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Abstract

Consider jump type stochastic differential equations with parameters. The coefficients

of the diffusion and the jump terms satisfy the uniformly non-degenerate condition. The

main purpose in this paper is to derive the logarithmic derivatives of the density function

with respect to the parameters, which is equivalent to the computations of the Greeks for

pay-off functions of asset price dynamics models in mathematical finance. The proof is

based on the martingale methods via the Clark-Ocone type formula.
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1 Introduction

The Malliavin calculus has played an important role in many fields, as one of powerful tools in

infinite dimensional analysis. It has also given us an attractive solution to the hypoelliptic prob-

lem for the differential operator associated with a stochastic differential equation, by means of

probabilistic methods. It is well known that the Hörmander type conditions on the coefficients

of the equation, which is the condition about the Lie algebra generated by the vector fields as-

sociated with the coefficients, yield the existence of the smooth density function. See [3, 23]

and references therein. Bismut [5] studied the logarithmic derivatives of the density function
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with respect to the initial point of a stochastic differential equation on Riemannian manifolds.

Nowadays, the celebrated formulae in the book are calledthe Bismut formulaeafter his great

contribution. His approach is based upon the Girsanov transform on Brownian motions. The

formula has a nice flavour with the precise estimate of heat kernels or large deviation principles.

Elworthy and Li [10] also tackled the same problem in more general class of stochastic differen-

tial equations on Riemannian manifolds, via the martingale methods based on the Clark-Ocone

type formula. The logarithmic derivatives of the density function is equivalent to the Greeks

computations for pay-off functions in mathematical finance. Fourniéet al. [11, 12] applied the

Malliavin calculus on the Wiener space to sensitivity analysis for asset price dynamics models.

They also applied their results to the numerical simulation of the Greeks.

All works stated above, paid attention to the case of processes without any jumps. There has

been a natural and non-trivial question whether a similar approach is applicable to sensitivity

analysis in case of jump processes. The interests for jump processes are recently getting more

and more in mathematical finance. There are some approaches to tackle the problem on the

sensitivities: the Girsanov transformation approach ([19, 20]) for Lévy processes initiated by

Bismut [4], the martingale methods based on the Clark-Ocone type formula ([6, 26]) similarly to

[10] in case of diffusion processes, and an application of the Malliavin calculus on the Wiener-

Poisson space ([1, 7, 9]) as introduced in [2, 8, 24]. In particular, Davis and Johansson [7], and

Cass and Friz [6] studied in case of jump diffusion processes, but their approach does not take

any effects from the jump term. On the other hand, the author in [26] studied the logarithmic

derivatives of the density function with respect to the initial point of stochastic differential

equations with jumps, via the martingale methods based on the Clark-Ocone type formula. The

formulae obtained there are definitely reflected any effects by jumps.

This paper is a continuation study of [26]. We study the logarithmic derivatives of the

density function for jump type stochastic differential equations depending on parameters, in

which the effects from the diffusions and the jumps are explicitly reflected. Our approach is

based on the martingale methods via the Clark-Ocone type formula, again. In mathematical

finance, the sensitivities of pay-off functions with respect to not only the initial point, but also

another parameters, have to be studied very carefully. That is our motivation of the present

paper. The organization of the present paper is as follows: Section 2 devotes to the introduction

of basic facts on stochastic differential equations, and the existence of smooth densities for the

solution process. In Section 3, the main result in the paper is introduced, which is proved in the

final section. Some typical examples of jump processes are given.
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2 Preliminaries

Let us introduce some notations which will be used throughout the paper. WriteRm
0 = Rm\{000},

and denote byν (dz) the Lévy measure overRm
0 such that

∫
Rm

0
(|z|2∧1)ν (dz) < +∞.

Assumption 1. The Lévy measureν (dz) satisfies that

(i) for any p> 1, ∫
Rm

0

{
|z| I(|z|≤1) + |z|p I(|z|>1)

}
ν (dz) < +∞,

(ii) there exist constants c1 > 0 andσ > 0 such that

inf
|θ |=1

∫
Rm

0

(∣∣∣∣z·θρ

∣∣∣∣2∧1

)
ν (dz) ≥ c1ρ−σ

for sufficiently small0 < ρ < 1,

(iii) there exists a C1-density g(z) with respect to the Lebesgue measure onRm
0 such that

lim
|z|→+∞

|g(z)| = 0.

In what follows, we shall impose Assumption 1 on the Lévy measureν (dz) without any

comments.

Remark 2.1. In [17, 24], the following conditions on the Lévy measureν (dz) are assumed.

(iv) there exists0 < α < 2 such that

liminf
ρ↘0

ρ−α
∫
|z|≤ρ

|z|2 ν (dz) > 0,

(v) there exists a positive definite matrix B∈ Rm⊗Rm such that

liminf
ρ↘0

(∫
|z|≤ρ

|z|2 ν (dz)
)−1∫

|z|≤ρ
zz∗ν (dz) ≥ B.

The condition (iv) is calledthe order conditionon the measureν (dz), and the driving Lévy

process of the equation (2.1) is callednon-degenerateunder the condition (v). It can be easily

checked that the condition (ii) in Assumption 1 is satisfied under (iv) and (v). �
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Remark 2.2. Let a, b, c > 0, and 0≤ β < 1. Write

ν (dz) = a
{

(−z)−1−β eczI(z<0) +z−1−β e−bzI(z>0)

}
dz.

Gamma processes(c = +∞, β = 0), variance gamma processes(β = 0), tempered stable pro-

cesses(c = +∞, 0 < β < 1), inverse Gaussian processes(c = +∞, β = 1/2), and CGMY pro-

cesses are in our position, whose Lévy measure satisfy Assumption 1. Those are often appeared

in asset price dynamics models with jumps in mathematical finance. �

Let (Ω,F ,P) be our underlying probability space, andW = {Wt ; t ≥ 0} anm-dimensional

Brownian motion withW0 = 000∈ Rm. Denote a Poisson random measure over[0,+∞)×Rm
0 by

J(dt,dz) with the intensity measurêJ(dt,dz) := dtν (dz), and the natural filtration ofW and

J(dt,dz) by {Ft}t≥0. For the simplicity of notations, write

J̃(dt,dz) = J(dt,dz)− Ĵ(dt,dz) ,

J(dt,dz) = I(|z|≤1) J̃(dt,dz)+ I(|z|>1) J(dt,dz) .

Let ai (ε,y) ∈C1,2
b

(
Rl ×Rd;Rd

)
(0≤ i ≤ m), andb(ε,y,z) ∈C1,2,2

b

(
Rl ×Rd ×Rm

0 ;Rd
)

with

inf
y∈Rd

inf
z∈Rm

0

|det[I +∂b(ε ,y,z)]| > 0, lim
|z|↘0

b(ε,y,z) = 0,

where I ∈ Rd ⊗ Rd is the identity. The symbol∂ indicates the derivative with respect to

the parameter inRd, while the symbols∂ε and∂z indicate the derivatives inε ∈ Rl andz∈
Rm

0 , respectively.CN
b

(
Ri ;R j

)
denotes the set ofψ ∈ CN

(
Ri ;R j

)
such that all derivatives of

∂ β ψ (1≤ |β | ≤ N) are bounded, whereβ = (β1, . . . ,βi) ∈ Zi
+, ∂ β = ∂ β1

1 · · ·∂ βi
i , and |β | =

∑i
k=1βi .

Let ε ∈ Rl andx∈ Rd be deterministic. Consider a process{xt = xε
t ; t ≥ 0} determined by

the stochastic differential equation of the form:

dxt = a0(ε,xt) dt+a(ε,xt)◦dWt +
∫

Rm
0

b(ε,xt−,z) dJ, x0 = x, (2.1)

wherea(ε,y) = (a1(ε,y) , . . . ,am(ε,y)). The conditions on the coefficients guarantee the ex-

istence of the unique solution{xt ; t ≥ 0} to (2.1). The infinitesimal generatorL ε associated

with the Markov process{xt ; t ≥ 0} is given by

L ε = Aε
0 +

1
2

m

∑
i=1

Aε
i Aε

i +
∫

Rm
0

{
Bε

z − I(|z|≤1)B
ε
z

}
ν (dz) ,
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where Aε
i = ai (ε,y) · ∂ (0≤ i ≤ m) and Bε

z = b(ε,y,z) · ∂
(
z∈ Rm

0

)
are vector fields over

Rd, and the operatorBε
z is defined byBε

z f (y) = f (y+b(ε ,y,z))− f (y). Write Ey [ · ] =
E
[
·
∣∣x0 = y

]
. Let {Zt ; t ≥ 0} and{Ut ; t ≥ 0} be Rd ⊗Rd-valued processes determined by

the linear stochastic differential equations of the form:

dZt = ∂a0(ε,xt) Zt dt+∂a(ε,xt) Zt ◦dWt +
∫

Rm
0

∂b(ε,xt−,z) Zt−dJ,

dUt = −Ut

{
∂a0(ε,xt)−

∫
|z|≤1

[
(I +∂b)−1− I +∂b

]
(ε,xt ,z) ν (dz)

}
dt

−Ut ∂a(ε,xt)◦dWt +
∫

Rm
0

Ut−
[
(I +∂b)−1− I

]
(ε,xt−,z) dJ,

Z0 = U0 = I .

It can be easily checked by the Itô formula thatZt Ut = Ut Zt = I . The conditions on the coeffi-

cients, and the Kolmogorov criterion for random fields implies that

Proposition 2.1(cf. [13]). For t ≥ 0, the mappingRd ∋ x 7−→ xt ∈ Rd has a C1-modification,

and Zt = ∂xxt . Moreover, for any p> 1, T > 0, and any compact subset K⊂ Rl , it holds that

sup
ε∈K

Ex

[
sup
t≤T

(|xt |p +∥Zt∥p +∥Ut∥p)
]

< +∞.

Similarly, we can get the following lemma on the differentiability of the process{xt ; t ≥ 0}
with respect to the parameterε ∈ Rl .

Lemma 2.1. For t ≥ 0, the mappingRl ∋ ε 7−→ xt ∈ Rd has a C1-modification, and the deriva-

tive ∂εxε
t satisfies the equation of the form:

d∂εxt = ∂a0(ε,xt) ∂εxt dt+∂a(ε,xt) ∂εxt ◦dWt +
∫

Rm
0

∂b(ε,xt−,z) ∂εxt−dJ

+∂εa0(ε,xt) dt+∂εa(ε,xt)◦dWt +
∫

Rm
0

∂εb(ε,xt−,z) dJ,

∂εxε
0 = 000∈ Rl ⊗Rd.

(2.2)

Moreover, for any p> 1, T > 0, and any compact subset K⊂ Rl , it holds that

sup
ε∈K

Ex

[
sup
t≤T

∥∂εxt∥p
]

< +∞.

Proof. We shall writext = xε
t only in the proof, to emphasize the dependence onε ∈ Rl .
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First, we shall study the continuity ofRl ∋ ε 7−→ xε
t ∈ Rd. Let T > 0 and(ε,δ ) ∈ Rl ×Rl .

Since

xε
t −xδ

t =
∫ t

0

{
a0(ε,xε

s)−a0

(
δ ,xδ

s

)}
ds+

∫ t

0

{
a(ε,xε

s)−a
(

δ ,xδ
s

)}
◦dWs

+
∫ t

0

∫
Rm

0

{
b
(
ε,xε

s−,z
)
−b
(

δ ,xδ
s−,z

)}
dJ,

we can get the upper estimate

Ex

[
sup
t≤T

∣∣∣xε
t −xδ

t

∣∣∣p]≤ c2,p,x,T |ε −δ |p

for any p > 1, from the conditions onai (ε,y) andb(ε,y,z). Thus the Kolmogorov criterion

tells us that the mappingRl ∋ ε 7−→ xε
t ∈ Rd has a continuous modification for eacht ≥ 0.

Next, we shall study the differentiability ofxε
t in ε ∈ Rl . Let 0 ̸= ξ , ζ ∈ R, andeeek =

(0, . . . ,0,1,0, . . . ,0)∗ ∈ Rl thek-th unit vector. Since

xε+ξeeek
t −xε

t

ξ
=

∫ t

0

a0

(
ε +ξeeek,x

ε+ξeeek
s

)
−a0(ε,xε

s)

ξ
ds

+
∫ t

0

a
(

ε +ξeeek,x
ε+ξeeek
s

)
−a(ε,xε

s)

ξ
◦dWs

+
∫ t

0

∫
Rm

0

b
(

ε +ξeeek,x
ε+ξeeek
s− ,z

)
−b
(
ε,xε

s−,z
)

ξ
dJ,

we can get the upper estimate

Ex

[
sup
t≤T

∣∣∣∣∣xε+ξeeek
t −xε

t

ξ
− xε+ζeeek

t −xε
t

ζ

∣∣∣∣∣
p]

≤ c3,p,x,T,ε,k |ξ −ζ |p

for any p > 1. Hence the mappingRl ∋ ε 7−→ xε
t ∈ Rd has aC1-modification with respect to

the parameterε ∈ Rl for eacht ≥ 0, via the Kolmogorov criterion, again.

Furthermore, the conditions on the coefficients enables us to justify that the derivative∂εxε
t

satisfies (2.2). It is an easy work to check the upper estimate of∂εxt in the assertion. The proof

is complete. �
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Corollary 2.1. The derivative∂εxt can be computed as follows:

∂εxt = Zt

∫ t

0
Us

(
∂εa0(ε,xs)+

∫
|z|≤1

[{
(I +∂b)−1− I

}
∂εb
]
(ε,xs,z) ν (dz)

)
ds

+Zt

∫ t

0
Us∂εa(ε,xs)◦dWs+Zt

∫ t

0

∫
Rm

0

Us−
[
(I +∂b)−1∂εb

]
(ε,xs−,z) dJ.

(2.3)

Proof. Obvious by applying the Itô product formula toUt ∂εxt . �

3 Main result

We shall devote to state the main result in the present paper. Throughout this paper, suppose

that the coefficientsai (ε,y) (1≤ i ≤ m) andb(ε,y,z) of the equation (2.1) satisfy

Assumption 2. For eachε ∈ Rl , theRd ⊗Rd-valued functions

[aa∗] (ε,y) , [∂zb {∂zb}∗] (ε ,y,z)

are uniformly elliptic on y∈ Rd and z∈ Rm
0 .

Let T > 0, and definẽb(ε,y,z) =
[
(I +∂b)−1∂zb

]
(ε ,y,z) z. Then, the following fact on the

existence of the smooth density is well known.

Proposition 3.1(cf. [21, 25]). Fix ε ∈ Rl . If there exist constants c4 > 0 andι > 0 such that

inf
y∈Rd

inf
|λ |=1

{
m

∑
i=1

∣∣∣∣ai (ε,y) · λ
ρ

∣∣∣∣2 +
∫

Rm
0

(∣∣∣∣b̃(ε,y,z) · λ
ρ

∣∣∣∣2∧1

)
ν (dz)

}
≥ c4ρ−ι (3.1)

for sufficiently small0 < ρ < 1, then the law of the random variable xT determined by(2.1)

admits a density pT (ε ,x,y) with respect to the Lebesgue measure onRd such that pt (ε,x,y) is

smooth in y∈ Rd.

Remark 3.1. It can be easily checked that Assumption 1 and Assumption 2 imply the condition

(3.1) in Proposition 3.1. In fact, since the boundedness of the functionb(ε,y,z) yields that

1≤
∣∣∣[(I +∂b)−1

]∗
(ε,y,z) λ

∣∣∣ |[I +∂b] (ε,y,z) λ |

≤ c5

∣∣∣[(I +∂b)−1
]∗

(ε,y,z) λ
∣∣∣
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for λ ∈ Sd−1, we see that∣∣∣∣[(I +∂b)−1∂zb
]∗

(ε,y,z)
λ
ρ

∣∣∣∣2 ≥ c6,ε

∣∣∣∣[(I +∂b)−1
]∗

(ε,y,z)
λ
ρ

∣∣∣∣2
≥ c7,ε ρ−2

under Assumption 2. Then we have

∫
Rm

0

(∣∣∣∣b̃(ε,y,z) · λ
ρ

∣∣∣∣2∧1

)
ν (dz)

=
∫

Rm
0

(∣∣∣∣([(I +∂b)−1∂zb
]∗

(ε,y,z)
λ
ρ

)
·z
∣∣∣∣2∧1

)
ν (dz)

≥ c8,ε inf
|θ |=1

∫
Rm

0

(∣∣∣∣z·θρ

∣∣∣∣2∧1

)
ν (dz)

≥ c9,ε ρ−σ

from Assumption 1 (ii), for sufficiently small 0< ρ < 1. �

Our goal in the present paper is to study the logarithmic derivatives ofpT (ε,x,y) with

respect to the parameterε ∈ Rl . This can be also regarded as the continuous work of [26], in

which the Bismut-Elworthy-Li type formulae (or, the logarithmic derivarives ofpT (ε,x,y) with

respect to the initial pointx∈ Rd of the equation (2.1)) are studied.

We shall introduce the main result. LetD = {Ds; s∈ [0,T]} be the Malliavin derivative

operator. Define

F0(s) = Us

(
∂εa0(ε,xs)+

∫
|z|≤1

[{
(I +∂b)−1− I

}
∂εb
]
(ε,xs,z) ν (dz)

)
,

F (s) = Us∂εa(ε,xs) ,

κ (s,z) = Us−
[
(I +∂b)−1∂εb

]
(ε,xs−,z) ,

Nε
t =

∫ t

0
(dWs)

∗ a(ε,xs)
−1ZsF0(s) ,

Lε
t =

1
t

∫ t

0
(dWs)

∗ a(ε ,xs)
−1Zs

∫ t

0
F (s)◦dWs,

Hε
t =

1
t

∫ t

0
Tr

[
a(ε,xs)

−1Zs Ds

(∫ t

0
F (s)◦dWs

)]
ds,

Vε
t =

∫ t

0

∫
Rm

0

1
g(z)

divz

[
g(z)

[
(∂zb)−1 (I +∂b)

]
(ε,xs,z) Zsκ (s,z)

]
dJ̃,
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where

divz[Φ(z)] = ({divz[Φ(z)]}k ; 1≤ k≤ l) , {divz[Φ(z)]}k =
m

∑
i=1

Φik

∂zi
(z)

Tr [M] = ({Tr [M]}k ; 1≤ k≤ l) , {Tr [M]}k =
m

∑
i=1

Mi,k,i

for anRl ⊗Rm-valued functionΦ = (Φik ; 1≤ i ≤ m, 1≤ k≤ l), andM ∈ Rm⊗Rl ⊗Rm. Then

we have

Theorem 1(Sensitivity with respect toε ∈ Rl ). Suppose Assumption 1 and Assumption 2. Let

ϕ : Rd → R be measurable such thatEx

[
|ϕ(xT)|2

]
< +∞. Then it holds that

∂εEx [ϕ(xT)] = Ex [ϕ(xT)Γε
T ] , Γε

T := Nε
T +Lε

T −Hε
T −Vε

T . (3.2)

Remark 3.2. Instead of Assumption 2, suppose that the function[aa∗] (ε,y) is uniformly ellip-

tic in y∈ Rd, and that the function[∂zb {∂zb}∗] (ε,y,z) is not always uniformly elliptic. Then,

the weight is computed asΓε
T = Nε

T +Lε
T −Hε

T . On the other hand, if the function[aa∗] (ε,y) is

not always uniformly elliptic, and the function[∂zb {∂zb}∗] (ε,y,z) is uniformly elliptic, instead

of Assumption 2, then the weight is given byΓε
T = −Vε

T . �

Example 1 (Lévy processes). Let m= d = 1, x∈ R, and(γ,σ1,σ2) ∈ R× (0,+∞)× (0,+∞).
Suppose that the measureν (dz) satisfies Assumption 1. Consider theR-valued Lévy process

{xt ; t ≥ 0} defined by

xt = x+ γ t +σ1Wt +σ2

∫ t

0

∫
R0

zdJ.

Since we are in position that

a0((γ,σ1,σ2) ,y) = γ, a1((γ,σ1,σ2) ,y) = σ1, b((γ,σ1,σ2) ,y,z) = σ2z,

we have

∂γxt = t, ∂σ1xt = Wt , ∂σ2xt =
∫ t

0

∫
R0

zdJ, Zt = Ut = 1.

Then it holds that

(
Nγ

t , Lγ
t , Hγ

t , Vγ
t

)
=
(

Wt

σ1
, 0, 0, 0

)
,

(
Nσ1

t , Lσ1
t , Hσ1

t , Vσ1
t

)
=
(

0,
W2

t

σ1 t
,

1
σ1

, 0

)
,
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(
Nσ2

t , Lσ2
t , Hσ2

t , Vσ2
t

)
=
(
−Wt

σ1

∫
|z|≤1

zν (dz) , 0, 0,
∫ t

0

∫
R0

∂z{g(z)z}
σ2g(z)

dJ̃

)
.

Therefore, the corresponding weightsΓγ
T , Γσ1

T , andΓσ2
T on the sensitivities with respect toγ, σ1,

andσ2 can be computed as follows:

Γγ
T =

WT

σ1
, Γσ1

T =
W2

T −T
σ1T

, Γσ2
T = −WT

σ1

∫
|z|≤1

zν (dz)+
∫ T

0

∫
R0

∂z{g(z)z}
σ2g(z)

dJ̃,

while the weights on the sensitivity with respect to the initial pointx∈ R are given as follows:

Γx
T =

WT

σ1AT
− 1

σ2AT

∫ T

0

∫
R0

∂z{g(z) |z|}
g(z)

dJ̃+
2

σ2A2
T

∫ T

0

∫
R0

zdJ,

as stated in [26], whereAT = T +
∫ T

0

∫
R0

|z|dJ. �

Example 2 (Geometric Lévy processes). Let m= d = 1, and suppose that the measureν (dz)
satisfies Assumption 1. Let{Xt ; t ≥ 0} theR-valued Lévy process given by

Xt = γ t +σ1Wt +σ2

∫ t

0

∫
R0

zdJ,

where(γ,σ1,σ2) ∈ R× (0,+∞)× (0,+∞). Forx > 0, definext = x exp[Xt ], which is calledthe

geometric Lévy process. The Itô formula enables us to see that the process{xt ; t ≥ 0} satisfies

the linear stochastic differential equation of the form

dxt =
{

γ +
∫
|z|≤1

(eσ2z−1−σ2z) ν (dz)
}

xt dt+σ1xt ◦dWt +
∫

R0

(eσ2z−1) xt−dJ,

which can be regarded as the special case of canonical stochastic differential equations with

jumps (cf. [17]). Since we are in position that

a0((γ,σ1,σ2) ,y) =
{

γ +
∫
|z|≤1

(eσ2z−1−σ2z) ν (dz)
}

y,

a1((γ,σ1,σ2) ,y) = σ1y, b((γ,σ1,σ2) ,y,z) = (eσ2z−1) y,

Assumption 2 is not satisfied.

But this example is also definitely in our position. Writeψ (y) = exp[y]. Since

∂xEx [ϕ (xT)] = Ex

[
ϕ ′ (xT)

xT

x

]
=

1
x

∂XEx [(ϕ ◦ψ)(X +XT)]
∣∣
X=logx,
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∂γEx [ϕ (xT)] = Ex
[
ϕ ′ (xT) xT T

]
= ∂γEx [(ϕ ◦ψ)(X +XT)]

∣∣
X=logx,

∂σ1Ex [ϕ (xT)] = Ex
[
ϕ ′ (xT) xT WT

]
= ∂σ1Ex [(ϕ ◦ψ)(X +XT)]

∣∣
X=logx,

∂σ2Ex [ϕ(xT)] = Ex

[
ϕ ′(xT)xT

∫ T

0

∫
R0

zJ(ds,dz)
]

= ∂σ2Ex [(ϕ ◦ψ)(X +XT)]
∣∣
X=logx

for ϕ ∈ C2
b (R;R), the corresponding weightsΓγ

T , Γσ1
T , Γσ2

T for geometric Lévy processes can

be computed by using the results done in Example 1 as follows:

Γγ
T =

WT

σ1
, Γσ1

T =
W2

T −T
σ1T

, Γσ2
T = −WT

σ1

∫
|z|≤1

zν (dz)+
∫ T

0

∫
R0

∂z{g(z)z}
σ2g(z)

dJ̃,

Γx
T =

WT

σ1xAT
− 1

σ2xAT

∫ T

0

∫
R0

∂z{g(z) |z|}
g(z)

dJ̃+
2

σ2xA2
T

∫ T

0

∫
R0

zdJ,

whereAT = T +
∫ T

0

∫
R0

|z|dJ. �

4 Proof of Theorem 1

In this section, we shall give the proof of Theorem 1. LetT > 0, ε ∈ Rl , andx∈ Rd. First, we

shall start withϕ ∈C2
b

(
Rd;R

)
, which can be extended to the measurable functionϕ : Rd → R

such thatEx

[
|ϕ (xT)|2

]
< +∞, as stated below. Write

uε (t,y) = Ey [ϕ (xT−t)]

for t ∈ [0,T] andy∈ Rd. The following lemma plays a key role in our argument.

Lemma 4.1. The following equality holds.

ϕ (xT) = Ex [ϕ (xT)]+
∫ T

0
[∂uε a] (ε,xt) dWt +

∫ T

0

∫
Rm

0

Bε
zuε (t,xt−) dJ̃. (4.1)

Proof. As stated in [14], the functionuε is in C1,2
b

(
[0,T)×Rd

)
, and satisfies

∂tu
ε +L εuε = 0, lim

t↗T
uε (t,y) = ϕ (y) .

Let t ∈ [0,T). Applying the Itô formula to the functionuε implies that

uε (t,xt) = Ex [ϕ (xT)]+
∫ t

0
[∂uε a] (ε,xs) dWs+

∫ t

0

∫
Rm

0

Bε
zuε (s,xs−) dJ̃. (4.2)

11



Each term in both hand sides of (4.2) converges to each term in (4.1) ast ↗ T, respectively,

becauseuε ∈C1,2
b

(
[0,T)×Rd

)
, and

uε (t,xt) = Ex
[
ϕ (xT)

∣∣Ft
]
→ Ex

[
ϕ (xT)

∣∣FT
]
= ϕ (xT)

ast ↗ T (cf. Theorem I-6.6 in [16]). The proof is complete. �

Lemma 4.2. It holds that

Ex

[
∂ϕ (xT) ZT

∫ T

0
F0(t) dt

]
= Ex [ϕ (xT) Nε

T ] . (4.3)

Proof. Since Lemma 4.1 tells us that the process
{

uε (t,xt) = Ex
[
ϕ (xT)

∣∣Ft
]

; t ∈ [0,T)
}

is (Ft)-martingale, so is the process{∂xuε (t,xt) ; t ∈ [0,T)}. In fact, this can be checked by

differentiating the both hand sides of the equality (4.2) with respect tox ∈ Rd, by usinguε ∈
C1,2

b

(
[0,T)×Rd

)
. Then, fort < τ < T, we have

Ex [∂xu
ε (t,xt) F0(t)] = Ex [∂xu

ε (τ,xτ) F0(t)] = Ex [∂uε (τ,xτ) Zτ F0(t)] ,

so taking the limit asτ ↗T yields thatEx [∂xuε (t,xt) F0(t)] = Ex [∂ϕ (xT) ZT F0(t)]. Therefore,

the Fubini theorem and Lemma 4.1 yield that

Ex

[
∂ϕ (xT) ZT

∫ T

0
F0(t) dt

]
=

∫ T

0
Ex [∂xu

ε (t,xt) F0(t)] dt

= Ex

[∫ T

0
[∂uε a] (ε,xt) dWt Nε

T

]
= Ex [ϕ (xT) Nε

T ] ,

which completes the proof. �

Lemma 4.3. It holds that

Ex

[
∂ϕ (xT) ZT

∫ T

0
F (s)◦dWs

]
= Ex [ϕ (xT) (Lε

T −Hε
T)] . (4.4)

Proof. Write

Gt =
∫ t

0
F (s)◦dWs.

SinceDsϕ (xT) = ∂ϕ (xT) ZT Usa(ε,xs) for s∈ [0,T] from the chain rule on the operatorD, the

12



integration by parts formula implies that

Ex [∂ϕ (xT) ZT GT ] = Ex

[
1
T

∫ T

0
Dsϕ (xT) a(ε,xs)

−1 ZsGT ds

]
= Ex

[
ϕ (xT)

1
T

D∗
(

a(ε,x·)
−1 Z·GT

)]
,

whereD∗ is the Skorokhod integral operator. Remark thatGT ∈ D∞
(
Rl ⊗Rd

)
from the condi-

tions onai (ε,y) (1≤ i ≤ m) (cf. [23]). Then, Proposition I-1.3.3 in [23] yields that

D∗
(

a(ε,x·)
−1 Z·GT

)
= D∗

(
a(ε,x·)

−1 Z·
)

GT −
∫ T

0
Tr
[
a(ε,xs)

−1 ZsDsGT

]
ds

=
{∫ T

0
(dWs)

∗ a(ε,xs)
−1 Zs

}
GT −

∫ T

0
Tr
[
a(ε,xs)

−1 ZsDsGT

]
ds

= T Lε
T −T Hε

T ,

which completes the proof. �

Lemma 4.4. It holds that

Ex

[
∂ϕ (xT) ZT

∫ T

0

∫
Rm

0

κ (t,z) dJ

]
= −Ex [ϕ (xT) Vε

T ] . (4.5)

Proof. Write

MT =
∫ T

0

∫
Rm

0

κ (s,z) dJ, M̂T =
∫ T

0

∫
Rm

0

κ (s,z) dĴ.

Multiplying MT by both sides of the equality (4.1), we see

Ex [ϕ (xT) MT ] = Ex [ϕ (xT)] Ex [MT ]+Ex

[{∫ T

0
[∂uε a] (ε,xt) dWt

}
MT

]
+Ex

[{∫ T

0

∫
Rm

0

Bε
zuε (t,xt−) dJ̃

}
MT

]
=: Ex [ϕ (xT)] Ex

[
M̂T
]
+ I1 + I2.

As for I1, we have

I1 = Ex

[∫ T

0
[∂uε ai ] (ε,xt) Mt dWt

]
+Ex

[∫ T

0

(∫ t

0
[∂uε a] (ε,xs) dWs

)
dMt

]

13



= Ex

[∫ T

0

(∫ t

0
[∂uε a] (ε,xs) dWs

)
dM̂t

]
.

As for I2, we can get

I2 = Ex

[∫ T

0

∫
Rm

0

Bε
zuε (t,xt−) κ (t,z) dJ

]
+Ex

[∫ T

0

(∫ t

0

∫
Rm

0

Bε
θ uε (s,xs−) dJ̃

)
dMt

]
+Ex

[∫ T

0

∫
Rm

0

Bε
zuε (t,xt−) Mε

t−dJ̃

]
= Ex

[∫ T

0

∫
Rm

0

Bε
zuε (t,xt) κ (t,z) dĴ

]
+Ex

[∫ T

0

(∫ t

0

∫
Rm

0

Bε
θ uε (s,xs−) dJ̃

)
dM̂t

]
.

Since

Ex

[{∫ T

t
[∂uε a] (ε,xs) dWs+

∫ T

t

∫
Rm

0

Bε
θ uε (s,xs−) dJ̃

}
κ (t,z)

]
= Ex

[
Ex

[∫ T

t
[∂uε a] (ε,xs) dWs+

∫ T

t

∫
Rm

0

Bε
θ uε (s,xs−) dJ̃

∣∣∣Ft

]
κ (t,z)

]
= 000∈ Rl ⊗Rd,

the Fubini theorem and the equality (4.1) in Lemma 4.1 enable us to see that

Ex [ϕ (xT) MT ] = Ex
[
ϕ (xT) M̂T

]
+Ex

[∫ T

0

∫
Rm

0

Bε
zuε (t,xt) κ (t,z) dĴ

]
−Ex

[∫ T

0

(∫ T

t
[∂uε a] (ε,xs) dWs

)
dM̂t

]
−Ex

[∫ T

0

(∫ T

t

∫
Rm

0

Bε
θ uε (s,xs−) dJ̃

)
dM̂t

]
=

∫ T

0

∫
Rm

0

Ex [ϕ (xT) κ (t,z)] dĴ+
∫ T

0

∫
Rm

0

Ex
[
Bε

zuε (t,xt) κ (t,z)
]

dĴ

=
∫ T

0

∫
Rm

0

Ex [uε (t,xt +b(ε,xt ,z)) κ (t,z)] dĴ

(4.6)

We shall differentiate both hand sides of (4.6) inx ∈ Rd. From ϕ ∈ C2
b

(
Rd;R

)
and the

condition onb(ε,y,z), we see that

∂xEx [ϕ (xT) MT ] = Ex [∂ϕ (xT) ZT MT ]+Ex [ϕ (xT) ∂xMT ]

14



as for the left hand side of (4.6), while the right hand side of (4.6) is

∂x

∫ T

0

∫
Rm

0

Ex [uε (t,xt +b(ε,xt ,z)) κ (t,z)] dĴ

=
∫ T

0

∫
Rm

0

Ex [∂xu
ε (t,xt +b(ε,xt ,z)) κ (t,z)] dĴ

+
∫ T

0

∫
Rm

0

Ex
[
Bε

zuε (t,xt) ∂xκ (t,z)
]

dĴ+
∫ T

0

∫
Rm

0

Ex [uε (t,xt) ∂xκ (t,z)] dĴ

=: I3 + I4 + I5.

We shall computeI3, I4 andI5. Lemma 4.1 enables us to see that

I4 = Ex

[∫ T

0

∫
Rm

0

Bε
zuε (t,xt−) dJ̃

∫ T

0

∫
Rm

0

∂xκ (t,z) dJ̃

]
= Ex

[
ϕ (xT)

∫ T

0

∫
Rm

0

∂xκ (t,z) dJ̃

]
.

On the other hand, sinceuε (t,xt) = Ex [ϕ (xT) |Ft ] for 0≤ t < T, we have

I5 = Ex

[
ϕ (xT)

∫ T

0

∫
Rm

0

∂xκ (t,z) dĴ

]
.

Furthermore, multiplyingVε
T by the equality (4.1) in Lemma 4.1, it holds that

Ex [ϕ (xT) Vε
T ]

= Ex

[∫ T

0

∫
Rm

0

Bε
zuε (s,xs) divz

[
g(z)

[
(∂zb)−1 (I +∂b)

]
(ε,xs,z) Zsκ (s,z)

]
dzds

]
= −Ex

[∫ T

0

∫
Rm

0

∂zu
ε (s,xs+b(ε,xs,z))

[
(∂zb)−1 (I +∂b)

]
(ε,xs,z) Zsκ (s,z) dĴ

]
= −Ex

[∫ T

0

∫
Rm

0

∂uε (s,xs+b(ε,xs,z)) Zsκ (s,z) dĴ

]
= −I3.

Here we have used the integration by parts (or, the divergence formula) in the second equality,

which can be justified by Assumption 1 (iii). Therefore, we can obtain that

Ex [∂ϕ (xT) ZT MT ]+Ex [ϕ (xT) ∂xMT ]
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= −Ex [ϕ (xT) Vε
T ]+Ex

[
ϕ (xT)

∫ T

0

∫
Rm

0

∂xκ (t,z) dJ̃

]
+Ex

[
ϕ (xT)

∫ T

0

∫
Rm

0

∂xκ (t,z) dĴ

]
= −Ex [ϕ (xT) Vε

T ]+Ex [ϕ (xT) ∂xMT ] ,

which completes the proof. �

Proof of Theorem 1.Firstly, consider the case ofϕ ∈C∞
0

(
Rd;R

)
, whereC∞

0

(
Rd;R

)
is the

set ofC∞-functions onRd with the compact support. Remark that

∂εϕ (xT) = ∂ϕ (xT) ZT

{∫ T

0
F0(s) ds+

∫ T

0
F (s)◦dWs+

∫ T

0

∫
Rm

0

κ (s,z) dJ

}
from Corollary 2.1. By summing up the equalities (4.3), (4.4) and (4.5), the assertion of Theo-

rem 1 holds forϕ ∈C∞
0

(
Rd;R

)
. The standard density argument (cf. [6, 7]) enables us to extend

the assertion of Theorem 1 forϕ ∈ C∞
0

(
Rd;R

)
, to the one for square-integrable measurable

functionϕ : Rd → R with Ex

[
|ϕ (xT)|2

]
< +∞, which we are going to explain below.

Secondly, consider the case ofϕ ∈ C0
(
Rd;R

)
, whereC0

(
Rd;R

)
is the set of continuous

functions onRd with the compact support. Then the functionϕ can be approximated uniformly

and boundedly by the sequence{ϕn ; n∈ N} in C∞
0

(
Rd;R

)
. Thus we have

|Ex [ϕn(xT)]−Ex [ϕ (xT)]| ≤ sup
y∈Rd

|ϕn(y)−ϕ (y)| ,

which tends to 0 asn→ +∞. On the other hand, the Cauchy-Schwarz inequality and Lemma

2.1 yield that, for any compact setΞ ⊂ Rl ,

sup
ε∈Ξ

|∂εEx [ϕn(xT)]−Ex [ϕ (xT) {Nε
T +Lε

T −Hε
T −Vε

T }]|

≤ sup
ε∈Ξ

Ex

[
|ϕn(xT)−ϕ (xT)|2

]1/2
sup
ε∈Ξ

Ex

[
|Nε

T +Lε
T −Hε

T −Vε
T |

2
]1/2

≤ sup
y∈Rd

|ϕn(y)−ϕ (y)| sup
ε∈Ξ

Ex

[
|Nε

T +Lε
T −Hε

T −Vε
T |

2
]1/2

which tends to 0 asn→ +∞. Hence, the assertion can be justified forϕ ∈C0
(
Rd;R

)
.

Thirdly, study the case of an indicator functionϕ = IK, whereK is a compact subset inRd.

Let N ∈ N, and letδ > 0 be sufficiently small. Define subsetsK+δ andK−δ in Rd by

K+δ =
{

y∈ Rd ; |y− ỹ| ≤ δ (ỹ∈ ∂K)
}
∪K,
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K−δ =
{

y∈ Rd ; |y− ỹ| > δ (ỹ∈ ∂K)
}
∩K,

where∂K denotes the boundary ofK. Then, there exists a pointwise convergent sequence

{ϕn ; n∈ N} in C0
(
Rd;R

)
to ϕ such that 0≤ ϕn ≤ 1, and for everyn ≥ N, ϕn −ϕ = 0 on

K̃ = Kc
+δ ∪K−δ . Since{ϕn ; n∈ N} is uniformly bounded, the dominated convergence theorem

implies that

|Ex [ϕn(xT)]−Ex [ϕ (xT)]| → 0

asn→ +∞. It is clear that, for everyn≥ N and any compact subsetΞ ⊂ Rl ,

sup
ε∈Ξ

Ex

[
|ϕn(xT)−ϕ (xT)|2 I(xT∈K̃)

]
= 0.

Moreover, we see that

Ex

[
|ϕk (xT)−ϕ (xT)|2 I(xT∈K̃c)

]
≤ 4Px

[
xT ∈ K̃c] ,

because of 0≤ ϕ ≤ 1. Since the probability law of theRd-valued random variablexT admits a

smooth densitypT (ε,x,y) with respect to the Lebesgue measure overRd under Assumption 2,

as seen in Proposition 3.1 and Remark 3.1, we have

Px
[
xT ∈ K̃c]=

∫
K̃c

pT (ε,x,y) dy≤

(
sup
y∈K̃c

pT (ε,x,y)

) ∣∣K̃c
∣∣ ,

where
∣∣K̃c
∣∣ denotes the Lebesgue measure of the setK̃c ⊂ Rd. Thus, we can obtain

Ex

[
|ϕn(xT)−ϕ (xT)|2 I(xT∈K̃c)

]
≤ 4

(
sup
y∈K̃c

pT (ε,x,y)

) ∣∣K̃c
∣∣ .

Remark that
∣∣K̃c
∣∣→ 0 asδ ↓ 0. SinceK̃c is the compact subset inRd, the densitypT (ε,x,y) is

uniformly bounded iny∈ K̃c. Hence the Cauchy-Schwarz inequality and Lemma 2.1 yield that

sup
ε∈Ξ

|∂εEx [ϕn(xT)]−Ex [ϕ (xT) {Nε
T +Lε

T −Hε
T −Vε

T }]|

≤ sup
ε∈Ξ

Ex

[
|ϕn(xT)−ϕ (xT)|2

]1/2
sup
ε∈Ξ

Ex

[
|Nε

T +Lε
T −Hε

T −Vε
T |

2
]1/2

≤ 2

(
sup
ε∈Ξ

sup
y∈K̃c

pT (ε,x,y)

)1/2 ∣∣K̃c
∣∣1/2

sup
ε∈Ξ

Ex

[
|Nε

T +Lε
T −Hε

T −Vε
T |

2
]1/2

,
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which tends to 0 asn→ +∞. Therefore, we can conclude that

∂εEx [ϕ (xT)] = Ex [ϕ (xT) {Nε
T +Lε

T −Hε
T −Vε

T }] .

Finally, we can immediately extend the assertion of Theorem 1 to the class of finite linear

combinations of indicator functions, which can approximate a measurable functionϕ : Rd → R
such thatEx

[
|ϕ (xT)|2

]
< +∞. The proof of Theorem 1 is complete. �
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