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Abstract

We consider a biharmonic equation with the nearly critical Sobolev
exponent under the Navier boundary condition on a smooth bounded,
strictly convex domain of dimension N ≥ 5, which is symmetric with
respect to the coordinate hyperplanes.

We prove that the number of positive solutions of the above prob-
lem is exactly one when the nonlinear exponent is subcritical and
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sufficiently near to the critical exponent. Furthermore, this unique
solution is nondegenerate in the sense that the associated linearized
problem admits only the trivial solution.

1 Introduction

We consider the problem (Pε) with the Navier boundary condition:

(Pε)


∆2u = c0u

pε in Ω,
u > 0 in Ω,

u = ∆u = 0 on ∂Ω,

where Ω ⊂ RN(N ≥ 5) be a smooth bounded domain, c0 = (N − 4)(N −
2)N(N + 2), ε > 0 is a small positive parameter, pε = p − ε and p =
(N + 4)/(N − 4) is the critical Sobolev exponent from the view point of
the Sobolev embedding H2 ∩ H1

0 (Ω) ↪→ Lp+1(Ω). The existence of at least
one solution is easy to obtain for ε > 0 small. In this paper, we prove a
uniqueness and a qualitative property of solution for the problem (Pε).

We impose some geometric assumptions on the domain.

(H1) Ω is symmetric with respect to the hyperplane {xi = 0}, (i = 1, · · · , N).

(H2) Ω is strictly convex.

Note that (Pε) is equivalent to the cooperative system
−∆u = u in Ω,

−∆u = c0u
pε in Ω,

u > 0, u > 0 in Ω,
u = u = 0 on ∂Ω.

Therefore under the assumptions (H1) and

(H2’) Ω is convex in the xi-direction, (i = 1, · · · , N),

any solution uε to (Pε) is symmetric with respect to the hyperplane {xi = 0}:

uε(x1, · · · , xi, · · · , xN) = uε(x1, · · · ,−xi, · · · , xN), (i = 1, · · · , N),

and monotone with respect to the positive xi-direction:

∂u

∂xi

< 0 for xi > 0, (i = 1, · · · , N),

2



see [16] Lemma 4.3. From these and since (P0) has no solution, we easily see

∥uε∥L∞(Ω) = uε(0) → +∞ as ε → 0.

In this note, we prove

Theorem 1 (Asymptotic uniqueness) Assume Ω ⊂ RN , N ≥ 5 satisfies
(H1) and (H2). Let uε and vε be two solutions to (Pε). Then there exists
ε0 > 0 such that for any ε ∈ (0, ε0), we have uε ≡ vε on Ω.

Theorem 2 The unique solution uε to (Pε) in Theorem 1 is nondegenerate
in the sense that λ = 0 is not an eigenvalue for the linearized eigenvalue
problem {

∆2w = c0pεu
pε−1
ε w + λw in Ω,

w = ∆w = 0 on ∂Ω.

As far as we know, the uniqueness of solutions to the subcritical problem
∆2u = up in Ω, 1 < p < (N + 4)/(N − 4),

u > 0 in Ω,
u = ∆u = 0 on ∂Ω

where Ω satisfies (H1) and (H2) (or (H2’)), seems widely open, except for
the case Ω is a ball. We note that the blow up phenomenon does induce the
uniqueness result in Theorem 1.

Our argument goes along the line of Grossi [11]; see also [3]. Grossi
obtained the same uniqueness and the nondegeneracy results for the problem

−∆u = N(N − 2)upε in Ω ⊂ RN N ≥ 3,
u > 0 in Ω,
u = 0 on ∂Ω

under the assumptions (H1) and (H2’).
In the proof, Grossi used a fine blow up analysis by YanYan Li [18] to

show that the results of Han [12] hold true for general solutions of the above
problem, under (H1) and (H2’). In the Laplacian case, the uniform supremum
estimate near the boundary for general solutions is obtained by the method
of moving planes of Gidas, Ni and Nirenberg [10], and the additional use of
the Kelvin transformation if the domain is not strictly convex.

The method of moving planes also assures that the uniform boundedness
near the boundary for general solutions of (Pε) if the domain is strictly con-
vex. However, in our biharmonic case, the Kelvin transformation does not
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work well because the Navier boundary condition is not preserved under the
transformation; see [5]. This is the reason why we assume (H2).

Once we confirm that a blow up point is isolated and not on the boundary,
then we can employ the local blow up analysis and the theory of isolated
simple blow up points, recently obtained by Djadli, Malchiodi and Ahmedou
[7] for biharmonic equations. See also Felli [9]. Their works assure that
the origin is an isolated simple blow up point for any solution sequence of
(Pε), and the results of Chou and Geng [5], known to be valid for solutions
minimizing the Sobolev quotient, hold true also for general solutions under
(H1) and (H2).

In the proof of Theorem 2, we extend a lemma of Damascelli, Grossi and
Pacella [6] to a polyharmonic problem. We hope this is itself interesting, see
Lemma 13.

2 Preliminaries

In this section, we collect some useful facts in the sequel. Let G = G(x, y)
denote the Green function of ∆2 under the Navier boundary condition:{

∆2G(·, y) = δy in Ω,
G(·, y) = ∆G(·, y) = 0 on ∂Ω.

The Robin function is defined as

R(x) = lim
y→x

[Γ(x, y) − G(x, y)] ,

where

Γ(x, y) =

{
1

(N−4)(N−2)σN
|x − y|4−N , N ≥ 5,

1
σ4

log |x − y|−1, N = 4

and σN is the volume of the (N − 1) dimensional unit sphere in RN . We see
that R > 0 on Ω and R(x) → +∞ as x tends to the boundary of Ω.

Lemma 3 (Pohozaev identity for the Green function) The identity∫
∂Ω

((x − y) · ∇G)
∂

∂ν
(−∆G)dsx = (N − 4)R(y)

holds true for any y ∈ Ω.

Proof: See [5]. Note that there is a mistake in the claimed formula in
[5].
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Next lemma concerns a classical elliptic regularity for a solution to the
biharmonic equation, recently obtained by Caristi and Mitidieri ([1] Theorem
4.9).

Lemma 4 Let u ∈ H2
loc(Ω) be a weak solution of

∆2u = a(x)u in Ω

where a ∈ Lα(Ω) with α > N/4. Then for any q ∈ (0, +∞), there exist
C = C(q) > 0 and R > 0 such that for any 0 < r < R and y ∈ RN , we have

sup
B(y,r)∩Ω

|u| ≤ C

[
1

rN

∫
B(y,2r)∩Ω

|u|q+1dx

]1/(q+1)

.

Next lemma claims that the origin is an isolated blow up point for any
solution sequence uε of (Pε). Proof will be done by a standard blow up
analysis just as in [11] Lemma A.1., because we know uε is uniformly bounded
in sup-norm near the boundary thanks to our assumption (H2), see [5] p.925.

Lemma 5 Assume (H1) and (H2). Let uε be any solution to (Pε). Then
there exists C > 0 independent of ε such that

|x|4/(pε−1)uε(x) ≤ C

for any x ∈ Ω.

Under more general situation, an isolated blow up point has to be an
isolated simple blow up point: see [7] Proposition 2.19 and [9]. We refer [7],
[9] to the definitions of isolated, or isolated simple blow up point for our
biharmonic case. Then by using the estimates for isolated simple blow up
points ([7] Lemma 2.11 and Lemma 2.17), we have the followings:

Lemma 6 Assume (H1) and (H2). Let uε be any solution to (Pε). Then we
have

lim
ε→0

∥uε∥ε
L∞(Ω) = 1 (2.1)

and ∫
Ω
|∆uε|2dx(∫

Ω
|uε|pε+1

)2/(pε+1)
→ SN (2.2)

where SN is the best Sobolev constant of the embedding H2 ∩ H1
0 (Ω) ↪→

Lp+1(Ω).

Next theorem is the main result of Chou and Geng [5].
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Theorem 7 ([5]) Assume Ω ⊂ RN , N ≥ 5 is strictly convex. Let uε be a
solution to (Pε) satisfying (2.2). Let xε ∈ Ω be a point such that uε(xε) =
∥uε∥L∞(Ω). Then after passing to a subsequence, we have

(1) limε→0 xε = x0 for some interior point x0 ∈ Ω.

(2) For any open neighborhood ω of ∂Ω not containing x0, there holds

∥uε∥L∞(Ω)uε → 2(N − 4)(N − 2)σNG(·, x0) as ε → 0 (2.3)

in C3,α(ω) for some α ∈ (0, 1).

(3) There exists a constant C > 0 independent of ε and solution uε such
that

uε(x) ≤ C
∥uε∥L∞(Ω)(

1 + ∥uε∥4/(N−4)
L∞(Ω) |x − xε|2

)(N−4)/2
(2.4)

holds for any x ∈ Ω.

(4)

lim
ε→0

ε∥uε∥2
L∞(Ω) =

16σ2
NΓ(N)c0

πN/2N(N − 4)(N + 2)2Γ(N/2)
R(x0). (2.5)

By Lemma 6 (2.2), we see that the results of Theorem 7 hold for any
solution sequence uε to (Pε) with xε = x0 = 0 under (H1) and (H2).

In what follows, we use a symbol ∥·∥ to denote the L∞ norm of functions.
Now, let us consider the scaled function

ũε(y) :=
1

∥uε∥
uε

(
y

∥uε∥(pε−1)/4

)
, y ∈ Ωε := ∥uε∥(pε−1)/4Ω.

We see 0 < ũε ≤ 1, ũε(0) = 1, and ũε satisfies{
∆2ũε = c0ũ

pε
ε in Ωε,

ũε = ∆ũε = 0 on ∂Ωε,

Since ∥uε∥ → ∞ as ε → 0, we see Ωε → RN and by standard elliptic
estimates, we have a subsequence denoted also by ũε that

ũε → U compact uniformly in RN (2.6)

as ε → 0 for some function U . Passing to the limit, we obtain that U is a
solution of 

∆2U = c0U
p in RN ,

0 < U ≤ 1, U(0) = 1,
lim|y|→∞ U(y) = 0.
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Thus according to the uniqueness theorem by Chang Shou Lin [4], we obtain

U(y) =

(
1

1 + |y|2

)(N−4)/2

. (2.7)

3 A uniqueness result

In this section, we will prove Theorem 1. Assume the contrary that there
exist solutions uε and vε to (Pε), uε ̸≡ vε for some {ε} ↓ 0. Consider the
function

wε(y) =
1

∥uε − vε∥

(
uε

(
y

∥uε∥(pε−1)/4

)
− vε

(
y

∥uε∥(pε−1)/4

))
for y ∈ Ωε = ∥uε∥(pε−1)/4Ω. It is easy to check that wε solves

∆2wε = cε(y)wε in Ωε,
wε = ∆wε = 0 on ∂Ωε,
∥wε∥ = 1

(3.1)

where

cε(y) = c0pε

∫ 1

0

[tũε(y) + (1 − t)ṽε(y)]pε−1 dt, (3.2)

here we set

ũε(y) =
1

∥uε∥
uε

(
y

∥uε∥(pε−1)/4

)
and ṽε(y) =

1

∥uε∥
vε

(
y

∥uε∥(pε−1)/4

)
for y ∈ Ωε.

By Theorem 7 (2.5), we see limε→0 ∥uε∥ = limε→0 ∥vε∥ = +∞ and

lim
ε→0

∥uε∥
∥vε∥

= 1.

By this, we have ∥ṽε∥ = ṽε(0) = vε(0)/∥uε∥ → 1, so as in (2.6), we see

ũε → U and ṽε → U uniformly on compact sets of RN

where U is as in (2.7). Thus

cε → c0p

∫ 1

0

[tU + (1 − t)U ]p−1dt = c0pU
p−1 (3.3)
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uniformly on compact sets of RN . Since ∥wε∥ = 1, standard elliptic regularity
allows us to pass to the limit in the equation (3.1). Then we get

wε → w uniformly on compact sets of RN (3.4)

for some function w, and the limit function w satisfies

∆2w = c0pU
p−1w in RN , ∥w∥ ≤ 1. (3.5)

Since wε is symmetric with respect to the hyperplanes {xi = 0} (i =
1, · · · , N), we see by (3.4) that w is a symmetric function.

Furthermore, arguing as in [11], we check that∫
Ωε

|∆wε|2dy ≤ C (3.6)

where C is independent of ε. Thus by Fatou’s lemma, we also have∫
RN

|∆w|2dy ≤ C. (3.7)

Now, we recall the classification theorem by Bartsch, Weth and Willem
([2]).

Lemma 8 Let w be a solution to (3.5) with the property (3.7). Then there
exist aj (j = 1, 2, · · · , N), b ∈ R such that w can be written as

w =
N∑

j=1

aj
yj

(1 + |y|2)(N−2)/2
+ b

1 − |y|2

(1 + |y|2)(N−2)/2
.

In the following, we divide the proof into several steps.

Step 1. aj = 0, j = 1, · · · , N .
This is a simple consequence of the fact that w is a symmetric function

with respect to the hyperplanes {xj = 0}, j = 1, · · · , N .

Step 2. b = 0.
By step 1, we have

w = b
1 − |y|2

(1 + |y|2)(N−2)/2
.

Now, we need the following lemma: In the proof, we argue as in [11] Lemma
A.5 with the crucial use of Lemma 4.
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Lemma 9 Let wε be a solution of (3.1). Then we have the estimate

|wε(y)| ≤ C
1

|y|N−4
for y ∈ Ωε ∩ {|y| ≥ δ} (3.8)

for some C > 0 and δ > 0.

Proof: Consider the Kelvin transformation of wε:

w∗
ε(z) = |z|4−Nwε(

z

|z|2
), z ∈ Ω∗

ε := { y

|y|2
: y ∈ Ωε}.

To prove (3.8), it will be enough to show that |w∗
ε | is bounded in B(0, R)∩Ω∗

ε

for some R > 0. Direct calculation shows that

∆2
zw

∗
ε(z) = |z|−4−N∆2

ywε(y), z ∈ Ω∗
ε,

∆zw
∗
ε(z) = 4|z|−2(z · ν)

∂w∗
ε

∂ν
, z ∈ ∂Ω∗

ε,∫
Ω∗

ε

|w∗
ε |p+1dz =

∫
Ωε

|wε|p+1dy.

Thus, w∗
ε satisfies the equation

∆2w∗
ε = |z|−8cε(

z
|z|2 )w

∗
ε in Ω∗

ε,

w∗
ε = 0 on ∂Ω∗

ε,

∆w∗
ε = 4|z|−2(z · ν)∂w∗

ε

∂ν
, on ∂Ω∗

ε.

Now, we claim that there exists a constant C > 0 such that

∥aε∥L∞(Ω∗
ε) ≤ C (3.9)

where
aε(z) := |z|−8cε(

z

|z|2
).

Indeed, since Ωε ⊂ B(0, γ∥uε∥(pε−1)/4) for some γ > 0, we see that Ω∗
ε ⊂

RN \ B(0, 1/(γ∥uε∥(pε−1)/4)). By (2.4), we know that

ũε(y) ≤ CU(y) and ṽε ≤ CU(y),

thus
|cε(y)| ≤ CUpε−1(y) for y ∈ Ωε. (3.10)
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Therefore, we have

|z|−8cε(
z

|z|2
) ≤ C|z|−8

(
|z|2

1 + |z|2

)((N−4)/2)(pε−1)

= C|z|−8+(N−4)(pε−1) 1

(1 + |z|2)4−ε((N−4)/2)

≤ C|z|−8+(N−4)(pε−1) = C|z|−ε(N−4)

Since |z| ≥ 1/(γ∥uε∥(pε−1)/4) for z ∈ Ω∗
ε, we have

|z|−ε(N−4) ≤ γε(N−4)∥uε∥ε(N−4)(pε−1)/4 → 1

as ε → 0. Here we have used (2.1). From these, we confirm that the claim
(3.9).

Now, for any R > 0, we have∫
Ω∗

ε∩B(0,2R)

|w∗
ε |p+1dz ≤

∫
Ω∗

ε

|w∗
ε |p+1dz =

∫
Ωε

|wε|p+1dy

≤
(

1

SN

∫
Ωε

|∆wε|2dy

)(p+1)/2

≤ C,

here we have used the Sobolev inequality for H2 ∩ H1
0 functions and (3.6).

Let us take q = p, y = 0, Ω = Ω∗
ε in Lemma 4. Thus for R > 0 in Lemma 4,

we obtain

sup
B(0,R)∩Ω∗

ε

|w∗
ε | ≤ C

[
1

RN

∫
B(0,2R)∩Ω∗

ε

|w∗
ε |p+1dz

]1/(p+1)

≤ C.

By Lemma 9 and Theorem 7 (2.4), we have the following convergence
result.

Lemma 10 Let ω ⊂ Ω be any neighborhood of ∂Ω not containing 0. Then
we have

∥uε∥2 (uε − vε)

∥uε − vε∥
→ −2(N − 2)(N − 4)σNbG(·, 0) in C3(ω).

Proof: We see

∆2

(
∥uε∥2 (uε − vε)

∥uε − vε∥

)
=

∥uε∥2

∥uε − vε∥
dε(x)(uε − vε) =: fε(x) (3.11)
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for x ∈ Ω with the boundary condition

∥uε∥2 (uε − vε)

∥uε − vε∥
= ∆

(
∥uε∥2 (uε − vε)

∥uε − vε∥

)
= 0

on ∂Ω, where

dε(x) = c0pε

∫ 1

0

[tuε(x) + (1 − t)vε(x)]pε−1dt, x ∈ Ω.

Note that
1

∥uε∥pε−1
dε(

y

∥uε∥(pε−1)/4
) = cε(y), y ∈ Ωε,

see (3.2). Thus

|dε(x)| ≤ C
∥uε∥−(pε−1)

|x|(N−4)(pε−1)
(3.12)

for any x ∈ Ω, x ̸= 0 by (2.1) and (3.10).
We have by (3.12) and (3.8),

fε(x) = ∥uε∥2dε(x)wε(∥uε∥(pε−1)/4x)

≤ C∥uε∥2 ∥uε∥−(pε−1)

|x|(N−4)(pε−1)

1

(∥uε∥(pε−1)/4|x|)N−4

≤ C
∥uε∥3−pε−(pε−1)(N−4)/4

|x|(N−4)pε
→ 0

for any x ̸= 0, since 3 − pε − (pε − 1)(N − 4)/4 = −8/(N − 4) + ε(N/4) < 0
for ε > 0 small.

Also by using (3.10), (3.8), (3.3), (2.1) and the dominated convergence
theorem, we obtain∫

Ω

fε(x)dx = ∥uε∥2−(pε−1)N/4

∫
Ωε

dε(
y

∥uε∥(pε−1)/4
)wε(y)dy

= ∥uε∥pε+1−(pε−1)N/4

∫
Ωε

cε(y)wε(y)dy

→ c0p

∫
RN

Up−1wdy = c0pb

∫
RN

1 − |y|2

(1 + |y|2)N/2+3
dy

= c0pbσN

(∫ ∞

0

rN−1

(1 + r2)N/2+3
dr −

∫ ∞

0

rN+1

(1 + r2)N/2+3
dr

)
= −2(N − 2)(N − 4)bσN .
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Last integrals are computed by the formula∫ ∞

0

rα

(1 + r2)β
dr =

Γ((α + 1)/2)Γ(β − (α + 1)/2)

2Γ(β)
.

From these, we confirm that

fε → −2(N − 2)(N − 4)σNbδ0 (3.13)

in the sense of distributions. On the other hand, we can apply the Lp-theory
of [8] to the equation (3.11) with the Navier boundary condition to get

∥∆
(
∥uε∥2 (uε − vε)

∥uε − vε∥

)
∥C1,α(ω) ≤ C(ω)

(
∥fε∥L1(Ω) + ∥fε∥L∞(ω′)

)
for ω ⊂⊂ ω′ is a neighborhood of ∂Ω not containing 0. Since we have seen
that RHS of the above estimate is bounded by a constant independent of ε,

Ascoli-Arzelá theorem implies that the function ∆
(
∥uε∥2 (uε−vε)

∥uε−vε∥

)
converges

to some function in C1,α-topology. Finally, (3.13) implies that this limit
function is −2(N − 2)(N − 4)σNbG(x, 0).

In the following, we will use Theorem 7 with xε = x0 = 0. Recall the
Pohozaev identity for uε and vε ([14] or [17]):

Aεε

∫
Ω

upε+1
ε dx =

∫
∂Ω

(x · ∇uε)
∂uε

∂ν
dsx, (3.14)

Aεε

∫
Ω

vpε+1
ε dx =

∫
∂Ω

(x · ∇vε)
∂vε

∂ν
dsx, (3.15)

where
−∆uε = uε, −∆vε = vε

and

Aε =
c0(N − 4)2

2(2N − (N − 4)ε)
.

Subtracting (3.15) from (3.14), and writing as upε+1
ε − vpε+1

ε = hε(x)(uε − vε)
where

hε(x) = (pε + 1)

∫ 1

0

[tuε(x) + (1 − t)vε(x)]pεdt,

we have

Aεε

∫
Ω

hε(x)(uε − vε)dx

=

∫
∂Ω

(x · ∇vε)
∂

∂ν
(uε − vε)dsx +

∫
∂Ω

(x · (∇uε −∇vε))
∂

∂ν
uεdsx. (3.16)
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Let us multiply both sides of (3.16) by ∥uε∥3/∥uε − vε∥. Noting that

lim
ε→0

∥uε∥uε = lim
ε→0

∥uε∥vε = 2(N − 2)(N − 4)σNG(·, 0),

lim
ε→0

∥uε∥uε = lim
ε→0

∥uε∥vε = 2(N − 2)(N − 4)σN(−∆G)(·, 0)

in C1(ω) by (2.3), Lemma 10 and Lemma 3, we see that

∥uε∥3

∥uε − vε∥
× (RHS of (3.16))

=

∫
∂Ω

(x · ∇(∥uε∥vε))
∂

∂ν

(
∥uε∥2

∥uε − vε∥
(uε − vε)

)
dsx

+

∫
∂Ω

(
x · ∇

(
∥uε∥2

∥uε − vε∥
(uε − vε)

))
∂

∂ν
(∥uε∥uε)dsx

→ −8(N − 4)2(N − 2)2σ2
Nb

∫
∂Ω

(x · ∇G)
∂(−∆G)

∂ν
(x, 0)dsx

= −8(N − 4)3(N − 2)2σ2
NbR(0). (3.17)

On the other hand, by using (2.4), (3.8) and the dominated convergence
theorem, we have

∥uε∥3

∥uε − vε∥
× (LHS of (3.16))

= Aε × ε∥uε∥2 ×
∫

Ω

hε(x)
∥uε∥

∥uε − vε∥
(uε − vε)dx

= Aε × ε∥uε∥2 × (pε + 1)∥uε∥1−(pε−1)N/4+pε×

×
∫ 1

0

∫
Ωε

[t
1

∥uε∥
uε(

y

∥uε∥(pε−1)/4
) + (1 − t)

1

∥uε∥
vε(

y

∥uε∥(pε−1)/4
)]pεwε(y)dydt

→ c0(N − 4)2

4N
(lim
ε→0

ε∥uε∥2)(p + 1)

∫
RN

Upw(y)dy

= C(N)

∫
RN

1

(1 + |y|2)(N+4)/2

b(1 − |y|2)
(1 + |y|2)(N−2)/2

dy

= C(N)b

∫
RN

1 − |y|2

(1 + |y|2)N+1
dy = 0 (3.18)

where C(N) is a constant depending only on N . Here we have used (2.1)
and Theorem 7 (2.5). Hence by (3.17) and (3.18), we have b = 0.

Step 3. w ≡ 0 leads to a contradiction.
By step1 and step 2, we deduce that the limit function limε→0 wε = w ≡ 0.

Since ∥wε∥ = 1, there exists xε ∈ Ωε such that wε(xε) = 1 and |xε| → ∞

13



because the above convergence wε → w ≡ 0 is uniformly on compact sets of
RN . But this is not possible because of Lemma 9 (3.8).

Thus we have proved Theorem 1.

4 A nondegeneracy result

In this section, we will prove Theorem 2. First, we observe that the first
eigenvalue λ1,ε of the linearized operator Lε = ∆2 − c0pεu

pε−1
ε Id is negative.

Indeed, by a variational characterization of λ1,ε, we have

λ1,ε = inf
ϕ∈H2∩H1

0 (Ω)

(Lεϕ, ϕ)L2(Ω)∫
Ω

ϕ2dx

= inf
ϕ∈H2∩H1

0 (Ω)

∫
Ω
|∆ϕ|2dx − c0pε

∫
Ω

upε−1
ε ϕ2dx∫

Ω
ϕ2dx

≤
∫
Ω
|∆uε|2dx − c0pε

∫
Ω

upε+1
ε dx∫

Ω
u2

εdx
=

c0(1 − pε)
∫

Ω
upε+1

ε dx∫
Ω

u2
εdx

< 0.

Now, the unique solution uε to (Pε) is obtained by a mountain pass the-
orem applied to the functional

Jε(u) =
1

2

∫
Ω

|∆u|2dx − c0

pε + 1

∫
Ω

|u|pε+1dx

defined on H2 ∩ H1
0 (Ω). Thus by Hofer’s theorem ([13]), the Morse index of

uε is at most 1. Since we see

D2Jε(ϕ1,ε, ϕ1,ε) =

∫
Ω

|∆ϕ1,ε|2dx − c0pε

∫
Ω

upε−1
ε ϕ2

1,εdx = λ1,ε

∫
Ω

ϕ2
1,εdx < 0

for the first eigenfunction ϕ1,ε, we must have that the second eigenvalue λ2,ε

of Lε satisfies λ2,ε ≥ 0. At this point, we have only to prove that
Claim: λ2,ε > 0 for sufficiently small ε > 0.
Proof: Suppose the contrary that λ2,ε = 0 and there exists a solution wε

to {
∆2wε = c0pεu

pε−1
ε wε in Ω,

wε = ∆wε = 0 on ∂Ω
(4.1)

for ε ↓ 0. We may assume that ∥wε∥ = ∥uε∥ without losing generality. We
set

w̃ε(y) :=
1

∥uε∥
wε

(
y

∥uε∥(pε−1)/4

)
, y ∈ Ωε = ∥uε∥(pε−1)/4Ω.

14



We obtain 
∆2w̃ε = c0pεũ

pε−1
ε w̃ε in Ωε,

w̃ε = ∆w̃ε = 0 on ∂Ωε,
∥w̃ε∥L∞(Ωε) = 1.

(4.2)

By standard elliptic estimates, w̃ε converges to some function w0 uniformly on
compact sets on RN . As in the previous section, we also know

∫
Ωε

|∆w̃ε|2dy ≤
C and thus

∫
RN |∆w0|2dy ≤ C for some C > 0. Passing to the limit in (4.2)

with noting (2.6), we obtain that w0 solves{
∆2w0 = c0pU

p−1w0 in RN ,
∥w0∥L∞(RN ) ≤ 1.

Thus again by Lemma 8, we have

w0 =
N∑

j=1

aj
yj

(1 + |y|2)(N−2)/2
+ b

1 − |y|2

(1 + |y|2)(N−2)/2
(4.3)

for some aj (j = 1, · · · , N), b ∈ R.
Now, we recall the following fact, which is a special case of more general

result; see Lemma 13 in Appendix.

Lemma 11 Let Ω be a smooth bounded domain satisfying (H1),(H2)’. Then
any solution wε to (4.1) is symmetric with respect to the hyperplane {xi =
0}, (i = 1, · · · , N).

Thanks to lemma 11, we see aj = 0 for all j = 1, · · · , N in (4.3), because
from the symmetry of the solution wε to (4.1), w0 also has to be symmetric
with respect to the hyperplane {yj = 0} for j = 1, · · · , N .

Next we will prove that b = 0 in (4.3). First we show an identity, which
is obtained similarly as in [11].

Lemma 12 Let uε be a solution of (Pε) and wε be a solution of (4.1). Then
we have ∫

∂Ω

(
∂uε

∂ν

∂wε

∂ν
+

∂uε

∂ν

∂wε

∂ν

)
(x · ν)dsx = 0, (4.4)

here uε = −∆uε and wε = −∆wε.

Proof: Set ηε = x · ∇uε. By direct computation, we have

∆ηε = 2∆uε + x · ∇(∆uε),

∆2ηε = 4∆2uε + x · ∇(∆2uε),

15



thus
∆2ηε = 4c0u

pε
ε + c0pεu

pε−1
ε ηε, in Ω.

Multiplying this equation by wε, (4.1) by ηε, and subtracting, we have∫
Ω

(
(∆2ηε)wε − (∆2wε)ηε

)
dx =

∫
Ω

4c0u
pε
ε wεdx. (4.5)

Green’s formula implies that∫
Ω

c0u
pε
ε wεdx =

∫
Ω

∆2uε · wεdx =

∫
Ω

∆2wε · uεdx =

∫
Ω

c0pεu
pε
ε wεdx,

so we have ∫
Ω

upε
ε wεdx = 0. (4.6)

On the other hand, Navier boundary condition implies

ηε = (x · ν)
∂uε

∂ν
, ∆ηε = x · ∇(∆uε) = (x · ν)

∂(∆uε)

∂ν

on ∂Ω. Thus we obtain∫
Ω

(
(∆2ηε)wε − (∆2wε)ηε

)
dx

=

∫
Ω

(∆(∆ηε) · wε − ∆ηε · ∆wε)dx −
∫

Ω

(∆(∆wε) · ηε − ∆wε · ∆ηε)dx

=

∫
∂Ω

(
∂

∂ν
(∆ηε)wε − (∆ηε)

∂wε

∂ν

)
dsx −

∫
∂Ω

(
∂

∂ν
(∆wε)ηε − (∆wε)

∂ηε

∂ν

)
dsx

=

∫
∂Ω

(
(−∆ηε)

∂wε

∂ν
+

∂(−∆wε)

∂ν
ηε

)
dsx

=

∫
∂Ω

(
∂(−∆uε)

∂ν

∂wε

∂ν
+

∂(−∆wε)

∂ν

∂uε

∂ν

)
(x · ν)dsx. (4.7)

Then by (4.5), (4.6) and (4.7), we obtain (4.4).

Using (4.2) and arguing as in Lemma 9, we again have the estimate

|w̃ε(y)| ≤ C
1

|y|N−4
for y ∈ Ωε ∩ {|y| ≥ δ}

for some δ > 0. By this estimate, we obtain

∥uε∥wε → −2(N − 2)(N − 4)σNbG(·, 0) in C3(ω) (4.8)
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where ω ⊂ Ω is any neighborhood of ∂Ω not containing the origin. The proof
of this convergence result is very similar to that of Lemma 10, so we omit it.

Now, we multiply both sides of (4.4) by ∥uε∥2 to get∫
∂Ω

(
∂(∥uε∥uε)

∂ν

∂(∥uε∥wε)

∂ν
+

∂(∥uε∥uε)

∂ν

∂(∥uε∥wε)

∂ν

)
(x · ν)dsx = 0. (4.9)

By using (2.3), (4.8) and Lemma 3, LHS of (4.9) converges to

LHS → −8(N − 2)2(N − 4)3σ2
NbR(0)

as ε → 0. Therefore we have b = 0.
Thus we have proved that w̃ε → w0 ≡ 0 uniformly on compact sets of

RN . Now, the same reason of Step 3 in the previous section is applicable
since ∥w̃ε∥L∞(Ωε) = 1, therefore we have a desired contradiction. This ends
the proof of Theorem 2.

5 Appendix

In this appendix, we show a lemma which is an extension of Theorem 2.1 in [6]
to the polyharmonic operator. For this purpose, we recall some definitions.

We say that a K×K matrix H = (Hij(x))1≤i,j≤K with all entries in C(Ω)
is cooperative if Hij(x) ≥ 0 for all i ̸= j, 1 ≤ i, j ≤ K and x ∈ Ω. A matrix
H = (Hij(x)) is called fully coupled if for all nonempty sets I, J ⊂ {1, · · · , K}
with I ∪ J = {1, · · · , K} and I ∩ J = ϕ, there exist some i ∈ I, j ∈ J and
x ∈ Ω such that Hij(x) ̸= 0. Let L be a diagonal K × K matrix of strictly
elliptic second order operators and H = (Hij(x)), Hij ∈ C(Ω). We say

ϕ =t (ϕ1, · · · , ϕK) ∈ (W 2,N
loc (Ω) ∩ C(Ω))K is a positive strict supersolution to

the system of the second order linear elliptic equations

Lψ = Hψ, ψ =t (ψ1, · · · , ψK) : Ω → RK ,

if ϕj(x) ≥ 0, ((L − H)ϕ)j (x) ≥ 0 for all j = 1, · · · , K and x ∈ Ω, and either
ϕ ̸≡ 0 on ∂Ω or (L − H)ϕ ̸≡ 0 in Ω.

In [15] Theorem 1.1, it is proved that if L is as above and H is cooperative
and fully coupled, if there is a positive strict supersolution to the system
Lψ = Hψ in Ω, and if Ω satisfies a uniform exterior cone condition, then
ψ = 0 is the unique solution to

Lψ = Hψ in Ω, ψ = 0 on ∂Ω.
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Lemma 13 Let K ∈ N. Let u be a smooth solution of
(−∆)Ku = f(u) in Ω,
u > 0 in Ω,
u = ∆u = · · ·∆K−1u = 0 on ∂Ω

(5.1)

where Ω is a smooth bounded domain satisfying (H1),(H2)’, f ∈ C1(R+) and
f ′(u) ≥ 0 for u > 0. Then any solution of the linearized problem{

(−∆)Kv = f ′(u)v in Ω,
v = ∆v = · · ·∆K−1v = 0 on ∂Ω

(5.2)

is also symmetric with respect to the hyperplane {xi = 0}, (i = 1, · · · , N).

Proof: We rewrite the equation (5.1) to
−∆uj = uj+1 =: fj(u) in Ω, (j = 1, · · · , K − 1)
−∆uK = f(u1) =: fK(u) in Ω,
uj > 0 in Ω, (j = 1, · · · , K)
uj = 0 on ∂Ω (j = 1, · · · , K)

(5.3)

where u1 = u and u =t (u1, u2, · · · , uK). Also, setting v = v1, we can rewrite
the equation (5.2) to

−∆vj = vj+1 in Ω, (j = 1, · · · , K − 1)
−∆vK = f ′(u1)v1 in Ω,
vj = 0 on ∂Ω (j = 1, · · · , K)

(5.4)

which is, in matrix form,

Lv = Hv, v =t (v1, · · · , vK)

for

L =

 −∆ 0
. . .

0 −∆

 and H =


0 1 0 · · · 0
...

. . . . . . . . .
...

...
. . . . . . 0

0
. . . 1

f ′(u1) 0 · · · · · · 0


Note that H is cooperative and fully coupled.

Now, fix 1 ≤ i ≤ K. By our assumption of f , we easily see

∂fj

∂ui

(u) ≥ 0, j ̸= i, 1 ≤ j ≤ K.
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Therefore we can apply Lemma 4.3 in [16] to get that any solution u of

(5.3) is symmetric with respect to the hyperplanes {xi = 0} and
∂uj

∂xi
> 0 on

Ω−
i = {x ∈ Ω|xi < 0} for any j = 1, · · · , K. Note also that since the domain

Ω is smooth and symmetric, Ω−
i satisfies a uniform exterior cone condition

for any i = 1, · · · , N .
Set ϕj =

∂uj

∂xi
in Ω−

i . From above, we see ϕj > 0 in Ω−
i . Also by elliptic

regularity, we see ϕj ∈ W 2,N
loc (Ω−

i ) ∩ C(Ω−
i ), and ϕj ̸≡ 0 on ∂Ω ∩ ∂Ω−

i by the
Hopf lemma. Moreover, by differentiating the equation of (5.3) with respect
to xi, we have{

−∆(
∂uj

∂xi
) =

∂uj+1

∂xi
in Ω−

i , (j = 1, · · · , K − 1)

−∆(∂uK

∂xi
) = f ′(u1)

∂u1

∂xi
in Ω−

i ,

which is in matrix form, Lϕ = Hϕ in Ω−
i for ϕ =t (ϕ1, · · · , ϕK). Therefore, ϕ

is a positive strict supersolution to the system Lψ = Hψ in Ω−
i in the sense

described above.
At this point, we can apply Theorem 1.1 of Sweers [15] to get that the

system {
Lψ = Hψ in Ω−

i ,
ψ = 0 on ∂Ω−

i

(5.5)

has the only solution ψ ≡ 0.
Now, set

ψ̂j(x) = vj(x1, · · · , xi, · · · , xN) − vj(x1, · · · ,−xi, · · · , xN), x ∈ Ω−
i

for j = 1, · · · , K, where v =t (v1, · · · , vK) is a solution of (5.4). By the
symmetry of u, we have

f ′(u1(x)) = f ′(u1(x1, · · · ,−xi, · · · , xN)),

so ψ̂ =t (ψ̂1, · · · , ψ̂K) is a solution of (5.5). Thus ψ̂ ≡ 0 and v is symmetric
with respect to the hyperplane {xi = 0}.
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