Nondegeneracy of least energy solutions for an elliptic problem with nearly critical nonlinearity

Futoshi Takahashi Department of Mathematics Graduate School of Science Osaka City University 3-3-138 Sugimoto, Sumiyoshi-ku Osaka, 558-8585, Japan Tel: (+81)(0)6-6605-2508 E-mail: futoshi@sci.osaka-cu.ac.jp

Abstract

Consider the problem $-\Delta u = c_0 K(x) u^{p_{\varepsilon}}$, u > 0 in Ω , u = 0on $\partial \Omega$, where Ω is a smooth bounded domain in $\mathbb{R}^N (N \ge 3)$, $c_0 = N(N-2)$, $p_{\varepsilon} = (N+2)/(N-2) - \varepsilon$ and K is a smooth positive function on $\overline{\Omega}$.

We prove that least energy solutions of the above problem are nondegenerate for $\varepsilon > 0$ small, under some assumptions on the coefficient function K. This is a generalization of the recent result by Grossi [6] for $K \equiv 1$, and needs precise estimates and a new argument.

²⁰⁰⁰ Mathematics Subject Classification: 35B33, 35J60, 35J25. Key words: nondegeneracy, critical exponent, least energy solution

1 Introduction

We consider the problem

$$(P_{\varepsilon,K}) \begin{cases} -\Delta u = c_0 K(x) u^{p_{\varepsilon}} & \text{ in } \Omega, \\ u > 0 & \text{ in } \Omega, \\ u = 0 & \text{ on } \partial \Omega \end{cases}$$

where $\Omega \subset \mathbb{R}^N (N \geq 3)$ is a smooth bounded domain, $c_0 = N(N-2)$, $p_{\varepsilon} = p - \varepsilon, p = (N+2)/(N-2)$ is the critical Sobolev exponent with respect to the embedding $H_0^1(\Omega) \hookrightarrow L^{p+1}(\Omega)$, and $\varepsilon > 0$ is a small parameter. Here, K is a positive function in $C^2(\overline{\Omega})$.

Since $(P_{\varepsilon,K})$ is a subcritical problem, there exists a least energy solution u_{ε} such that

$$\frac{\int_{\Omega} |\nabla u_{\varepsilon}|^2 dx}{\left(\int_{\Omega} K(x) |u_{\varepsilon}|^{p_{\varepsilon}+1} dx\right)^{\frac{2}{p_{\varepsilon}+1}}} = \inf_{u \in H_0^1(\Omega)} \frac{\int_{\Omega} |\nabla u|^2 dx}{\left(\int_{\Omega} K(x) |u|^{p_{\varepsilon}+1} dx\right)^{\frac{2}{p_{\varepsilon}+1}}} =: S_{\varepsilon,K}$$

for any small $\varepsilon > 0$.

In the following, we put an assumption on the coefficient function K.

(K): $K \in C^2(\overline{\Omega}), 0 < K(x) \leq 1, K^{-1}(\max_{\overline{\Omega}} K) = \{x_0\} \subset \Omega$ with $K(x_0) = 1$, and x_0 is a nondegenerate critical point of K.

It is easy to see that

$$S_{\varepsilon,K} \to (\max_{\overline{\Omega}} K)^{-(N-2)/N} S_N = S_N$$

as $\varepsilon \to 0$, where S_N is the best Sobolev constant with respect to the embedding $H_0^1(\Omega) \hookrightarrow L^{p+1}(\Omega)$. Since S_N is never achieved on bounded domains, we have $||u_{\varepsilon}||_{L^{\infty}(\Omega)} = u_{\varepsilon}(x_{\varepsilon}) \to +\infty$ as $\varepsilon \to 0$. It is also known that the maximum point x_{ε} of u_{ε} converges to a maximum point of K in $\overline{\Omega}$. Thus under the assumption (K), we have $x_{\varepsilon} \to x_0$ as $\varepsilon \to 0$ where x_0 is the unique interior maximum point of K.

In this paper, we prove a nondegeneracy property of least energy solutions to $(P_{\varepsilon,K})$ when $\varepsilon > 0$ is sufficiently small, under the assumption (K).

Theorem 1.1 Let $\Omega \subset \mathbb{R}^N (N \geq 3)$ be a smooth bounded domain. Assume (K). Then the least energy solution u_{ε} to $(P_{\varepsilon,K})$ is nondegenerate for $\varepsilon > 0$ small, in the sense that the linearized problem around u_{ε} :

$$(L_{\varepsilon,K}) \begin{cases} -\Delta v = c_0 p_{\varepsilon} K(x) u_{\varepsilon}^{p_{\varepsilon}-1} v & \text{in } \Omega, \\ v = 0 & \text{on } \partial \Omega \end{cases}$$

admits only the trivial solution $v \equiv 0$.

When $K \equiv 1$, Grossi [6] obtained a nondegeneracy result for solutions $\{u_{\varepsilon}\}$ to $(P_{\varepsilon,K})$ satisfying

$$\frac{\int_{\Omega} |\nabla u_{\varepsilon}|^2 dx}{\left(\int_{\Omega} |u_{\varepsilon}|^{p_{\varepsilon}+1} dx\right)^{\frac{2}{p_{\varepsilon}+1}}} \to S_N \quad \text{as } \varepsilon \to 0.$$
(1.1)

It is known ([8], [10]) that a solution sequence with the property (1.1) blows up at one point in the domain, and the blow up point is a critical point of the Robin function associated to the Dirichlet Green function. Under the assumption that the blow up point is a nondegenerate critical point of the Robin function, Grossi obtained the nondegeneracy of solutions satisfying (1.1) for $\varepsilon > 0$ small. This result was former obtained in [1] when $N \ge 4$ by another method. More recently, Grossi and Pacella [7] studied the linearized eigenvalue problem associated with the blow up solutions satisfying (1.1), and obtained the same nondegeneracy result, again when $K \equiv 1$.

When $K \neq 1$, corresponding results to [1] or [7] are still not known. Main purpose of this paper is to generalize the result in [6] to the inhomogeneous case $K \neq 1$. In this case, Hebey [9] obtained the precise asymptotic behavior of least energy solutions as $\varepsilon \to 0$ under a stronger assumption than (K). We remark here that the same asymptotic result as [9] can be obtained under the assumption (K) by using the local blow up analysis of YanYan Li [11]; see Remark after Theorem 2.3.

Based on Hebey's result, we prove Theorem 1.1 with a new argument. Note that, even in the case $K \equiv 1$, our argument simplifies the proof in [6].

2 Preliminaries

In this section, we prepare some facts which are needed in the sequel. Let G = G(x, z) denote the Green function of $-\Delta$ under the Dirichlet boundary

condition:

$$\begin{cases} -\Delta G(\cdot,z) = \delta_z & \text{ in } \Omega, \\ G(\cdot,z) = 0 & \text{ on } \partial \Omega. \end{cases}$$

Define the (positive) Robin function R associated to the Green function

$$R(z) = \lim_{x \to z} \left[\frac{1}{(N-2)\sigma_N} |x-z|^{2-N} - G(x,z) \right],$$

here σ_N denotes the volume of the unit sphere in \mathbb{R}^N .

Lemma 2.1 The identities

$$\int_{\partial\Omega} ((x-z) \cdot \nu_x) \left(\frac{\partial G(x,z)}{\partial\nu_x}\right)^2 ds_x = (N-2)R(z)$$
(2.1)

and

$$\int_{\partial\Omega} \left(\frac{\partial G}{\partial x_i}\right) \frac{\partial}{\partial \nu_x} \left(\frac{\partial G}{\partial z_j}\right) (x, z) ds_x = \frac{1}{2} \frac{\partial^2 R}{\partial z_i \partial z_j} (z)$$
(2.2)

hold true for any $z \in \Omega$. Here, ν_x is the outer unit normal at $x \in \partial \Omega$.

Proof: See [2]:Theorem 4.3 for (2.1) and [6]:Lemma 3.2 for (2.2). \Box

Lemma 2.2 Let u_{ε} be a solution to $(P_{\varepsilon,K})$ and v_{ε} be a solution to $(L_{\varepsilon,K})$. Then the following identities hold true:

$$\int_{\partial\Omega} \left((x-z) \cdot \nu_x \right) \left(\frac{\partial u_{\varepsilon}}{\partial \nu_x} \right) \left(\frac{\partial v_{\varepsilon}}{\partial \nu_x} \right) ds_x = c_0 \int_{\Omega} u_{\varepsilon}^{p_{\varepsilon}} v_{\varepsilon} \left((x-z) \cdot \nabla K(x) \right) dx \quad (2.3)$$

for any $z \in \mathbb{R}^N$ and

$$\int_{\partial\Omega} \left(\frac{\partial u_{\varepsilon}}{\partial x_{i}}\right) \left(\frac{\partial v_{\varepsilon}}{\partial \nu_{x}}\right) ds_{x} = c_{0} \int_{\Omega} \left(\frac{\partial K}{\partial x_{i}}\right) u_{\varepsilon}^{p_{\varepsilon}} v_{\varepsilon} dx, \quad i = 1, 2, \cdots, N.$$
(2.4)

Proof: Set $w_{\varepsilon}(x) = (x-z) \cdot \nabla u_{\varepsilon}(x) + \frac{2}{p_{\varepsilon}-1}u_{\varepsilon}(x)$. Direct computation yields that

$$-\Delta w_{\varepsilon} = c_0 p_{\varepsilon} K(x) u_{\varepsilon}^{p_{\varepsilon}-1} w_{\varepsilon} + c_0 u_{\varepsilon}^{p_{\varepsilon}}(x-z) \cdot \nabla K(x).$$

Since v_{ε} satisfies $-\Delta v_{\varepsilon} = c_0 p_{\varepsilon} K(x) u_{\varepsilon}^{p_{\varepsilon}-1} v_{\varepsilon}$, we have

$$(\Delta v_{\varepsilon})w_{\varepsilon} - (\Delta w_{\varepsilon})v_{\varepsilon} = c_0 u_{\varepsilon}^{p_{\varepsilon}} v_{\varepsilon}(x-z) \cdot \nabla K(x).$$

Integrating this identity on Ω , using integration by parts and noting $w_{\varepsilon}(x) = (x-z) \cdot \nu_x (\frac{\partial u_{\varepsilon}}{\partial \nu_x})$ for $x \in \partial \Omega$, we have (2.3).

On the other hand, differentiating the equation in $(P_{\varepsilon,K})$ with respect to x_i , we have

$$-\Delta\left(\frac{\partial u_{\varepsilon}}{\partial x_{i}}\right) = c_{0}p_{\varepsilon}K(x)u_{\varepsilon}^{p_{\varepsilon}-1}\left(\frac{\partial u_{\varepsilon}}{\partial x_{i}}\right) + c_{0}\left(\frac{\partial K}{\partial x_{i}}\right)u_{\varepsilon}^{p_{\varepsilon}}.$$

From this equation and the equation in $(L_{\varepsilon,K})$, we obtain

$$\left(\Delta v_{\varepsilon}\right) \left(\frac{\partial u_{\varepsilon}}{\partial x_{i}}\right) - \left(\Delta \left(\frac{\partial u_{\varepsilon}}{\partial x_{i}}\right)\right) v_{\varepsilon} = c_{0} \left(\frac{\partial K}{\partial x_{i}}\right) u_{\varepsilon}^{p_{\varepsilon}} v_{\varepsilon}.$$

Finally, integration by parts yields (2.4).

Next is a part of the main theorem of [9], with a result of [11]. In what follows, we abbreviate $\|\cdot\| = \|\cdot\|_{L^{\infty}(\Omega)}$.

Theorem 2.3 (Hebey [9]) Let $\Omega \subset \mathbb{R}^N$, $N \geq 3$ be a smooth bounded domain. Assume (K). Let u_{ε} be a least energy solution to $(P_{\varepsilon,K})$ and let $x_{\varepsilon} \in \Omega$ be a point such that $u_{\varepsilon}(x_{\varepsilon}) = ||u_{\varepsilon}||$.

Then there exists a constant C > 0 independent of ε such that for any $R_{\varepsilon} \to \infty$ with $r_{\varepsilon} = R_{\varepsilon} ||u_{\varepsilon}||^{-(\frac{p_{\varepsilon}-1}{2})} \to 0$, the following estimates hold true:

$$u_{\varepsilon}(x) \leq \begin{cases} \frac{\|u_{\varepsilon}\|}{\left(1+\|u_{\varepsilon}\|^{\frac{4}{N-2}}|x-x_{\varepsilon}|^{2}\right)^{\frac{N-2}{2}}}, & for |x-x_{\varepsilon}| \leq r_{\varepsilon}, \\ \frac{C}{\|u_{\varepsilon}\|} \frac{1}{|x-x_{\varepsilon}|^{N-2}}, & for \{|x-x_{\varepsilon}| > r_{\varepsilon}\} \cap \Omega. \end{cases}$$
(2.5)

Furthermore, after passing to a subsequence, we have

$$\begin{cases} |x_{\varepsilon} - x_{0}| = O(||u_{\varepsilon}||^{-2}) & N = 3, \\ |x_{\varepsilon} - x_{0}| = o(||u_{\varepsilon}||^{-2/(N-2)}) & N \ge 4, \end{cases}$$
(2.6)

$$\lim_{\varepsilon \to 0} \|u_{\varepsilon}\|^{\varepsilon} = 1 \tag{2.7}$$

and

$$||u_{\varepsilon}||u_{\varepsilon} \to (N-2)\sigma_N G(\cdot, x_0) \quad in \ C^1(\omega)$$
(2.8)

for any neighborhood ω of $\partial\Omega$ not containing x_0 .

Remark: Hebey assumed in [9] that Ω is star-shaped with respect to a point x_0 in Ω , $K \in C^2(\overline{\Omega}), 0 < K(x) \leq 1, K(x_0) = 1$ and $(x - x_0) \cdot \nabla K(x) \leq 0$ for any $x \in \Omega$. However, crucial pointwise estimate (2.5) can be obtained by the theory of *isolated simple blow up point* due to YanYan Li [11], since in our case, the blow up point of least energy solutions has to be a unique interior maximum point of K, and thus to be an isolated simple blow up point in the sense of [11]. Once the crucial pointwise estimate (2.5) is obtained, the rest of the proof in Hebey [9] is still valid under the assumption (K).

Now, let us consider the scaled function

$$\tilde{u}_{\varepsilon}(y) := \frac{1}{\|u_{\varepsilon}\|} u_{\varepsilon} \left(\frac{y}{\|u_{\varepsilon}\|^{\frac{p_{\varepsilon}-1}{2}}} + x_{\varepsilon} \right), \quad y \in \Omega_{\varepsilon} := \|u_{\varepsilon}\|^{\frac{p_{\varepsilon}-1}{2}} (\Omega - x_{\varepsilon}).$$
(2.9)

Then $0 < \tilde{u}_{\varepsilon} \leq 1, \tilde{u}_{\varepsilon}(0) = 1$, and \tilde{u}_{ε} satisfies

$$\begin{cases} -\Delta \tilde{u}_{\varepsilon} = c_0 K_{\varepsilon}(y) \tilde{u}_{\varepsilon}^{p_{\varepsilon}} & \text{ in } \Omega_{\varepsilon}, \\ \tilde{u}_{\varepsilon} = 0 & \text{ on } \partial \Omega_{\varepsilon} \end{cases}$$

where $K_{\varepsilon}(y) = K\left(\frac{y}{\|u_{\varepsilon}\|^{\frac{p_{\varepsilon}-1}{2}}} + x_{\varepsilon}\right)$. Since $\|u_{\varepsilon}\| \to \infty$ and $x_{\varepsilon} \to x_0 \in \Omega$, we see $\Omega_{\varepsilon} \to \mathbb{R}^N$ and $K_{\varepsilon} \to K(x_0) = 1$ compact uniformly on \mathbb{R}^N as $\varepsilon \to 0$. By standard elliptic estimates, we have a subsequence denoted also by \tilde{u}_{ε} that

 $\tilde{u}_{\varepsilon} \to U$ compact uniformly in \mathbb{R}^N (2.10)

for some function U. Passing to the limit, we obtain that U is a solution of

$$\begin{cases} -\Delta U = c_0 U^p & \text{in } \mathbb{R}^N, \\ 0 < U \le 1, \ U(0) = 1, \\ \lim_{|y| \to \infty} U(y) = 0. \end{cases}$$

According to the uniqueness theorem by Caffarelli, Gidas and Spruck [4], we obtain

$$U(y) = \left(\frac{1}{1+|y|^2}\right)^{\frac{N-2}{2}}$$

Note that by (2.7), the estimate (2.5) is written as

$$\tilde{u}_{\varepsilon}(y) \leq \begin{cases} CU(y) & \text{for } \{|y| \leq R_{\varepsilon}\} \cap \Omega_{\varepsilon}, \\ C|y|^{2-N} & \text{for } \{|y| > R_{\varepsilon}\} \cap \Omega_{\varepsilon}. \end{cases}$$
(2.11)

We recall here the classification theorem by Bianchi and Egnell [3].

Lemma 2.4 Let v_0 be a solution to

$$\begin{cases} -\Delta v_0 = c_0 p U^{p-1} v_0 \quad in \mathbb{R}^N, \\ v_0 \in D^{1,2}(\mathbb{R}^N) \end{cases}$$

where $D^{1,2}(\mathbb{R}^N) = \{ v \in L^{2N/(N-2)}(\mathbb{R}^N) \mid \int_{\mathbb{R}^N} |\nabla v|^2 dy < \infty \}.$

Then there exist constants a_j $(j = 1, 2, \dots, N)$ and b in \mathbb{R} such that v_0 has the form

$$v_0 = \sum_{j=1}^{N} a_j \frac{y_j}{(1+|y|^2)^{N/2}} + b \frac{1-|y|^2}{(1+|y|^2)^{N/2}}.$$
 (2.12)

Next lemma concerns a well-known unique solvability for the linear first order PDE's with the initial condition. The proof will be done by the standard method of characteristics, so we omit it.

Lemma 2.5 Let $a = (a_1, a_2, \dots, a_N) \neq 0$ is a constant vector and $f, g \in C^1(\mathbb{R}^N)$. Let $\Gamma_a = \{x \in \mathbb{R}^N | a \cdot x = 0\}$ be the hyperplane perpendicular to a through the origin. Then there exists a unique solution of the following initial value problem of the linear first order PDE

$$\begin{aligned} a \cdot \nabla u &= f, \\ u|_{\Gamma_a} &= g. \end{aligned}$$

More precisely, this solution is obtained as

$$u(x) = \int_0^{\phi(x)} f(\tau a + \alpha(\psi(x)))d\tau + g(\alpha(\psi(x))), \quad x \in \mathbb{R}^N$$

where

$$\phi(x) = \frac{a \cdot x}{|a|^2}, \quad \psi(x) = (\psi_1(x), \cdots, \psi_{N-1}(x)),$$

$$\psi_j(x) = \frac{|a|^2 x_j - (a \cdot x) a_j}{|a|^2}, (j = 1, \cdots, N-1)$$

$$\alpha(s) = (s, -\frac{1}{a_N} \sum_{j=1}^{N-1} a_j s_j) \in \mathbb{R}^N, \quad s = (s_1, \cdots, s_{N-1}) \in \mathbb{R}^{N-1},$$

if we assume (w.l.o.g) $a_N \neq 0$. Furthermore, if $f(x) = O(|x|^{\beta}), g(x) = O(|x|^{\beta})$ as $|x| \to \infty$, then $u(x) = O(|x|^{\beta+1})$ as $|x| \to \infty$.

3 The nondegeneracy result

In this section, we will prove Theorem 1.1. In the course of proof, we need precise estimates and a new argument which are not in [6].

We argue by contradiction and assume that there exists a non-trivial solution v_{ε} to $(L_{\varepsilon,K})$ satisfying $||v_{\varepsilon}|| = ||u_{\varepsilon}||$ for any $\varepsilon > 0$, without loss of generality.

Let us consider the scaled function

$$\tilde{v}_{\varepsilon}(y) := \frac{1}{\|u_{\varepsilon}\|} v_{\varepsilon} \left(\frac{y}{\|u_{\varepsilon}\|^{\frac{p_{\varepsilon}-1}{2}}} + x_{\varepsilon} \right), \quad y \in \Omega_{\varepsilon} = \|u_{\varepsilon}\|^{\frac{p_{\varepsilon}-1}{2}} (\Omega - x_{\varepsilon}).$$
(3.1)

Then $0 < \tilde{v}_{\varepsilon} \leq 1$ and \tilde{v}_{ε} satisfies

$$\begin{cases} -\Delta \tilde{v}_{\varepsilon} = c_{\varepsilon}(y)\tilde{v}_{\varepsilon} & \text{ in } \Omega_{\varepsilon}, \\ \tilde{v}_{\varepsilon} = 0 & \text{ on } \partial\Omega_{\varepsilon}, \\ \|\tilde{v}_{\varepsilon}\|_{L^{\infty}(\Omega_{\varepsilon})} = 1 \end{cases}$$
(3.2)

where $c_{\varepsilon}(y) := c_0 p_{\varepsilon} K_{\varepsilon}(y) \tilde{u}_{\varepsilon}^{p_{\varepsilon}-1}(y)$. By $\|\tilde{v}_{\varepsilon}\|_{L^{\infty}(\Omega_{\varepsilon})} = 1$ and the elliptic estimate, we see there exists v_0 such that

 $\tilde{v}_{\varepsilon} \to v_0$ uniformly on compact subsets of \mathbb{R}^N (3.3) les

and v_0 satisfies

$$-\Delta v_0 = c_0 p U^{p-1} v_0 \quad \text{in } \mathbb{R}^N.$$

Now, we claim that

$$\int_{\mathbb{R}^N} |\nabla v_0|^2 dy \le C \tag{3.4}$$

for some C > 0.

Indeed, let $0 < \delta < \min(2, 4/(N-2) - 2\varepsilon)$. By (3.2) and the Sobolev inequality, we have

$$S_N\left(\int_{\Omega_{\varepsilon}} |\tilde{v}_{\varepsilon}|^{p+1} dy\right)^{2/(p+1)} \leq \int_{\Omega_{\varepsilon}} |\nabla \tilde{v}_{\varepsilon}|^2 dy = \int_{\Omega_{\varepsilon}} c_{\varepsilon}(y) \tilde{v}_{\varepsilon}^2 dy \leq \int_{\Omega_{\varepsilon}} |c_{\varepsilon}(y)| |\tilde{v}_{\varepsilon}|^{2-\delta} dy$$

here, the last inequality comes from the fact that $\|\tilde{v}_{\varepsilon}\|_{L^{\infty}(\Omega_{\varepsilon})} \leq 1$. Now, by the Hölder inequality and (2.11), we have

$$\begin{split} \int_{\Omega_{\varepsilon}} |c_{\varepsilon}(y)| |\tilde{v}_{\varepsilon}|^{2-\delta} dy &\leq \left(\int_{\Omega_{\varepsilon}} |\tilde{v}_{\varepsilon}|^{p+1} dy \right)^{(2-\delta)/(p+1)} \left(\int_{\Omega_{\varepsilon}} |c_{\varepsilon}(y)|^{(p+1)/(p-1+\delta)} dy \right)^{(p-1+\delta)/(p+1)} \\ &\leq C \left(\int_{\Omega_{\varepsilon}} |\tilde{v}_{\varepsilon}|^{p+1} dy \right)^{(2-\delta)/(p+1)} \left(\int_{\Omega_{\varepsilon}} U(y)^{(p_{\varepsilon}-1)(p+1)/(p-1+\delta)} dy \right)^{(p-1+\delta)/(p+1)}, \end{split}$$

thus we obtain

$$\left(\int_{\Omega_{\varepsilon}} |\tilde{v}_{\varepsilon}|^{p+1} dy\right)^{\delta/(p+1)} \le C \left(\int_{\mathbb{R}^N} U(y)^{(p_{\varepsilon}-1)(p+1)/(p-1+\delta)} dy\right)^{(p-1+\delta)/(p+1)}$$

Note that $(N-2)(p_{\varepsilon}-1)(p+1)/(p-1+\delta) > N$ if $\delta < 4/(N-2) - 2\varepsilon$, so the last integral is bounded by a constant. Therefore, we have

$$\int_{\Omega_{\varepsilon}} |\tilde{v}_{\varepsilon}|^{p+1} dy \le C.$$
(3.5)

Finally, again by the Hölder inequality, (3.5) and (2.11), we have

$$\begin{split} &\int_{\Omega_{\varepsilon}} |\nabla \tilde{v}_{\varepsilon}|^{2} dy \leq \int_{\Omega_{\varepsilon}} c_{\varepsilon}(y) |\tilde{v}_{\varepsilon}|^{2-\delta} dy \\ &\leq \left(\int_{\Omega_{\varepsilon}} |\tilde{v}_{\varepsilon}|^{p+1} dy \right)^{(2-\delta)/(p+1)} \left(\int_{\Omega_{\varepsilon}} |c_{\varepsilon}(y)|^{(p+1)/(p-1+\delta)} dy \right)^{(p-1+\delta)/(p+1)} \\ &\leq C. \end{split}$$

Thus we have confirmed

$$\int_{\Omega_{\varepsilon}} |\nabla \tilde{v}_{\varepsilon}|^2 dy \le C \tag{3.6}$$

for some C > 0 independent of $\varepsilon > 0$. (3.6) and Fatou's lemma implies (3.4). Now, by (3.4) and Lemma 2.4, we have (2.12), i.e.

$$v_0 = \sum_{j=1}^{N} a_j \frac{y_j}{(1+|y|^2)^{N/2}} + b \frac{1-|y|^2}{(1+|y|^2)^{N/2}}.$$
(3.7)

In the following, we divide the proof into several steps.

Step 1. b = 0 in (3.7).

Step 2. $a_j = 0, j = 1, \cdots, N$ in (3.7).

Step 3. $v_0 = 0$ leads to a contradiction.

In the sequel, we need the following pointwise estimate for \tilde{v}_{ε} .

Lemma 3.1 Let \tilde{v}_{ε} be a solution of (3.2). Then we have the estimate

$$|\tilde{v}_{\varepsilon}(y)| \le C \left(\frac{1}{1+|y|^2}\right)^{(N-2)/2}, \quad \forall y \in \Omega_{\varepsilon}$$
(3.8)

for some C > 0.

Proof: Consider the Kelvin transformation of \tilde{v}_{ε} :

$$\tilde{v}_{\varepsilon}^{*}(z) = |z|^{2-N} \tilde{v}_{\varepsilon}(\frac{z}{|z|^{2}}), \quad z \in \Omega_{\varepsilon}^{*} := \{\frac{y}{|y|^{2}} : y \in \Omega_{\varepsilon}\}.$$
(3.9)

To prove (3.8), it will be enough to show that $|\tilde{v}_{\varepsilon}^*|$ is bounded in $B(0, R) \cap \Omega_{\varepsilon}^*$ for some R > 0, since $|\tilde{v}_{\varepsilon}(y)| \leq 1$ for $y \in \Omega_{\varepsilon}$, |y| small. Direct calculation shows that

$$\Delta_{z} \tilde{v}_{\varepsilon}^{*}(z) = |z|^{-2-N} \Delta_{y} \tilde{v}_{\varepsilon}(y), \quad z \in \Omega_{\varepsilon}^{*},$$
$$\int_{\Omega_{\varepsilon}^{*}} |\tilde{v}_{\varepsilon}^{*}|^{p+1} dz = \int_{\Omega_{\varepsilon}} |\tilde{v}_{\varepsilon}|^{p+1} dy.$$

Thus by (3.2), $\tilde{v}_{\varepsilon}^*$ satisfies the equation

$$\begin{cases} -\Delta \tilde{v}_{\varepsilon}^{*} = |z|^{-4} c_{\varepsilon} (\frac{z}{|z|^{2}}) \tilde{v}_{\varepsilon}^{*} & \text{in } \Omega_{\varepsilon}^{*}, \\ \tilde{v}_{\varepsilon}^{*} = 0 & \text{on } \partial \Omega_{\varepsilon}^{*}. \end{cases}$$
(3.10)

We claim that

$$a_{\varepsilon}(z) := |z|^{-4} c_{\varepsilon}(\frac{z}{|z|^2}) \in L^{\infty}(\Omega_{\varepsilon}^*).$$
(3.11)

Indeed, since $\Omega_{\varepsilon} \subset B(0, \gamma || u_{\varepsilon} ||^{(p_{\varepsilon}-1)/2})$ for some $\gamma > 0$, the domain Ω_{ε}^* satisfies $\Omega_{\varepsilon}^* \subset \mathbb{R}^N \setminus B(0, \frac{1}{\gamma || u_{\varepsilon} ||^{(p_{\varepsilon}-1)/2}})$. By (2.11), we have

$$|c_{\varepsilon}(y)| \le CU^{p_{\varepsilon}-1}(y) \text{ for } y \in \Omega_{\varepsilon}.$$

Therefore, we have

$$|z|^{-4}c_{\varepsilon}\left(\frac{z}{|z|^{2}}\right) \leq C|z|^{-4} \left(\frac{|z|^{2}}{1+|z|^{2}}\right)^{\left(\frac{N-2}{2}\right)(p_{\varepsilon}-1)}$$
$$= C|z|^{-4+(N-2)(p_{\varepsilon}-1)} \frac{1}{(1+|z|^{2})^{2-\varepsilon(\frac{N-2}{2})}}$$
$$\leq C|z|^{-4+(N-2)(p_{\varepsilon}-1)} = C|z|^{-\varepsilon(N-2)}$$

Since $|z| \ge \frac{1}{\gamma \|u_{\varepsilon}\|^{(p_{\varepsilon}-1)/2}}$ for $z \in \Omega_{\varepsilon}^*$, we have

$$|z|^{-\varepsilon(N-2)} \le \gamma^{\varepsilon(N-2)} ||u_{\varepsilon}||^{\varepsilon(N-2)(p_{\varepsilon}-1)/2} \to 1$$

as $\varepsilon \to 0$ by (2.7). From these, we confirm that the claim (3.11). Now, for any R > 0, we have

$$\int_{\Omega_{\varepsilon}^{*}\cap B(0,2R)} |\tilde{v}_{\varepsilon}^{*}|^{p+1} dz \leq \int_{\Omega_{\varepsilon}^{*}} |\tilde{v}_{\varepsilon}^{*}|^{p+1} dz = \int_{\Omega_{\varepsilon}} |\tilde{v}_{\varepsilon}|^{p+1} dy$$
$$\leq \left(S_{N}^{-1} \int_{\Omega_{\varepsilon}} |\nabla \tilde{v}_{\varepsilon}|^{2} dy \right)^{(p+1)/2} \leq C,$$

here we have used the Sobolev inequality and (3.6). Then by a result of classical elliptic regularity ([5] Theorem 8.17), we obtain

$$\sup_{B(0,R)\cap\Omega_{\varepsilon}^{*}} |\tilde{v}_{\varepsilon}^{*}| \leq C \left[\frac{1}{R^{N}} \int_{B(0,2R)\cap\Omega} |\tilde{v}_{\varepsilon}^{*}|^{p+1} dz \right]^{1/(p+1)} \leq C$$

for some R > 0.

By Lemma 3.1, we have the following convergence result.

Lemma 3.2 Let $\omega \subset \Omega$ be any neighborhood of $\partial \Omega$ not containing x_0 . Then we have

$$||u_{\varepsilon}||v_{\varepsilon} \to -(N-2)\sigma_N bG(\cdot, x_0) \quad in \ C^1(\omega).$$
(3.12)

Proof: We see

$$-\Delta\left(\|u_{\varepsilon}\|v_{\varepsilon}\right) = \|u_{\varepsilon}\|c_0p_{\varepsilon}K(x)u_{\varepsilon}^{p_{\varepsilon}-1}v_{\varepsilon} =: f_{\varepsilon}(x)$$
(3.13)

for $x \in \Omega$ with the boundary condition $||u_{\varepsilon}||v_{\varepsilon} = 0$ on $\partial\Omega$. By using (2.11), (3.8), (2.7) and the dominated convergence theorem, we obtain

$$\begin{split} \int_{\Omega} f_{\varepsilon}(x) dx &= c_0 p_{\varepsilon} \| u_{\varepsilon} \|^{p_{\varepsilon} + 1 - (\frac{p_{\varepsilon} - 1}{2})N} \int_{\Omega_{\varepsilon}} K_{\varepsilon}(y) \tilde{u}_{\varepsilon}^{p_{\varepsilon} - 1}(y) \tilde{v}_{\varepsilon}(y) dy \\ &\to c_0 p \int_{\mathbb{R}^N} U^{p-1} v_0 dy = c_0 p b \int_{\mathbb{R}^N} \frac{1 - |y|^2}{(1 + |y|^2)^{N/2 + 2}} dy \\ &= c_0 p b \sigma_N \left(\int_0^{\infty} \frac{r^{N-1}}{(1 + r^2)^{N/2 + 2}} dr - \int_0^{\infty} \frac{r^{N+1}}{(1 + r^2)^{N/2 + 2}} dr \right) \\ &= -(N - 2) b \sigma_N. \end{split}$$

Note that the integral involving the a_j terms of v_0 must vanish by the oddness of the integrand. Last integral can be computed by the formula

$$\int_0^\infty \frac{r^\alpha}{(1+r^2)^\beta} dr = \frac{\Gamma((\alpha+1)/2)\Gamma(\beta-(\alpha+1)/2)}{2\Gamma(\beta)}$$

where $\alpha > 0, \beta > 0$ with $\beta - (\alpha + 1)/2 > 0$. Furthermore, for any $x \neq x_0$, we have by (2.5) and (3.8),

$$f_{\varepsilon}(x) \leq C \|u_{\varepsilon}\| \frac{\|u_{\varepsilon}\|^{p_{\varepsilon}}}{\left(1 + \|u_{\varepsilon}\|^{\frac{4}{N-2}} |x - x_{\varepsilon}|^{2}\right)^{\frac{N-2}{2}p_{\varepsilon}}}$$
$$\leq C \frac{\|u_{\varepsilon}\|^{-(p_{\varepsilon}-1)}}{|x - x_{\varepsilon}|^{(N-2)p_{\varepsilon}}} \to 0$$

since $-(p_{\varepsilon}-1) = -4/(N-2) + \varepsilon < 0$ for $\varepsilon > 0$ small. In conclusion, we confirm that

$$f_{\varepsilon} \to -(N-2)\sigma_N b\delta_{x_0}$$
 (3.14)

in the sense of distributions. On the other hand, from the equation (3.13) with the boundary condition, we have the uniform boundary $C^{1,\alpha}$ -estimate ([8] Lemma 2)

$$\|\|u_{\varepsilon}\|v_{\varepsilon}\|_{C^{1,\alpha}(\omega)} \leq C(\omega) \left(\|f_{\varepsilon}\|_{L^{1}(\Omega)} + \|f_{\varepsilon}\|_{L^{\infty}(\omega')}\right),$$

here $\omega \subset \omega'$ is a neighborhood of $\partial\Omega$ not containing 0. Since the RHS of the above estimate is bounded by a constant independent of ε , Ascoli-Arzelà theorem implies that the function $||u_{\varepsilon}||v_{\varepsilon}$ converges to some function in $C^{1,\alpha}$ -topology. Finally, (3.14) implies that this limit function is $-(N - 2)\sigma_N bG(x, x_0)$.

Assume for the moment that the proof of Step 1 and Step 2 is finished. Then the proof of Step 3 is as follows. By Step 1 and Step 2, we deduce that $\lim_{\varepsilon \to 0} \tilde{v}_{\varepsilon} = v_0 \equiv 0$. Since $\|\tilde{v}_{\varepsilon}\|_{L^{\infty}(\Omega_{\varepsilon})} = 1$, there exists $y_{\varepsilon} \in \Omega_{\varepsilon}$ such that $\tilde{v}_{\varepsilon}(y_{\varepsilon}) = 1$. Since $\tilde{v}_{\varepsilon} \to v_0 \equiv 0$ uniformly on compact sets of \mathbb{R}^N , we must have $|y_{\varepsilon}| \to \infty$. But this is not possible because of Lemma 3.1.

Proof of Step 1.

First, we treat the case N = 3 or N = 4. Putting $z = x_0$ in (2.3) and multiplying $||u_{\varepsilon}||^2$, we have

$$\int_{\partial\Omega} ((x - x_0) \cdot \nu_x) \left(\frac{\partial \|u_{\varepsilon}\|u_{\varepsilon}}{\partial \nu_x} \right) \left(\frac{\partial \|u_{\varepsilon}\|v_{\varepsilon}}{\partial \nu_x} \right) ds_x$$
$$= c_0 \|u_{\varepsilon}\|^2 \int_{\Omega} u_{\varepsilon}^{p_{\varepsilon}} v_{\varepsilon}(x) (x - x_0) \cdot \nabla K(x) dx.$$
(3.15)

By Theorem 2.3 (2.8) and (3.12), we see

(LHS) of (3.15)
$$\rightarrow -(N-2)^2 \sigma_N^2 b \int_{\partial\Omega} ((x-x_0) \cdot \nu_x) \left(\frac{\partial G(x,x_0)}{\partial\nu_x}\right)^2 ds_x$$

= $-(N-2)^3 \sigma_N^2 b R(x_0)$ (3.16)

as $\varepsilon \to 0$. Here we have used (2.1) in Lemma 2.1.

Also by Taylor's theorem, we have

$$K(x) = 1 + \frac{1}{2} \sum_{i,j=1}^{N} b_{ij}(x_i - x_{0i})(x_j - x_{0j}) + O(|x - x_0|^3)$$

and

$$\frac{\partial K}{\partial x_j}(x) = \sum_{i=1}^N b_{ij}(x_i - x_{0i}) + O(|x - x_0|^2)$$

where $b_{ij} = \frac{\partial^2 K}{\partial x_i \partial x_j}(x_0)$. Thus

$$(x - x_0) \cdot \nabla K(x) = \sum_{i,j=1}^{N} b_{ij}(x_i - x_{0i})(x_j - x_{0j}) + O(|x - x_0|^3).$$

When N = 3, we write

(RHS) of (3.15)
=
$$||u_{\varepsilon}||^2 \int_{\Omega} u_{\varepsilon}^{p_{\varepsilon}} v_{\varepsilon} O(|x - x_{\varepsilon}|^2) dx + ||u_{\varepsilon}||^2 \int_{\Omega} u_{\varepsilon}^{p_{\varepsilon}} v_{\varepsilon} O(|x_{\varepsilon} - x_0|^2) dx$$

=: $A_1 + A_2$.

By a change of variables, we see

$$|A_1| \le ||u_{\varepsilon}||^2 \int_{\Omega} u_{\varepsilon}^{p_{\varepsilon}} |v_{\varepsilon}| O(|x - x_{\varepsilon}|^2) dx$$

= $||u_{\varepsilon}||^{3 + p_{\varepsilon} - (\frac{p_{\varepsilon} - 1}{2})N - (p_{\varepsilon} - 1)} \int_{\Omega_{\varepsilon}} O(|y|^2) \tilde{u}_{\varepsilon}^{p_{\varepsilon}}(y) |\tilde{v}_{\varepsilon}(y)| dy.$

By (2.11), (3.8), (2.7) and the dominated convergence theorem, we have

$$\int_{\Omega_{\varepsilon}} O(|y|^2) \tilde{u}_{\varepsilon}^{p_{\varepsilon}}(y) |\tilde{v}_{\varepsilon}(y)| dy \to \int_{\mathbb{R}^N} O(|y|^2) U^p(y) |v_0(y)| dy$$

which is finite if $N \geq 3$. On the other hand, the exponent of $||u_{\varepsilon}||$ is $3 + p_{\varepsilon} - (\frac{p_{\varepsilon}-1}{2})N - (p_{\varepsilon}-1) = (2N-8)/(N-2) + \varepsilon N/2 < 0$ when N = 3 and $\varepsilon > 0$ small, thus $A_1 \to 0$ as $\varepsilon \to 0$. Similarly by Theorem 2.3 (2.6) and the dominated convergence theorem, we see

$$A_{2} = \|u_{\varepsilon}\|^{2} \int_{\Omega} u_{\varepsilon}^{p_{\varepsilon}} v_{\varepsilon} O(|x_{\varepsilon} - x_{0}|^{2}) dx$$

$$= \|u_{\varepsilon}\|^{2} \times \left(\int_{\mathbb{R}^{N}} U^{p} v_{0}(y) dy + o(1) \right) \times O\left(\|u_{\varepsilon}\|^{-4} \right)$$

$$= o(1)$$

as $\varepsilon \to 0$. Thus together with (3.16), we have

$$-\sigma_3^2 b R(x_0) = 0$$

when N = 3, which leads to b = 0.

When N = 4, we write

(RHS) of (3.15) =
$$c_0 \|u_{\varepsilon}\|^2 \int_{\Omega} u_{\varepsilon}^{p_{\varepsilon}} v_{\varepsilon}(x) \sum_{i,j=1}^{N} b_{ij}(x_i - x_{0i})(x_j - x_{0j}) dx$$

+ $\|u_{\varepsilon}\|^2 \int_{\Omega} u_{\varepsilon}^{p_{\varepsilon}} v_{\varepsilon}(x) O(|x - x_0|^3) dx.$

As before, by Theorem 2.3 (2.6), we see

$$\begin{split} \|u_{\varepsilon}\|^{2} \int_{\Omega} u_{\varepsilon}^{p_{\varepsilon}} v_{\varepsilon}(x) O(|x-x_{0}|^{3}) dx \\ &= \|u_{\varepsilon}\|^{2} \int_{\Omega} u_{\varepsilon}^{p_{\varepsilon}} v_{\varepsilon}(x) O(|x-x_{\varepsilon}|^{3}) dx + \|u_{\varepsilon}\|^{2} \int_{\Omega} u_{\varepsilon}^{p_{\varepsilon}} v_{\varepsilon}(x) O(|x_{\varepsilon}-x_{0}|^{3}) dx \\ &= \|u_{\varepsilon}\|^{3+p_{\varepsilon}-(\frac{p_{\varepsilon}-1}{2})N-3(\frac{p_{\varepsilon}-1}{2})} \left(\int_{\mathbb{R}^{N}} O(|y|^{3}) U^{p}(y) |v_{0}(y)| dy + o(1) \right) \\ &+ \|u_{\varepsilon}\|^{2} \times \left(\int_{\mathbb{R}^{N}} U^{p}(y) |v_{0}(y)| dy + o(1) \right) \times o(\|u_{\varepsilon}\|^{-3}) \\ &= o(1) \end{split}$$

as $\varepsilon \to 0$, since $3 + p_{\varepsilon} - (\frac{p_{\varepsilon}-1}{2})N - 3(\frac{p_{\varepsilon}-1}{2}) = \frac{2(N-5)}{N-2} + \varepsilon \frac{N+1}{2} < 0$ for N = 4 and $\varepsilon > 0$ small.

On the other hand, by a change of variables, we have

$$c_0 \|u_{\varepsilon}\|^2 \int_{\Omega} u_{\varepsilon}^{p_{\varepsilon}} v_{\varepsilon}(x) \sum_{i,j=1}^N b_{ij}(x_i - x_{0i})(x_j - x_{0j}) dx$$

$$= c_0 \|u_{\varepsilon}\|^{3+p_{\varepsilon}-(\frac{p_{\varepsilon}-1}{2})N} \int_{\Omega_{\varepsilon}} \tilde{u}_{\varepsilon}^{p_{\varepsilon}} \tilde{v}_{\varepsilon}(y) \times$$

$$\sum_{i,j=1}^N b_{ij} \left(\frac{y_i}{\|u_{\varepsilon}\|^{\frac{p_{\varepsilon}-1}{2}}} + x_{\varepsilon i} - x_{0i} \right) \left(\frac{y_j}{\|u_{\varepsilon}\|^{\frac{p_{\varepsilon}-1}{2}}} + x_{\varepsilon j} - x_{0j} \right) dy$$

$$=: B_1 + B_2 + B_3$$

where

$$B_{1} = c_{0} \|u_{\varepsilon}\|^{3+p_{\varepsilon}-(\frac{p_{\varepsilon}-1}{2})N-(p_{\varepsilon}-1)} \int_{\Omega_{\varepsilon}} \tilde{u}_{\varepsilon}^{p_{\varepsilon}} \tilde{v}_{\varepsilon}(y) \sum_{i,j=1}^{N} b_{ij} y_{i} y_{j} dy,$$

$$B_{2} = 2c_{0} \|u_{\varepsilon}\|^{3+p_{\varepsilon}-(\frac{p_{\varepsilon}-1}{2})N-(\frac{p_{\varepsilon}-1}{2})} \int_{\Omega_{\varepsilon}} \tilde{u}_{\varepsilon}^{p_{\varepsilon}} \tilde{v}_{\varepsilon}(y) \sum_{i,j=1}^{N} b_{ij} y_{i} (x_{\varepsilon j} - x_{0j}) dy,$$

$$B_{3} = c_{0} \|u_{\varepsilon}\|^{3+p_{\varepsilon}-(\frac{p_{\varepsilon}-1}{2})N} \int_{\Omega_{\varepsilon}} \tilde{u}_{\varepsilon}^{p_{\varepsilon}} \tilde{v}_{\varepsilon}(y) \sum_{i,j=1}^{N} b_{ij} (x_{\varepsilon i} - x_{0i}) (x_{\varepsilon j} - x_{0j}) dy.$$

The exponents are

$$3 + p_{\varepsilon} - \left(\frac{p_{\varepsilon} - 1}{2}\right)N - \left(p_{\varepsilon} - 1\right) = 2\varepsilon,$$

$$3 + p_{\varepsilon} - \left(\frac{p_{\varepsilon} - 1}{2}\right)N - \left(\frac{p_{\varepsilon} - 1}{2}\right) = 1 + (3/2)\varepsilon,$$

$$3 + p_{\varepsilon} - \left(\frac{p_{\varepsilon} - 1}{2}\right)N = 2 + \varepsilon$$

when N = 4. Thus by Theorem 2.3 (2.6), (2.7) and the dominated convergence theorem as before, we see

$$|B_2| \le 2c_0 ||u_{\varepsilon}||^{1+\frac{3}{2}\varepsilon} \left| \int_{\Omega_{\varepsilon}} \tilde{u}_{\varepsilon}^{p_{\varepsilon}} \tilde{v}_{\varepsilon}(y) \sum_{i,j=1}^N b_{ij} y_i dy \right| o(||u_{\varepsilon}||^{-1})$$
$$= o(||u_{\varepsilon}||^{(3/2)\varepsilon}) = o(1) \quad \text{as } \varepsilon \to 0$$

and

$$|B_3| \le c_0 ||u_{\varepsilon}||^{2+\varepsilon} \left| \int_{\Omega_{\varepsilon}} \tilde{u}_{\varepsilon}^{p_{\varepsilon}} \tilde{v}_{\varepsilon}(y) dy \right| o(||u_{\varepsilon}||^{-2})$$

= $o(||u_{\varepsilon}||^{\varepsilon}) = o(1)$ as $\varepsilon \to 0$.

Now, we treat the term B_1 . By (2.11), (3.8), (2.7) and the dominated convergence theorem as before, we have

$$\begin{split} B_1 &= c_0 ||u_{\varepsilon}||^{2\varepsilon} \int_{\Omega_{\varepsilon}} \tilde{u}_{\varepsilon}^{p_{\varepsilon}} \tilde{v}_{\varepsilon}(y) \sum_{i,j=1}^{N} b_{ij} y_i y_j dy \\ &\to c_0 \int_{\mathbb{R}^N} U^p(y) v_0(y) \sum_{i,j=1}^{N} b_{ij} y_i y_j dy \\ &= c_0 \int_{\mathbb{R}^N} U^p(y) b \frac{1 - |y|^2}{(1 + |y|^2)^{N/2}} \sum_{i,j=1}^{N} b_{ij} y_i y_j dy \\ &= c_0 \int_{\mathbb{R}^N} U^p(y) b \frac{1 - |y|^2}{(1 + |y|^2)^{N/2}} \sum_{i=1}^{N} b_{ii} y_i^2 dy \\ &= \frac{c_0}{N} \int_{\mathbb{R}^N} U^p(y) b \frac{1 - |y|^2}{(1 + |y|^2)^{N/2}} \Delta K(x_0) |y|^2 dy \\ &= (N - 2) b \Delta K(x_0) \left(\int_{\mathbb{R}^N} \frac{|y|^2}{(1 + |y|^2)^{N+1}} dy - \int_{\mathbb{R}^N} \frac{|y|^4}{(1 + |y|^2)^{N+1}} dy \right) \\ &= (N - 2) b \Delta K(x_0) \times -\sigma_N \frac{\Gamma(\frac{N}{2} + 1) \Gamma(\frac{N}{2} - 1)}{\Gamma(N + 1)} \\ &= -\frac{b \Delta K(x_0) \sigma_4}{6} \quad \text{when } N = 4. \end{split}$$

Note that by the oddness of the integrand,

$$\int_{\mathbb{R}^N} U^p(y) \frac{1}{(1+|y|^2)^{N/2}} y_i y_j y_k dy = 0$$

for any $i, j, k \in \{1, \dots, N\}$, so the integral involving a_j terms in v_0 must vanish.

Returning to (3.16), we obtain

$$-8\sigma_4^2 bR(x_0) = -\frac{b\Delta K(x_0)\sigma_4}{6}.$$

Since $\Delta K(x_0) \leq 0$ and $R(x_0) > 0$, we conclude that b = 0 when N = 4.

Next, we treat the case $N \ge 5$. In this case, we multiply (2.3) by $||u_{\varepsilon}||^{\frac{4}{N-2}}$ to get

$$\|u_{\varepsilon}\|^{\frac{4}{N-2}-2} \int_{\partial\Omega} ((x-x_{0}) \cdot \nu_{x}) \left(\frac{\partial \|u_{\varepsilon}\|u_{\varepsilon}}{\partial\nu_{x}}\right) \left(\frac{\partial \|u_{\varepsilon}\|v_{\varepsilon}}{\partial\nu_{x}}\right) ds_{x}$$
$$= c_{0} \|u_{\varepsilon}\|^{\frac{4}{N-2}} \int_{\Omega} u_{\varepsilon}^{p_{\varepsilon}} v_{\varepsilon}(x)(x-x_{0}) \cdot \nabla K(x) dx.$$
(3.17)

Since $\frac{4}{N-2} < 2$ if $N \ge 5$, the LHS of (3.17) converges to 0 as $\varepsilon \to 0$. On the other hand, by Taylor's formula and the change of variables, we write

(RHS) of (3.17) =:
$$C_1 + C_2 + C_3 + C_4$$

where

$$\begin{split} C_1 &= c_0 \|u_{\varepsilon}\|^{\frac{4}{N-2}+p_{\varepsilon}+1-(\frac{p_{\varepsilon}-1}{2})N-(p_{\varepsilon}-1)} \int_{\Omega_{\varepsilon}} \tilde{u}_{\varepsilon}^{p_{\varepsilon}} \tilde{v}_{\varepsilon}(y) \sum_{i,j=1}^{N} b_{ij} y_i y_j dy, \\ C_2 &= 2c_0 \|u_{\varepsilon}\|^{\frac{4}{N-2}+p_{\varepsilon}+1-(\frac{p_{\varepsilon}-1}{2})N-(\frac{p_{\varepsilon}-1}{2})} \int_{\Omega_{\varepsilon}} \tilde{u}_{\varepsilon}^{p_{\varepsilon}} \tilde{v}_{\varepsilon}(y) \sum_{i,j=1}^{N} b_{ij} y_i (x_{\varepsilon j} - x_{0j}) dy, \\ C_3 &= c_0 \|u_{\varepsilon}\|^{\frac{4}{N-2}+p_{\varepsilon}+1-(\frac{p_{\varepsilon}-1}{2})N} \int_{\Omega_{\varepsilon}} \tilde{u}_{\varepsilon}^{p_{\varepsilon}} \tilde{v}_{\varepsilon}(y) \sum_{i,j=1}^{N} b_{ij} (x_{\varepsilon i} - x_{0i}) (x_{\varepsilon j} - x_{0j}) dy, \\ C_4 &= c_0 \|u_{\varepsilon}\|^{\frac{4}{N-2}+p_{\varepsilon}+1-(\frac{p_{\varepsilon}-1}{2})N} \int_{\Omega_{\varepsilon}} \tilde{u}_{\varepsilon}^{p_{\varepsilon}} \tilde{v}_{\varepsilon}(y) \left(O\left(\left| \frac{y}{\|u_{\varepsilon}\|^{\frac{p_{\varepsilon}-1}{2}}} + x_{\varepsilon} - x_0 \right|^3 \right) \right) dy. \end{split}$$

Again by (2.11), (3.8), (2.7), (2.6) and the dominated convergence theorem, we see

$$\begin{split} C_{2} &= O(\|u_{\varepsilon}\|^{\frac{2}{N-2} + \frac{N-1}{2}\varepsilon}) \times O\left(\int_{\mathbb{R}^{N}} U^{p}v_{0}(y)|y|dy + o(1)\right) \times o(\|u_{\varepsilon}\|^{-\frac{2}{N-2}}) = o(1), \\ C_{3} &= O(\|u_{\varepsilon}\|^{\frac{4}{N-2} + \frac{N-2}{2}\varepsilon}) \times O\left(\int_{\mathbb{R}^{N}} U^{p}v_{0}(y)dy + o(1)\right) \times o(\|u_{\varepsilon}\|^{-\frac{4}{N-2}}) = o(1), \\ C_{4} &= O(\|u_{\varepsilon}\|^{\frac{4}{N-2} + \frac{N-2}{2}\varepsilon}) \int_{\Omega_{\varepsilon}} \tilde{u}_{\varepsilon}^{p_{\varepsilon}} \tilde{v}_{\varepsilon}(y) \left(O\left(\left|\frac{y}{\|u_{\varepsilon}\|^{\frac{p_{\varepsilon}-1}{2}}}\right|^{3}\right) + O(|x_{\varepsilon} - x_{0}|^{3})\right) \\ &= O(\|u_{\varepsilon}\|^{\frac{4}{N-2}}) \times O(\|u_{\varepsilon}\|^{-\frac{6}{N-2}}) \times O\left(\int_{\mathbb{R}^{N}} U^{p}v_{0}(y)(|y|^{3} + 1)dy + o(1)\right) \\ &= O(\|u_{\varepsilon}\|^{-\frac{2}{N-2}}) \end{split}$$

as $\varepsilon \to 0$. As for C_1 , we see just as in the estimate of B_1 ,

$$C_{1} = c_{0} \|u_{\varepsilon}\|^{(N/2)\varepsilon} \int_{\Omega_{\varepsilon}} \tilde{u}_{\varepsilon}^{p_{\varepsilon}} \tilde{v}_{\varepsilon}(y) \sum_{i,j=1}^{N} b_{ij} y_{i} y_{j} dy$$
$$\rightarrow = -(N-2)b\Delta K(x_{0})\sigma_{N} \frac{\Gamma(\frac{N}{2}+1)\Gamma(\frac{N}{2}-1)}{\Gamma(N+1)}.$$

Thus letting $\varepsilon \to 0$ in (3.17), we have

$$0 = \Delta K(x_0) \times b.$$

Hence we obtain b = 0, because our nondegeneracy assumption of x_0 assures that $\Delta K(x_0) < 0$ strictly. This proves step 1 for all cases.

Proof of Step 2.

In this step, we prove $a_j = 0, j = 1, 2, \dots, N$ in (3.7). For this purpose, we need a lemma, which is not in [6].

Lemma 3.3 Assume b = 0 and $a = (a_1, \dots, a_N) \neq 0$ in (3.7). Then we have

$$\|u_{\varepsilon}\|^{N/(N-2)}v_{\varepsilon} \to \sigma_N \sum_{j=1}^N a_j \left(\frac{\partial G}{\partial z_j}(x,z)\right)\Big|_{z=x_0}$$

in $C^1_{loc}(\overline{\Omega} \setminus \{x_0\})$.

Proof. For any $x \in \overline{\Omega} \setminus \{x_0\}$, the Green representation formula to $(L_{\varepsilon,K})$ and a change of variables imply that

$$v_{\varepsilon}(x) = c_0 p_{\varepsilon} \int_{\Omega} G(x, z) K(z) u_{\varepsilon}^{p_{\varepsilon}-1}(z) v_{\varepsilon}(z) dz$$

= $c_0 p_{\varepsilon} ||u_{\varepsilon}||^{p_{\varepsilon}-(\frac{p_{\varepsilon}-1}{2})N} \int_{\Omega_{\varepsilon}} G_{\varepsilon}(x, y) K_{\varepsilon}(y) \tilde{u}_{\varepsilon}^{p_{\varepsilon}-1} \tilde{v}_{\varepsilon}(y) dy$

where $G_{\varepsilon}(x,y) = G(x, \frac{y}{\|u_{\varepsilon}\|^{\frac{p_{\varepsilon}-1}{2}}} + x_{\varepsilon})$ and $K_{\varepsilon}(y) = K(\frac{y}{\|u_{\varepsilon}\|^{\frac{p_{\varepsilon}-1}{2}}} + x_{\varepsilon})$ for $y \in \Omega_{\varepsilon}$. By (2.10) and (3.3) with b = 0, we see

$$\begin{split} \tilde{u}_{\varepsilon}^{p_{\varepsilon}-1}(y) &\to U^{p-1}(y), \\ \tilde{v}_{\varepsilon}(y) &\to v_0 = \sum_{j=1}^N a_j \frac{y_j}{(1+|y|^2)^{N/2}} = \frac{-1}{(N-2)} \sum_{j=1}^N a_j \frac{\partial U}{\partial y_j}(y) \end{split}$$

uniformly on compact subsets of \mathbb{R}^N , thus

$$\tilde{u}_{\varepsilon}^{p_{\varepsilon}-1}\tilde{v}_{\varepsilon}(y) \to \sum_{j=1}^{N} a_j\left(\frac{\partial}{\partial y_j}\frac{-1}{(N+2)}U^p(y)\right)$$

uniformly on compact subsets of \mathbb{R}^N .

Now, let us consider the following linear first order PDE

$$\sum_{j=1}^{N} a_j \frac{\partial w_{\varepsilon}}{\partial y_j} = \tilde{u}_{\varepsilon}^{p_{\varepsilon}-1} \tilde{v}_{\varepsilon}(y), \quad y \in \mathbb{R}^N$$
(3.18)

with the initial condition $w_{\varepsilon}|_{\Gamma_a} = \frac{-1}{(N+2)}U^p(y)$, where $\Gamma_a = \{x \in \mathbb{R}^N | x \cdot a = 0\}$. The RHS of (3.18) should be understood as 0 outside of Ω_{ε} . By Lemma 2.5, the solution w_{ε} satisfies the estimate $w_{\varepsilon}(y) = O(|y|^{-(N+1)})$ as $|y| \to \infty$, since $\tilde{u}_{\varepsilon}^{p_{\varepsilon}-1}\tilde{v}_{\varepsilon}(y) = O(U^{p_{\varepsilon}}(y)) = O(|y|^{-(N+2)})$ by (2.11) and (3.8). Also we have

$$w_{\varepsilon} \to \frac{-1}{(N+2)} U^p$$
 uniformly on compact subsets on \mathbb{R}^N

and

$$\int_{\Omega_{\varepsilon}} w_{\varepsilon}(y) dy \to \frac{-1}{(N+2)} \int_{\mathbb{R}^N} U^p dy = \frac{-1}{N(N+2)} \sigma_N$$

by the dominated convergence theorem.

Using integration by parts, we have

$$\begin{split} v_{\varepsilon}(x) &= c_0 p_{\varepsilon} \|u_{\varepsilon}\|^{p_{\varepsilon} - (\frac{p_{\varepsilon} - 1}{2})N} \int_{\Omega_{\varepsilon}} G_{\varepsilon}(x, y) K_{\varepsilon}(y) \sum_{j=1}^{N} a_j \frac{\partial w_{\varepsilon}}{\partial y_j} dy \\ &= -c_0 p_{\varepsilon} \|u_{\varepsilon}\|^{p_{\varepsilon} - (\frac{p_{\varepsilon} - 1}{2})N} \sum_{j=1}^{N} a_j \int_{\Omega_{\varepsilon}} \frac{\partial}{\partial y_j} \left\{ G_{\varepsilon}(x, y) K_{\varepsilon}(y) \right\} w_{\varepsilon}(y) dy \\ &= -c_0 p_{\varepsilon} \|u_{\varepsilon}\|^{p_{\varepsilon} - (\frac{p_{\varepsilon} - 1}{2})N - (\frac{p_{\varepsilon} - 1}{2})} \sum_{j=1}^{N} a_j \int_{\Omega_{\varepsilon}} \frac{\partial}{\partial z_j} \left\{ G(x, z) K(z) \right\} \Big|_{z = \frac{y}{\|u_{\varepsilon}\|^{\frac{p_{\varepsilon} - 1}{2}} + x_{\varepsilon}}} w_{\varepsilon}(y) dy \end{split}$$

Now, we see

$$\frac{\partial}{\partial z_j} \left\{ G(x,z)K(z) \right\} \Big|_{z=\frac{y}{\|u_{\varepsilon}\|^{\frac{p_{\varepsilon}-1}{2}}+x_{\varepsilon}}} \\ \to \left(\frac{\partial G}{\partial z_j}(x,x_0)\right) K(x_0) + G(x,x_0) \left(\frac{\partial K}{\partial z_j}(x_0)\right) \\ = \frac{\partial G}{\partial z_j}(x,x_0)$$

uniformly on compact subsets of \mathbb{R}^N as $\varepsilon \to 0$, since x_0 is a critical point of K with $K(x_0) = 1$. Also we note that $\frac{N}{N-2} + p_{\varepsilon} - (\frac{p_{\varepsilon}-1}{2})N - (\frac{p_{\varepsilon}-1}{2}) = (\frac{N-1}{2})\varepsilon$. Therefore, we have the convergence

$$\begin{split} \|u_{\varepsilon}\|^{N/(N-2)}v_{\varepsilon}(x) \\ &= -c_{0}p_{\varepsilon}\|u_{\varepsilon}\|^{\frac{N}{N-2}+p_{\varepsilon}-(\frac{p_{\varepsilon}-1}{2})N-(\frac{p_{\varepsilon}-1}{2})}\sum_{j=1}^{N}a_{j}\int_{\Omega_{\varepsilon}}\frac{\partial}{\partial z_{j}}\left\{G(x,z)K(z)\right\}\Big|_{z=\frac{y}{\|u_{\varepsilon}\|^{\frac{p_{\varepsilon}-1}{2}}+x_{\varepsilon}}}w_{\varepsilon}(y)dy \\ &\to -c_{0}p\sum_{j=1}^{N}a_{j}\frac{\partial G}{\partial z_{j}}(x,x_{0})\times\left(\lim_{\varepsilon\to 0}\int_{\Omega_{\varepsilon}}w_{\varepsilon}(y)dy\right) \\ &= \sigma_{N}\sum_{j=1}^{N}a_{j}\frac{\partial G}{\partial z_{j}}(x,x_{0}) \end{split}$$

for any $x \in \overline{\Omega} \setminus \{x_0\}$. Elliptic estimates implies this convergence holds true in $C^1_{loc}(\overline{\Omega} \setminus \{x_0\})$. This proves Lemma. \Box

Now, multiply both sides of (2.4) by $||u_{\varepsilon}||^{N/(N-2)} \times ||u_{\varepsilon}||^{-1}$. Letting $\varepsilon \to 0$, we see the LHS is

$$\begin{split} \|u_{\varepsilon}\|^{-2} &\int_{\partial\Omega} \left(\frac{\partial \|u_{\varepsilon}\|u_{\varepsilon}}{\partial x_{i}}\right) \left(\frac{\partial \|u_{\varepsilon}\|^{N/(N-2)}v_{\varepsilon}}{\partial \nu_{x}}\right) ds_{x} \\ &= \|u_{\varepsilon}\|^{-2} \left((N-2)\sigma_{N}^{2} \int_{\partial\Omega} \sum_{j=1}^{N} a_{j} \left(\frac{\partial G}{\partial x_{i}}\right) (x,x_{0}) \frac{\partial}{\partial \nu_{x}} \left(\frac{\partial G}{\partial z_{j}}\right) (x,z)\Big|_{z=x_{0}} ds_{x} + o(1)\right) \\ &= \|u_{\varepsilon}\|^{-2} \left(\frac{N-2}{2}\sigma_{N}^{2} \sum_{j=1}^{N} a_{j} \frac{\partial^{2} R}{\partial z_{i} \partial z_{j}} (x_{0}) + o(1)\right) \to 0, \end{split}$$

here we have used (2.8), Lemma 3.3 and (2.2).

On the other hand, using Lemma 2.5 again, we solve the linear PDE

$$\sum_{j=1}^{N} a_j \frac{\partial w_{\varepsilon}}{\partial y_j} = \tilde{u}_{\varepsilon}^{p_{\varepsilon}} \tilde{v}_{\varepsilon}(y), \quad y \in \mathbb{R}^N$$
(3.19)

with the initial condition $w_{\varepsilon}|_{\Gamma_a} = \frac{-1}{2N}U^{p+1}(y)$, where $\Gamma_a = \{x \in \mathbb{R}^N | x \cdot a = 0\}$. Here as before, the RHS of (3.19) is understood as 0 outside of Ω_{ε} .

Lemma 2.5 implies that the solution w_{ε} satisfies the estimate $w_{\varepsilon}(y) = O(|y|^{-2N+1})$ as $|y| \to \infty$, since $\tilde{u}_{\varepsilon}^{p_{\varepsilon}} \tilde{v}_{\varepsilon}(y) = O(U^{p_{\varepsilon}+1}(y)) = O(|y|^{-2N})$ by (2.11) and (3.8). As before, we have

$$w_{\varepsilon} \to \frac{-1}{2N} U^{p+1}$$
 uniformly on compact subsets on \mathbb{R}^N

and

$$\int_{\Omega_{\varepsilon}} w_{\varepsilon}(y) dy \to \frac{-1}{2N} \int_{\mathbb{R}^N} U^{p+1} dy = \frac{-1}{2N} \sigma_N C_N$$

by the dominated convergence theorem, where $C_N = \int_0^\infty \frac{r^{N-1}}{(1+r^2)^N} dr = \frac{\Gamma(N/2)^2}{2\Gamma(N)}$. Thus, (RHS of (2.4)) × $||u_{\varepsilon}||^{\frac{N}{N-2}-1}$ is

$$\begin{split} c_{0}\|u_{\varepsilon}\|^{-1+\frac{N}{N-2}} & \int_{\Omega} \left(\frac{\partial K}{\partial x_{i}}\right) u_{\varepsilon}^{p_{\varepsilon}} v_{\varepsilon} dx \\ &= c_{0}\|u_{\varepsilon}\|^{\frac{N}{N-2}+p_{\varepsilon}-(\frac{p_{\varepsilon}-1}{2})N} \int_{\Omega_{\varepsilon}} \left(\frac{\partial K}{\partial x_{i}}\right) \left(\frac{y}{\|u_{\varepsilon}\|^{\frac{p_{\varepsilon}-1}{2}}} + x_{\varepsilon}\right) \tilde{u}_{\varepsilon}^{p_{\varepsilon}} \tilde{v}_{\varepsilon} dy \\ &= c_{0}\|u_{\varepsilon}\|^{\frac{N}{N-2}+p_{\varepsilon}-(\frac{p_{\varepsilon}-1}{2})N} \int_{\Omega_{\varepsilon}} \left(\frac{\partial K}{\partial x_{i}}\right) \left(\frac{y}{\|u_{\varepsilon}\|^{\frac{p_{\varepsilon}-1}{2}}} + x_{\varepsilon}\right) \sum_{j=1}^{N} a_{j} \frac{\partial w_{\varepsilon}}{\partial y_{j}} dy \\ &= -c_{0}\|u_{\varepsilon}\|^{\frac{N}{N-2}+p_{\varepsilon}-(\frac{p_{\varepsilon}-1}{2})N} \sum_{j=1}^{N} a_{j} \int_{\Omega_{\varepsilon}} \frac{\partial}{\partial y_{j}} \left\{ \left(\frac{\partial K}{\partial x_{i}}\right) \left(\frac{y}{\|u_{\varepsilon}\|^{\frac{p_{\varepsilon}-1}{2}}} + x_{\varepsilon}\right) \right\} w_{\varepsilon}(y) dy \\ &= -c_{0}\|u_{\varepsilon}\|^{\frac{N}{N-2}+p_{\varepsilon}-(\frac{p_{\varepsilon}-1}{2})N-(\frac{p_{\varepsilon}-1}{2})} \sum_{j=1}^{N} a_{j} \int_{\Omega_{\varepsilon}} \left(\frac{\partial^{2}K}{\partial x_{i}\partial x_{j}}\right) (x)\Big|_{x=\frac{y}{\|u_{\varepsilon}\|^{\frac{p_{\varepsilon}-1}{2}}} + x_{\varepsilon}} w_{\varepsilon}(y) dy \\ &\to -c_{0} \left(\lim_{\varepsilon \to 0} \|u_{\varepsilon}\|^{(\frac{N-1}{2})\varepsilon}\right) \sum_{j=1}^{N} a_{j} \frac{\partial^{2}K}{\partial x_{i}\partial x_{j}} (x_{0}) \left(\lim_{\varepsilon \to 0} \int_{\Omega_{\varepsilon}} w_{\varepsilon}(y) dy\right) \\ &= \frac{N-2}{2} \sigma_{N} C_{N} \sum_{j=1}^{N} a_{j} \frac{\partial^{2}K}{\partial x_{i}\partial x_{j}} (x_{0}). \end{split}$$

Thus we have

$$\sum_{j=1}^{N} a_j \frac{\partial^2 K}{\partial x_i \partial x_j}(x_0) = 0.$$

By our assumption of the nondegeneracy of x_0 , the matrix $\left(\frac{\partial^2 K}{\partial x_i \partial x_j}\right)(x_0)$ is invertible. Therefore we obtain that $a_j = 0$ for all $j = 1, \dots, N$. Thus we have proved Step 2, and consequently, Theorem 1.1.

Acknowledgements. Part of this work was supported by JSPS Grant-in-Aid for Scientific Research, No. 17540186 and No. 20540216.

References

- A. Bahri, Y. Li and O. Rey: On a variational problem with lack of compactness: the topological effect of the critical points at infinity, Calc. Var. Partial Differential Equations 3 (1995) 67-93.
- [2] H. Brezis, and L.A. Peletier: Asymptotics for elliptic equations involving critical growth, Partial differential equations and calculus of variations, Vol.1, vol. 1 of Progress. Nonlinear Differential Equations Appl. Birkhäuser, Boston, MA, (1989) 149-192.
- [3] G. Bianchi, H. Egnell: A note on the Sobolev inequality, J. Funct. Anal. 100 (1991) 18-24.
- [4] L. Caffarelli, B. Gidas and J. Spruck: Asymptotic symmetry and local behavior of semilinear elliptic equations with critical growth, Comm. Pure Appl. Math. 42 (1989) 271-297.
- [5] B. Gilbarg, and N. Trudinger: *Elliptic partial differential equations of second order*, Springer-Verlag, 2nd edition, Berlin-New York, (1983)
- [6] M. Grossi: A nondegeneracy result for some nonlinear elliptic equation, NoDEA 12 (2005) 227-241.
- [7] M. Grossi, and F. Pacella: On an eigenvalue problem related to the critical exponent, Math. Z. 250 (2005) 225-256.

- [8] Z. C. Han: Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. Henri Poincaré. 8 (1991) 159-174.
- [9] E. Hebey: Asymptotic behavior of positive solutions of quasilinear elliptic equations with critical Sobolev growth, Differential and Integral Equations 13 (2000) 1073-1080.
- [10] O. Rey: Proof of two conjectures of H. Brezis and L.A. Peletier, Manuscripta Math. 65 (1989) 19-37.
- [11] Y. Y. Li: Prescribing scalar curvature on Sⁿ and related topics, Part I, J. Differential Equations 120 (1995) 319-410.