Bi

k for any i, it follows from Lemma 2.2 and (4.3) that

the affine diffeomorphism fk : M(B) → M(A) induced from f̃k satisfies

(4.5) (fk)∗(xj) = yj for j 6= k, (fk)∗(xk) = yk +
n∑

i=1

Bi
kyi.

The case of the operation (Op3). The homomorphism GL(m; Z) →
GL(m; Z/2) induced from the surjective homomorphism Z → Z/2 is
known (and easily proved) to be surjective. We take a lift of the matrix
C = (Ci

k)i,k∈I to GL(|I|, Z) and denote the lift by C̃. Then we define a
group isomorphism φI

C : G(B) → G(A) by

(4.6) φI
C(bi) :=

{∏
k∈I a

Ci
k

k for i ∈ I,

ai for i /∈ I,

and the j-th component of an affine automorphism f̃ I
C̃

of T n by

(4.7) f̃ I
C̃
(z)j :=

{∏
`∈I z

C̃`
j

` for j ∈ I,

zj for j /∈ I.

We shall check that f̃ I
C̃

is φI
C-equivariant. To simplify notation we

abbreviate f̃ I
C̃

and φI
C as f̃ and φ respectively. What we prove is the

identity

(4.8) f̃(bi(z))j = φ(bi)f̃(z)j.

We distinguish four cases.
Case 1. The case where i, j ∈ I. As remarked in the definition of

(Op3), Ak
` = 0 whenever k, ` ∈ I, so Bi

` = 0 for any ` ∈ I by (3.3). It
follows from (4.6) and (4.7) that

f̃(bi(z))j = (−zi)
C̃i

j

∏
`∈I,` 6=i

z`(B
i
`)

C̃`
j = (−1)Ci

j

∏
`∈I

z
C̃`

j

`

while

φ(bi)f̃(z)j = (
∏
k∈I

a
Ci

k
k )f̃(z)j = (−1)Ci

j

∏
`∈I

z
C̃`

j

` .

Case 2. The case where i ∈ I but j /∈ I. In this case we have

f̃(bi(z))j = zj(B
i
j)

while

φ(bi)f̃(z)j = zj(
∑
k∈I

Ci
kA

k
j ) = zj(B

i
j)

where the last identity follows from (3.3).
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Case 3. The case where i /∈ I but j ∈ I. In this case we have

f̃(bi(z))j =
∏
`∈I

z`(B
i
`)

C̃`
j

while

φ(bi)f̃(z)j = (
∏
`∈I

z
C̃`

j

` )(Ai
j) =

∏
`∈I

z`(A
i
j)

C̃`
j .

Since Bi
` = Ai

` for i /∈ I by (3.3), the above verifies (4.8).
Case 4. The case where i, j /∈ I. In this case

f̃(bi(z))j = zj(B
i
j)

while
φ(bi)f̃(z)j = zj(A

i
j).

Since Bi
j = Ai

j for i /∈ I by (3.3), the above verifies (4.8).
It follows from Lemma 2.2 and (4.6) that the affine diffeomorphism

f I
C : M(B) → M(A) induced from f̃ I

C satisfies

(4.9) (f I
C)∗(xj) =

{∑
i∈I Ci

jyi for j ∈ I,

yj for j /∈ I.

5. Cohomology isomorphisms

In this section we prove the latter statement in Theorem 1.1 and the
implication (3) ⇒ (1) at the same time, i.e. the purpose of this section
is to prove the following.

Proposition 5.1. Any isomorphism H∗(M(A); Z/2) → H∗(M(B); Z/2)
is induced from a composition of affine diffeomorphisms corresponding
to the three operations (Op1), (Op2) and (Op3), and if H∗(M(A); Z/2)
and H∗(M(B); Z/2) are isomorphic as graded rings, then A and B are
Bott equivalent.

We introduce a notion and prepare a lemma. Remember that
(5.1)

H∗(M(A); Z/2) = Z/2[x1, . . . , xn]/(x2
j = xj

n∑
i=1

Ai
jxi | j = 1, . . . , n).

One easily sees that products xi1 . . . xiq (1 ≤ i1 < · · · < iq ≤ n)
form a basis of Hq(M(A); Z/2) as a vector space over Z/2 so that the
dimension of Hq(M(A); Z/2) is

(
n
q

)
(see [6, Lemma 5.3]).

We set

αj =
n∑

i=1

Ai
jxi for j = 1, . . . , n
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where α1 = 0 since A is an upper triangular matrix with zero diagonal
entries. Then the relations in (5.1) are written as

(5.2) x2
j = αjxj for j = 1, . . . , n.

Motivated by this identity we introduce the following notion.

Definition. We call an element α ∈ H1(M(A); Z/2) an eigen-element
of H∗(M(A); Z/2) if there exists x ∈ H1(M(A); Z/2) such that x2 =
αx, x 6= 0 and x 6= α. The set of all elements x ∈ H1(M(A); Z/2)
satisfying the equation x2 = αx is a vector subspace of H1(M(A); Z/2)
which we call the eigen-space of α and denote by EA(α). We also intro-
duce a notation ĒA(α) which is the quotient of EA(α) by the subspace
spanned by α, and call it the reduced eigen-space of α.

Eigen-elements and (reduced) eigen-spaces are invariants preserved
under graded ring isomorphisms. By (5.2) αj’s are eigen-elements of
H∗(M(A); Z/2) and the following lemma shows that these are the only
eigen-elements.

Lemma 5.2. If α is an eigen-element of H∗(M(A); Z/2), then α = αj

for some j and the eigen-space EA(α) of α is generated by α and xi’s
with αi = α.

Proof. By the definition of eigen-element there exists a non-zero ele-
ment x ∈ H1(M(A); Z/2) different from α such that x2 = αx. Since
both x and x+α are non-zero, there exist i and j such that x = xi +pi

and x+α = xj + qj where pi is a linear combination of x1, . . . , xi−1 and
qj is a linear combination of x1, . . . , xj−1. Then

xixj + xiqj + xjpi + piqj = 0

because x(x + α) = 0. As remarked above, products xi1xi2 (1 ≤ i1 <
i2 ≤ n) form a basis of H2(M(A); Z/2), so i must be equal to j for the
identity above to hold. Then as x2

j = xjαj, it follows from the identity
above that αj = qj + pi (and piqj = 0). This implies that α = αj,
proving the former statement of the lemma.

We express a non-zero element x ∈ EA(α) as
∑n

i=1 cixi (ci ∈ Z/2)
and let m be the maximum number among i’s with ci 6= 0.

Case 1. The case where xm appears when we express α as a linear
combination of x1, . . . , xn. We express x(x+α) as a linear combination
of the basis elements xi1xi2 (1 ≤ i1 < i2 ≤ n). Since xm appears in
both x and α, it does not appear in x + α. Therefore the term in
x(x + α) which contains xm is xm(x + α) and it must vanish because
x(x + α) = 0. Therefore x = α.

Case 2. The case where xm does not appear in the linear expression
of α. In this case, the term in x(x + α) which contains xm is xm(xm +
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α) = xm(αm + α) since x2
m = αmxm, and it must vanish because x(x +

α) = 0. Therefore αm = α. The sum x + xm is again an element of
EA(α). If x 6= xm (equivalently x + xm is non-zero), then the same
argument applied to x+xm shows that there exists m1(6= m) such that
αm1 = α and x+xm +xm1 is again an element of EA(α). Repeating this
argument, x ends up with a linear combination of xi’s with αi = α. ¤

With this preparation we shall prove Proposition 5.1.

Proof of Proposition 5.1. Let B be another element of B(n). We de-
note the canonical basis of H∗(M(B); Z/2) by y1, . . . , yn and the el-
ements in H1(M(B); Z/2) corresponding to αj’s by βj’s, i.e., βj =∑

i=1 Bi
jyi for j = 1, . . . , n.

Let ϕ : H∗(M(A); Z/2) → H∗(M(B); Z/2) be a graded ring isomor-
phism. It preserves the eigen-elements and (reduced) eigen-spaces. In
the following we shall show that we can change ϕ into the identity
map by composing isomorphisms induced from affine diffeomorphisms
corresponding to the three operations (Op1), (Op2) and (Op3).

Through the operation (Op1) we may assume that ϕ(αj) = βj for
any j because of (4.2). Then ϕ restricts to an isomorphism EA(αj) →
EB(βj) between eigen-spaces and induces an isomorphism ĒA(αj) →
ĒB(βj) between reduced eigen-spaces.

Let α (resp. β) stand for αj (resp. βj) and suppose that ϕ(α) = β.
Let I be a subset of {1, . . . , n} such that αi = α if and only if i ∈ I. We
denote the image of xi (resp. yi) in ĒA(α) (resp. ĒB(β)) by x̄i (resp.
ȳi). The x̄i’s (resp. ȳi’s) for i ∈ I form a basis of ĒA(α) (resp. ĒB(β))
by Lemma 5.2, so if we express ϕ(x̄j) =

∑
i∈I Ci

j ȳi with Ci
j ∈ Z/2, then

the matrix C = (Ci
j)i,j∈I is invertible. Therefore, through the operation

(Op3), we may assume that C is the identity matrix because of (4.9).
This means that we may assume that ϕ(xj) = yj or yj + βj for each
j = 1, . . . , n. Finally through the operation (Op2), we may assume
that ϕ(xj) = yj for any j because of (4.5) and hence A = B (and ϕ is
the identity) because ϕ(αj) = βj, αj =

∑n
i=1 Ai

jxi and βj =
∑n

i=1 Bi
jyi

for any j, proving the proposition. ¤

6. Unique decomposition of real Bott manifolds

We say that a real Bott manifold is indecomposable if it is not dif-
feomorphic to a product of more than one real Bott manifolds. The
purpose of this section is to prove Theorem 1.3 in the Introduction,
that is

Theorem 6.1. The decomposition of a real Bott manifold into a prod-
uct of indecomposable real Bott manifolds is unique up to permutations
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of the indecomposable factors. Namely, if
∏k

i=1 Mi is diffeomorphic to∏`
j=1 Nj where Mi and Nj are indecomposable real Bott manifolds, then

k = ` and there is a permutation σ on {1, . . . , k = `} such that Mi is
diffeomorphic to Nσ(i) for i = 1, . . . , k.

H∗(
∏k

i=1 Mi; Z/2) =
⊗k

i=1 H∗(Mi; Z/2) by Künneth formula and the
diffeomorphism types of real Bott manifolds are detected by cohomol-
ogy rings with Z/2 coefficient by Corollary 1.2, so the theorem above
reduces to a problem on the decomposition of a cohomology ring into
tensor products over Z/2.

We call a graded ring over Z/2 a Bott ring of rank n if it is isomorphic
to the cohomology ring with Z/2 coefficient of a real Bott manifold of
dimension n. Let H be a Bott ring of rank n, so it has an expression

(6.1) H = Z/2[x1, . . . , xn]/(x2
j = xj

n∑
i=1

Ai
jxi | j = 1, . . . , n)

with A ∈ B(n). The eigen-elements of H are

(6.2) αj =
n∑

i=1

Ai
jxi (j = 1, . . . , n).

We denote by Hq the degree q part of H and define

N(H) := {x ∈ H1 | x2 = 0}, and

S(H) := {x ∈ H1\{0} | ∃x ∈ H1\{0} with xx = 0 and x 6= x}.

In terms of eigen-elements and eigen-spaces, N(H) is the eigen-space
of the zero eigen-element. Also, if we write x = x + α with α ∈ H1,
then xx = 0 means that x2 = αx; so S(H) with the zero element
added is the union of eigen-spaces of all non-zero eigen-elements in H.
The latter statement in Lemma 5.2 shows that the eigen-element α is
uniquely determined by x, hence so is x.

N(H) = H1 if and only if A in (6.1) is the zero matrix. Unless
N(H) = H1, S(H) 6= ∅.

Lemma 6.2. The graded subring HS of a Bott ring H generated by
S(H) is a Bott ring.

Proof. The isomorphism class of H does not change through the three
operations (Op1), (Op2) and (Op3). Through (Op1) we may assume
that the first ` columns of the matrix A in (6.1) are all zero but none
of the remaining columns is zero. If the maximum number of linearly
independent vectors in the first ` rows of A is m, then we may assume
that the first ` − m rows are zero by applying the operation (Op3)
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to the first ` columns. Then HS is the Bott ring associated with the
(n − ` + m) × (n − ` + m) submatrix of A at the right-low corner of
A. ¤

Let HS be as in Lemma 6.2 and let V be a subspace of N(H) com-
plementary to N(H)∩H1

S. The dimension of V is `−m in the proof of
Lemma 6.2. The graded subalgebra of H generated by V is an exterior
algebra Λ(V ), so

(6.3) H = Λ(V ) ⊗HS.

We say that a Bott ring H is semisimple if H is generated by S(H).
Clearly HS is semisimple and H is semisimple if and only if H = HS.

Lemma 6.3. Let H be a Bott ring. If H =
⊗r

i=1 Hi with Bott subrings
Hi’s of H, then S(H) =

∐r
i=1 S(Hi). Therefore H is semisimple if and

only if all Hi’s are semisimple.

Proof. Let x ∈ S(H) and write x =
∑r

i=1 yi and x =
∑r

i=1 zi with
yi, zi ∈ Hi. Since xx = 0, we have

yizj + yjzi = 0 for all i 6= j.

Suppose that yi 6= 0 and zj 6= 0 for some i 6= j. Then yi = zi and
yj = zj to satisfy the equations above. This shows that x = x, which
contradicts the fact that x ∈ S(H). Therefore x = yi and x = zi for
some i, proving the lemma. ¤

Recall that a Bott ring H has a decomposition Λ(V ) ⊗HS in (6.3).

Corollary 6.4. If H has another decomposition Λ(U) ⊗ S where U is
a subspace of N(H) and S is a semisimple subring of H, then dim U =
dim V and S = HS.

Proof. Since both S(Λ(U)) abd S(Λ(V )) are empty, S(H) = S(S) by
Lemma 6.3 and this implies the corollary. ¤

Lemma 6.5. Let H =
⊗r

i=1 Hi be as in Lemma 6.3 and πi : H → Hi

be the projection. Let L be a semisimple Bott ring and let ψ : L → H
be a graded ring monomorphism. If the composition πi ◦ ψ : L → Hi is
an isomorphism for some i, then ψ(L) = Hi.

Proof. Let y ∈ S(L). Then ψ(y) ∈ S(H) because ψ is a graded ring
monomorphism, and it is actually in S(Hi) by Lemma 6.3 since (πi ◦
ψ)(y) 6= 0. This shows that ψ(S(L)) ⊂ S(Hi) but since πi ◦ ψ is an
isomorphism, the inclusion should be the equality. Therefore ψ(L) =
Hi because L and Hi are both semisimple. ¤
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We say that a semisimple Bott ring is simple if it is not isomorphic to
the tensor product (over Z/2) of more than one semisimple Bott rings,
in other words, a simple Bott ring is a Bott ring isomorphic to the
cohomology ring (with Z/2 coefficient) of an indecomposable real Bott
manifold different from S1. A Bott ring isomorphic to the cohomology
ring of the Klein bottle with Z/2 coefficient is simple and we call it
especially a Klein ring. If an element x ∈ S(H) satisfies (x + x)2 = 0,
then the subring generated by x and x is a Klein ring and we call such
a pair {x, x} a Klein pair. We note that x and x have the same eigen-
element and {x, x} is a Klein pair if and only if the eigen-element of x
and x, that is x + x, lies in N(H).

Lemma 6.6. If S(H) 6= ∅, then a Klein pair exists in H and the
quotient of H by the ideal generated by a Klein pair is again a Bott
ring.

Proof. Let H be of the form (6.1). The assumption S(H) 6= ∅ is equiv-
alent to A being non-zero as remarked before. As in the proof of
Lemm 6.2, we may assume through the operation (Op1) that the first
` columns of A are zero and none of the remaining columns is zero.
Then x1, . . . , x` are elements of N(H) and the eigen-element α`+1 of
x`+1 is a linear combination of x1, . . . , x`, so α`+1 lies in N(H) which
means that {x`+1, x`+1} is a Klein pair.

If {x, x} is a Klein pair, then the eigen-element of x is non-zero and
belongs to N(H), so through the operation (Op1) we may assume that
it is α`+1. Then, applying the operation (Op3) to the eigen-space of
α`+1, we may assume x = x`+1. We further may assume α`+1 = x`

by applying the operation (Op3) to N(H). The quotient ring of H
by the ideal generated by the Klein pair {x, x} is then nothing but
to take x` = x`+1 = 0 in H, so it is a Bott ring associated with a
(n− 2)× (n− 2) matrix obtained from A by deleting `-th and ` + 1-st
columns and rows. ¤

Now we are in a position to prove the unique decomposition of a
semisimple Bott ring into a tensor product of simple Bott rings.

Proposition 6.7. Let Ai (i = 1, . . . , p) and Bj (j = 1, . . . , q) be simple
Bott rings. If there exists a graded ring isomorphism

(6.4) ϕ :

p⊗
i=1

Ai →
q⊗

j=1

Bj,

then p = q and ϕ preserves the factors, i.e. there is a permutation ρ
on {1, . . . , p = q} such that ϕ(Ai) = Bρ(i) for i = 1, . . . , p.
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Proof. We set A =
⊗p

i=1 Ai and B =
⊗q

j=1 Bj. If either A or B is

simple (i.e. p = 1 or q = 1), then both of them must be simple and the
proposition is trivial. In the sequel we will assume that both A and B
are not simple (so that p ≥ 2 and q ≥ 2), and prove the proposition by
induction on the rank of A, that is, dimA1.

If ϕ(Ai) = Bj for some i and j, say ϕ(Ap) = Bq, then we factorize

them so that ϕ induces an isomorphism ϕ̄ :
⊗p−1

i=1 Ai →
⊗q−1

j=1 Bj. By
the induction assumption, we conclude p = q and may assume that
ϕ̄(Ai) = Bi for i = 1, . . . , p − 1 if necessary by permuting the suffixes
of Bj’s. Then it follows from Lemma 6.5 that ϕ(Ai) = Bi for i =
1, . . . , p − 1. This together with ϕ(Ap) = Bq where p = q proves
the statement in the lemma. In the sequel, it suffices to show that
ϕ(Ai) = Bj for some i and j when we have an isomorphism ϕ in the
proposition.

Case 1. The case where some Ai or Bj is a Klein ring. We may
assume that Ap is a Klein ring without loss of generality. Let {x, x}
be a Klein pair in Ap. Its image by ϕ sits in some Bj by Lemma 6.3
and we may assume that it sits in Bq. If Bq is also a Klein ring, then
ϕ(Ap) = Bq. Therefore we may assume that Bq is not a Klein ring in
the following.

Our isomorphism ϕ induces an isomorphism

ϕ̄ : A/(x, x) =

p−1⊗
i=1

Ai
∼=

q−1⊗
j=1

Bj ⊗ (Bq/(ϕ(x), ϕ(x)))

where (u, v) denotes the ideal generated by the elements u and v and
Bq/(ϕ(x), ϕ(x)) is a Bott ring by Lemma 6.6. Since rank(A/(x, x)) =
rankA−2, it follows from the induction assumption that p−1 ≥ q and
we may assume that ϕ̄(Ai) = Bi for i = 1, . . . , q − 1 and ϕ̄(⊗p−1

i=q Ai) =
Bq/(ϕ(x), ϕ(x)), in particular, ϕ̄(A1) = B1 as q ≥ 2. Then, it follows
from Lemma 6.5 that ϕ(A1) = B1.

Case 2. The case where none of Ai’s and Bj’s is a Klein ring. Let
{x, x} be a Klein pair of Ap and we may assume that its image by ϕ
sits in Bq as before. Then ϕ induces an isomorphism

ϕ̄ : A/(x, x) =

p−1⊗
i=1

Ai ⊗ (Ap/(x, x)) →
q−1⊗
j=1

Bj ⊗ (Bq/(ϕ(x), ϕ(x))),

where the quotients Ap/(x, x) and Bq/(ϕ(x), ϕ(x)) are both Bott rings
by Lemma 6.6. The induction assumption can be applied to this situa-
tion as before. If ϕ̄(Ai) = Bj for some 1 ≤ i ≤ p−1 and 1 ≤ j ≤ q−1,

then ϕ(Ai) = Bj by Lemma 6.5. If ϕ̄(
⊗p−1

i=1 Ai) = Bq/(ϕ(x), ϕ(x)) and
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ϕ̄(Ap/(x, x)) =
⊗q−1

j=1 Bj, then ϕ restricts to an isomorphism

(

p−1⊗
i=1

Ai) ⊗ 〈x, x〉 → Bq

where 〈x, x〉 denotes the Klein ring generated by x and x, and this
contradicts the fact that Bq is simple as p ≥ 2. ¤

Now Theorem 6.1 follows from Corollaries 1.2, 6.4 and Proposi-
tion 6.7.
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