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ABSTRACT. We give some criterions for signed Gordian distance by using the
Jones polynomial, the Q-polynomial and the Rasmussen invariant of a knot. As
a result, we give new calculations of the Gordian distance for knots with low
crossing number.

1. Introduction

A link is smoothly embedded circles in the 3-sphere S
3. A knot is a link with one connected

component. We assume that every link is oriented. A diagram of a link is a generic projection
of a link to the 2-sphere in S

3 with signed double points, called positive (or negative) crossings
as in Figure 1. Let K and K ′ be knots in S

3. The Gordian distance from K to K ′, denoted
by dG(K,K ′), is the minimum number of crossing changes needed to transform a diagram of
K into that of K ′, where the minimum is taken over all diagrams of K and K ′. A +− change
(or −+ change) of a crossing is changing a positive (or a negative) crossing of a diagram. We

or

Figure 1

define d+−(K,K ′) (or d−+(K,K ′)) as the minimum number of +− (or −+) changes of crossings
needed to transform a diagram of K into that of K ′ by dG(K,K ′) crossing changes, where the
minimum is taken over all diagrams of K and K ′. (See [2] in the case where K ′ is the unknot.)
The Jones polynomial V is a Laurent polynomial in one variable t of an oriented link can be
defined by the following relation.
(1) V (©; t) = 1;
(2) t−1V (L+; t) − tV (L−; t) = −(t−1/2 − t1/2)V (L0; t).
Here L+, L− and L0 are three links with diagrams differing only near a crossing as in Figure 2.

L L L+ _ 0

Figure 2

The Jones polynomial can be calculated from the Kauffman bracket <> [8]. Let D be an
unoriented diagram of a link. Then the Laurent polynomial in A is defined by the following:
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(1)
〈
©∪· · · ∪©

〉
= {−(A2 + A−2)}n, where n is the number of circles,

(2)
〈 〉

= A
〈 〉

+ A−1
〈 〉

,

(3)
〈 〉

= A−1
〈 〉

+ A
〈 〉

.

Then the Jones polynomial can be obtained as follows:
V (L; t) = (−t−3/4)−w(D) < D > |A=t−1/4 , where w(D) is the writhe of D.

Set ω = eπ
√−1/3 and δ = (

√
5 − 1)/2. In this paper, we show the following.

Theorem 1.1. Let K and K ′ be knots in S
3. Suppose d+−(K,K ′) = dG(K,K ′) = 1.

Set V (t) =
tV (K ′; t) − V (K; t)

t − 1
. Then V (ω) = ±ωV

′
(1)(

√−3)d for some non-negative integer

d.

Theorem 1.2. Let K and K ′ be knots in S
3.

Set V (K; ω) = (−1)s1(
√−3)d1 ; V (K ′; ω) = (−1)s2(

√−3)d2.
If dG(K,K ′) = d1 − d2, then d−+(K,K ′) ≡ s1 − s2 mod 2.

The Q polynomial Q(K; z) is a Laurent polynomial in one variable z of an oriented link can be
defined by the following.
(1) Q(©; z) = 1;

(2) Q
(

; z
)

+ Q
(

; z
)

= z
[
Q

(
; z

)
+ Q

(
; z

)]
.

Theorem 1.3. Let K and K ′ be knots in S
3. If Q(K; δ)/Q(K ′; δ) = −(−√

5)k, then dG(K,K ′) >
|k|.
Two links are concordant if there is a smooth embedding

(nS1) × [0, 1] → S3 × [0, 1]

which restricts to the given links

(nS1) × {i} → S3 × {i}
where i = 0, 1. The set of concordance classes of knots forms an abelian group under connected
sum. The group is called the knot concordance group.

Recently, Rasmussen has defined an effective concordance invariant s(K) of a knot K from
Lee’s cohomology [4]. (We call the invariant the Rasmussen invariant.) Main properties of
Rasmussen invariant are summarized as follows.

Theorem 1.4. Let K, K1 and K2 be knots in S3. Then we have the following.
(1) s induces a homomorphism from the knot concordance group to Z;
(2) |s(K)| ≤ 2g4(K), where g4(K) is the slice genus of K;
(3) If K is alternating, then s(K) = σ(K), where σ(K) is the classical knot signature of K;
(4) If K1 is obtained from K2 by performing a single positive crossing change, then s(K1) −
s(K2) ∈ {0, 2}.
We have the following.
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Theorem 1.5. let K and K ′ be two knots in S3. Let s(K,K ′) =
s(K) − s(K ′)

2
. If s(K,K ′) ≥

0, then d+−(K,K ′) ≥ s(K,K ′) and if s(K,K ′) ≤ 0, then d−+(K,K ′) ≥ −s(K,K ′). In partic-
ular, dG(K,K ′) ≥ |s(K,K ′)|.

2. Proofs

Proof of Theorem 1.1. By assumption, we assume that a diagram D′ of K ′ is obtained from a
diagram D of K by a single +− change of a crossing. We may assume D to have zero writhe
adding kinks if necessarily. Note that

V (K; A−4) =
〈 〉

and A−6V (K; A−4) =
〈 〉

since w(D) = w(D′) + 2. By using the

Kauffman bracket relation, we have

(1) A
〈 〉

+ A−1
〈 〉

= V (K; A−4),

(2) A−1
〈 〉

+ A
〈 〉

= A−6V (K; A−4).

Thus (A2 − A−2)
〈 〉

= A−5V (K ′; A−4) − A−1V (K; A−4).

Then we obtain
〈 〉

=
A−3[A−2V (K ′; A−4) − A2V (K; A−4)]

A2 − A−2
=

−A−3
[A−4V (K ′; A−4) − V (K; A−4)

A−4 − 1

]
= −A−3

[tV (K ′; t) − V (K; t)

t − 1

]
.

Let Ṽ (t) =
tV (K ′; t) − V (K; t)

t − 1
. Then we know that there exists a knot K̃(= ) such that

V (K̃; t) = tnṼ (t) for some integer n. Now V ′(K̃; t) = ntn−1Ṽ (t) + tnṼ ′(t). By substituting

1, we have V ′(K̃; 1) = nṼ (1) + Ṽ ′(1). Note that Ṽ (t) =
t(V (K ′; t) − 1)

t − 1
− V (K; t) − 1

t − 1
+ 1.

By a result in ([3], §12), we know that V (K; t) − 1 and V (K ′; t) − 1 have (t − 1)(t3 − 1) as
factors. Thus Ṽ ′(K̃; 1) = 0 and Ṽ (1) = 1. Therefore we have n = −Ṽ ′(1), and hence we have

V (K̃, t) = t−Ṽ ′(1)Ṽ (t). By results in [3][5], we know that V (K̃; ω) = ω−Ṽ ′(1)Ṽ (ω) = ±(
√−3)d

for some non-negative integer d.

Proof of Theorem 1.2. We use a method of Traczyk in [2]. By results in [3][5], we know
that V (K; ω) must have the form ±(

√−3)d for some non-negative integer d. Let K =
Kd1−d2 , Kd1−d2−1, . . . , K0 = K ′ be a sequence of crossing changes. Then the exponents of Ki

and Ki−1 in the expression ±(
√−3)d differ by 1 or −1. In fact, let V (Kj; ω) = (−1)sj(

√−3)dj

and V (Kj−1; ω) = (−1)sj−1(
√−3)dj−1 . Suppose that dj = dj−1 +n for some integer n. Then, by

substituting ω for t in the second relation of the definition of the Jones polynomial, we know
that ω−1V (Kj; ω) − ωV (Kj−1; ω) does not have the form ±(

√−3)d if |n| ≥ 2. We also know
that ω−1V (Kj−1; ω) − ωV (Kj; ω) does not have the form ±(

√−3)d if |n| ≥ 2. Thus we know
that |n| ≤ 1 and by assumption we must have n = 1. Moreover, by using the same argument,
we know that ω−1V (Kj; ω) − ωV (Kj−1; ω) (or ω−1V (Kj−1; ω) − ωV (Kj; ω)) does not have the
form ±(

√−3)d if sj − sj−1 ≡ 1 mod 2 (or sj − sj−1 ≡ 0 mod 2.) when n = 1. Therefore,
we know that if Ki−1 is obtained from Ki by a +− change of a crossing then the sign is not
changed and if Ki−1 is obtained from Ki by a −+ change of a crossing, then the sign is changed.
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Thus the mod 2 number of −+ changes determines the parity of s1 − s2.

Proof of Theorem 1.3. We show the theorem by an induction with respect to the Gordian
distance. By an argument in the proof of Prososition 4.1 [6], we know that
(1) Q(K, δ)/Q(K ′, δ) ∈ {±1,−(

√
5)±1}

if K ′ is obtained from K by a single crossing change. If dG(K,K ′) = 1, then we know that d = 0
by (1). We assume that the result holds in the case when dG(K,K ′) = m − 1. Suppose that
dG(K,K ′) = m. Then there exists a knot K such that dG(K,K) = m−1. If Q(K, δ)/Q(K, δ) =

−(−√
5)d, then |d| < m− 1 and |d− d| ≤ 1 by (1). Thus we have |d| ≤ |d− d|+ |d| < m. This

completes the proof.

Proof of Theorem 1.5. If s(K,K ′) ≥ 0, then we need to perform at least s(K,K ′) positive
crossing changes to obtain K ′ from K by Theorem 1.4(4). Thus we have d+−(K,K ′) ≥ s(K,K ′).
If s(K,K ′) ≥ 0, then, by the same idea, we have d+−(K,K ′) = d−+(K ′, K) ≥ s(K ′, K) =
−s(K,K ′).

3. Examples

Let σ(K) be the signature of a knot K and let K∗ be the mirror image of K. We need the
following theorem due to K. Murasugi [1].

Theorem 3.1. If a diagram of a knot K ′ is obtained from a diagram of a knot K by a single
crossing change, then σ(K) − σ(K ′) ∈ {0, 2}.
Example 3.2. We have dG(31�41, 51) = 2. This is an unknown value in a table in [7]. We can
prove it by using Theorem 1.3 and Theorem 3.1 as follows. We know that dG(31�41, 51) ≤ 2
since dG(01, 41) = 1 and dG(31, 51) = 1. Suppose that dG(31�41, 51) = 1. Then by Theorem
3.1, we know that d−+(31�41, 51) = 0 since σ(31�41) = −2 and σ(51) = −4. On the other
hand, by Theorem 1.3, we know that d−+(31�41, 51) ≡ 1 mod 2 since V (31�41; ω) =

√−3 and
V (51; ω) = −1. Thus d−+(31�41, 51) = 1. This is a contradiction. We can also prove this by
using Theorem 1.2. (For example, we also have dG(52, 61) = 2 by using the same argument.)

Example 3.3. We have the following.
(1) dG(41�41, 31) = dG(41�41, 3

∗
1) = 3;

(2) dG(41�41, 52) = dG(41�41, 5
∗
2) = 3;

(2) dG(41�41, 63) = 3.
We know that dG(41�41, 31), dG(41�41, 3

∗
1), dG(41�41, 52), dG(41�41, 5

∗
2)anddG(41�41, 63) are less

than or equal to 3 since 31, 41, 52 and 63 have unknotting number one. Hence these equations (1)
and (2) are obtained from Theorem 1.4 immediately since Q(31; δ) = Q(52; δ) = Q(63; δ) = −1
and Q(41; δ) = −√

5. These numbers are undecided in the table of I. Darcy [9].

Example 3.4. We obtain the following values by Theorem 1.5.
dG(X∗, 10145) = 3, dG(X, 10154) = 4 and dG(X, 10161) = 2, where X = 31, 52, 62, 72, 76, 81, 8∗7,
814 or 821.
We cannot use Theorems 1.1, 1.2 and 1.3 to detect them. We have s(10161) = −6, s(10145) = −4,
s(10154) = 6. On the other hand, σ(10161) = −4, σ(10145) = −2, σ(10154) = 4. Thus we also
cannot use Theorem 3.1.
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We list signatures, special values of the Jones polynomial and the Q polynomial for knots with
up to 8 crossings (Figure 3.) (Here we set a =

√
3 and b =

√
5.)

8 5
8 6
8 7
8 8
8 9
8 10
8 11
8 12
8 13
8 14
8 15
8 16
8 17
8 18
8 19
8 20
8 21

 4
-2
 2
 2
 0

 2
-2
 0
 0
-2
-4
-2
 0
 0
 6
 0
-2

3 1
4 1
5 1
5 2
6 1
6 2
6 3
7 1
7 2
7 3
7 4
7 5
7 6
7 7
8 1
8 2
8 3
8 4

K KV( K ;    ) Q( K ;    )δ Q( K ;    )δω V( K ;    )ωσ σ
-2
 0
-4
-2
 0
-2
 0
-6
-2
 4
 2
-4
-2
 0
 0
-4
 0
-2

-a  a

 a

 a
-a

-a
-a
-a

-a

-a

 a

-1
-1

-1

-1
-1

-1
-1

-1
 1

-1

-1

-1

-1

-1

-1
-1
-1

-1

 1
 1

 1

 1
 1

 1

-b
 b

 b

 b

 b

 -b

 -b

 b

-1
-1

-1
-1
-1

-1

-1
-1

-1
-1
-1

 1

 1
 1

 1
 1
 1

 1

 1
 1
 3

 1
 1

 1

 1
 1

 1

Figure 3
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