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Abstract

Consider the problem −∆u = c0K(x)upε , u > 0 in Ω, u = 0
on ∂Ω, where Ω is a smooth bounded domain in RN (N ≥ 3), c0 =
N(N−2), pε = (N+2)/(N−2)−ε and K is a smooth positive function
on Ω.

We prove that least energy solutions of the above problem are non-
degenerate for ε > 0 small, under some assumptions on the coefficient
function K. This is a generalization of the recent result by Grossi [6]
for K ≡ 1, and needs precise estimates and a new argument.
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1 Introduction

We consider the problem

(Pε,K)





−∆u = c0K(x)upε in Ω,

u > 0 in Ω,

u = 0 on ∂Ω

where Ω ⊂ RN(N ≥ 3) is a smooth bounded domain, c0 = N(N − 2),
pε = p− ε, p = (N +2)/(N −2) is the critical Sobolev exponent with respect
to the embedding H1

0 (Ω) ↪→ Lp+1(Ω), and ε > 0 is a small parameter. Here,
K is a positive function in C2(Ω).

Since (Pε,K) is a subcritical problem, there exists a least energy solution
uε such that

∫
Ω
|∇uε|2dx

(∫
Ω

K(x)|uε|pε+1dx
) 2

pε+1

= inf
u∈H1

0 (Ω)

∫
Ω
|∇u|2dx

(∫
Ω

K(x)|u|pε+1dx
) 2

pε+1

=: Sε,K

for any small ε > 0.
In the following, we put an assumption on the coefficient function K.

(K): K ∈ C2(Ω), 0 < K(x) ≤ 1, K−1(maxΩK) = {x0} ⊂ Ω with K(x0) = 1,
and x0 is a nondegenerate critical point of K.

It is easy to see that

Sε,K → (max
Ω

K)−(N−2)/NSN = SN

as ε → 0, where SN is the best Sobolev constant with respect to the embed-
ding H1

0 (Ω) ↪→ Lp+1(Ω). Since SN is never achieved on bounded domains,
we have ‖uε‖L∞(Ω) = uε(xε) → +∞ as ε → 0. It is also known that the
maximum point xε of uε converges to a maximum point of K in Ω. Thus
under the assumption (K), we have xε → x0 as ε → 0 where x0 is the unique
interior maximum point of K.

In this paper, we prove a nondegeneracy property of least energy solutions
to (Pε,K) when ε > 0 is sufficiently small, under the assumption (K).
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Theorem 1.1 Let Ω ⊂ RN(N ≥ 3) be a smooth bounded domain. Assume
(K). Then the least energy solution uε to (Pε,K) is nondegenerate for ε > 0
small, in the sense that the linearized problem around uε:

(Lε,K)

{
−∆v = c0pεK(x)upε−1

ε v in Ω,

v = 0 on ∂Ω

admits only the trivial solution v ≡ 0.

When K ≡ 1, Grossi [6] obtained a nondegeneracy result for solutions
{uε} to (Pε,K) satisfying

∫
Ω
|∇uε|2dx

(∫
Ω
|uε|pε+1dx

) 2
pε+1

→ SN as ε → 0. (1.1)

It is known ([8], [10]) that a solution sequence with the property (1.1) blows
up at one point in the domain, and the blow up point is a critical point of
the Robin function associated to the Dirichlet Green function. Under the
assumption that the blow up point is a nondegenerate critical point of the
Robin function, Grossi obtained the nondegeneracy of solutions satisfying
(1.1) for ε > 0 small. This result was former obtained in [1] when N ≥ 4 by
another method. More recently, Grossi and Pacella [7] studied the linearized
eigenvalue problem associated with the blow up solutions satisfying (1.1),
and obtained the same nondegeneracy result, again when K ≡ 1.

When K 6≡ 1, corresponding results to [1] or [7] are still not known. Main
purpose of this paper is to generalize the result in [6] to the inhomogeneous
case K 6≡ 1. In this case, Hebey [9] obtained the precise asymptotic behavior
of least energy solutions as ε → 0 under a stronger assumption than (K). We
remark here that the same asymptotic result as [9] can be obtained under
the assumption (K) by using the local blow up analysis of YanYan Li [11];
see Remark after Theorem 2.3.

Based on Hebey’s result, we prove Theorem 1.1 with a new argument.
Note that, even in the case K ≡ 1, our argument simplifies the proof in [6].

2 Preliminaries

In this section, we prepare some facts which are needed in the sequel. Let
G = G(x, z) denote the Green function of −∆ under the Dirichlet boundary
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condition:
{
−∆G(·, z) = δz in Ω,

G(·, z) = 0 on ∂Ω.

Define the (positive) Robin function R associated to the Green function

R(z) = lim
x→z

[
1

(N − 2)σN

|x− z|2−N −G(x, z)

]
,

here σN denotes the volume of the unit sphere in RN .

Lemma 2.1 The identities

∫

∂Ω

((x− z) · νx)

(
∂G(x, z)

∂νx

)2

dsx = (N − 2)R(z) (2.1)

and ∫

∂Ω

(
∂G

∂xi

)
∂

∂νx

(
∂G

∂zj

)
(x, z)dsx =

1

2

∂2R

∂zi∂zj

(z) (2.2)

hold true for any z ∈ Ω. Here, νx is the outer unit normal at x ∈ ∂Ω.

Proof: See [2]:Theorem 4.3 for (2.1) and [6]:Lemma 3.2 for (2.2).

Lemma 2.2 Let uε be a solution to (Pε,K) and vε be a solution to (Lε,K).
Then the following identities hold true:

∫

∂Ω

((x−z) ·νx)

(
∂uε

∂νx

)(
∂vε

∂νx

)
dsx = c0

∫

Ω

upε
ε vε ((x− z) · ∇K(x)) dx (2.3)

for any z ∈ RN and

∫

∂Ω

(
∂uε

∂xi

)(
∂vε

∂νx

)
dsx = c0

∫

Ω

(
∂K

∂xi

)
upε

ε vεdx, i = 1, 2, · · · , N. (2.4)

Proof: Set wε(x) = (x − z) · ∇uε(x) + 2
pε−1

uε(x). Direct computation
yields that

−∆wε = c0pεK(x)upε−1
ε wε + c0u

pε
ε (x− z) · ∇K(x).
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Since vε satisfies −∆vε = c0pεK(x)upε−1
ε vε, we have

(∆vε)wε − (∆wε)vε = c0u
pε
ε vε(x− z) · ∇K(x).

Integrating this identity on Ω, using integration by parts and noting wε(x) =
(x− z) · νx(

∂uε

∂νx
) for x ∈ ∂Ω, we have (2.3).

On the other hand, differentiating the equation in (Pε,K) with respect to
xi, we have

−∆

(
∂uε

∂xi

)
= c0pεK(x)upε−1

ε

(
∂uε

∂xi

)
+ c0

(
∂K

∂xi

)
upε

ε .

From this equation and the equation in (Lε,K), we obtain

(∆vε)

(
∂uε

∂xi

)
−

(
∆

(
∂uε

∂xi

))
vε = c0

(
∂K

∂xi

)
upε

ε vε.

Finally, integration by parts yields (2.4).

Next is a part of the main theorem of [9], with a result of [11]. In what
follows, we abbreviate ‖ · ‖ = ‖ · ‖L∞(Ω).

Theorem 2.3 (Hebey [9]) Let Ω ⊂ RN , N ≥ 3 be a smooth bounded domain.
Assume (K). Let uε be a least energy solution to (Pε,K) and let xε ∈ Ω be a
point such that uε(xε) = ‖uε‖.

Then there exists a constant C > 0 independent of ε such that for any
Rε →∞ with rε = Rε‖uε‖−( pε−1

2
) → 0, the following estimates hold true:

uε(x) ≤





‖uε‖
„

1+‖uε‖
4

N−2 |x−xε|2
«N−2

2
, for |x− xε| ≤ rε,

C
‖uε‖

1
|x−xε|N−2 , for {|x− xε| > rε} ∩ Ω.

(2.5)

Furthermore, after passing to a subsequence, we have
{
|xε − x0| = O (‖uε‖−2) N = 3,

|xε − x0| = o
(‖uε‖−2/(N−2)

)
N ≥ 4,

(2.6)

lim
ε→0

‖uε‖ε = 1 (2.7)

and
‖uε‖uε → (N − 2)σNG(·, x0) in C1(ω) (2.8)

for any neighborhood ω of ∂Ω not containing x0.
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Remark: Hebey assumed in [9] that Ω is star-shaped with respect to a point
x0 in Ω, K ∈ C2(Ω), 0 < K(x) ≤ 1, K(x0) = 1 and (x− x0) · ∇K(x) ≤ 0 for
any x ∈ Ω. However, crucial pointwise estimate (2.5) can be obtained by the
theory of isolated simple blow up point due to YanYan Li [11], since in our
case, the blow up point of least energy solutions has to be a unique interior
maximum point of K, and thus to be an isolated simple blow up point in the
sense of [11]. Once the crucial pointwise estimate (2.5) is obtained, the rest
of the proof in Hebey [9] is still valid under the assumption (K).

Now, let us consider the scaled function

ũε(y) :=
1

‖uε‖uε

(
y

‖uε‖ pε−1
2

+ xε

)
, y ∈ Ωε := ‖uε‖

pε−1
2 (Ω− xε). (2.9)

Then 0 < ũε ≤ 1, ũε(0) = 1, and ũε satisfies
{
−∆ũε = c0Kε(y)ũpε

ε in Ωε,

ũε = 0 on ∂Ωε

where Kε(y) = K

(
y

‖uε‖
pε−1

2
+ xε

)
. Since ‖uε‖ → ∞ and xε → x0 ∈ Ω, we

see Ωε → RN and Kε → K(x0) = 1 compact uniformly on RN as ε → 0. By
standard elliptic estimates, we have a subsequence denoted also by ũε that

ũε → U compact uniformly in RN (2.10)

for some function U . Passing to the limit, we obtain that U is a solution of


−∆U = c0U

p in RN ,
0 < U ≤ 1, U(0) = 1,
lim|y|→∞ U(y) = 0.

According to the uniqueness theorem by Caffarelli, Gidas and Spruck [4], we
obtain

U(y) =

(
1

1 + |y|2
)N−2

2

.

Note that by (2.7), the estimate (2.5) is written as

ũε(y) ≤
{

CU(y) for {|y| ≤ Rε} ∩ Ωε,

C|y|2−N for {|y| > Rε} ∩ Ωε.
(2.11)

We recall here the classification theorem by Bianchi and Egnell [3].
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Lemma 2.4 Let v0 be a solution to
{ −∆v0 = c0pU

p−1v0 in RN ,
v0 ∈ D1,2(RN)

where D1,2(RN) = {v ∈ L2N/(N−2)(RN) | ∫
RN |∇v|2dy < ∞}.

Then there exist constants aj (j = 1, 2, · · · , N) and b in R such that v0

has the form

v0 =
N∑

j=1

aj
yj

(1 + |y|2)N/2
+ b

1− |y|2
(1 + |y|2)N/2

. (2.12)

Next lemma concerns a well-known unique solvability for the linear first
order PDE’s with the initial condition. The proof will be done by the stan-
dard method of characteristics, so we omit it.

Lemma 2.5 Let a = (a1, a2, · · · , aN) 6= 0 is a constant vector and f, g ∈
C1(RN). Let Γa = {x ∈ RN |a · x = 0} be the hyperplane perpendicular to a
through the origin. Then there exists a unique solution of the following initial
value problem of the linear first order PDE

a · ∇u = f,

u|Γa = g.

More precisely, this solution is obtained as

u(x) =

∫ φ(x)

0

f(τa + α(ψ(x)))dτ + g(α(ψ(x))), x ∈ RN

where

φ(x) =
a · x
|a|2 , ψ(x) = (ψ1(x), · · · , ψN−1(x)),

ψj(x) =
|a|2xj − (a · x)aj

|a|2 , (j = 1, · · · , N − 1)

α(s) = (s,− 1

aN

N−1∑
j=1

ajsj) ∈ RN , s = (s1, · · · , sN−1) ∈ RN−1,

if we assume (w.l.o.g) aN 6= 0. Furthermore, if f(x) = O(|x|β), g(x) =
O(|x|β) as |x| → ∞, then u(x) = O(|x|β+1) as |x| → ∞.
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3 The nondegeneracy result

In this section, we will prove Theorem 1.1. In the course of proof, we need
precise estimates and a new argument which are not in [6].

We argue by contradiction and assume that there exists a non-trivial
solution vε to (Lε,K) satisfying ‖vε‖ = ‖uε‖ for any ε > 0, without loss of
generality.

Let us consider the scaled function

ṽε(y) :=
1

‖uε‖vε

(
y

‖uε‖ pε−1
2

+ xε

)
, y ∈ Ωε = ‖uε‖

pε−1
2 (Ω− xε). (3.1)

Then 0 < ṽε ≤ 1 and ṽε satisfies



−∆ṽε = cε(y)ṽε in Ωε,

ṽε = 0 on ∂Ωε,

‖ṽε‖L∞(Ωε) = 1

(3.2)

where cε(y) := c0pεKε(y)ũpε−1
ε (y). By ‖ṽε‖L∞(Ωε) = 1 and the elliptic esti-

mate, we see there exists v0 such that

ṽε → v0 uniformly on compact subsets of RN (3.3)

and v0 satisfies
−∆v0 = c0pU

p−1v0 in RN .

Now, we claim that ∫

RN

|∇v0|2dy ≤ C (3.4)

for some C > 0.
Indeed, let 0 < δ < min(2, 4/(N − 2) − 2ε). By (3.2) and the Sobolev

inequality, we have

SN

(∫

Ωε

|ṽε|p+1dy

)2/(p+1)

≤
∫

Ωε

|∇ṽε|2dy =

∫

Ωε

cε(y)ṽ2
εdy ≤

∫

Ωε

|cε(y)||ṽε|2−δdy,

here, the last inequality comes from the fact that ‖ṽε‖L∞(Ωε) ≤ 1. Now, by
the Hölder inequality and (2.11), we have
∫

Ωε

|cε(y)||ṽε|2−δdy ≤
(∫

Ωε

|ṽε|p+1dy

)(2−δ)/(p+1) (∫

Ωε

|cε(y)|(p+1)/(p−1+δ)dy

)(p−1+δ)/(p+1)

≤ C

(∫

Ωε

|ṽε|p+1dy

)(2−δ)/(p+1) (∫

Ωε

U(y)(pε−1)(p+1)/(p−1+δ)dy

)(p−1+δ)/(p+1)

,
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thus we obtain

(∫

Ωε

|ṽε|p+1dy

)δ/(p+1)

≤ C

(∫

RN

U(y)(pε−1)(p+1)/(p−1+δ)dy

)(p−1+δ)/(p+1)

.

Note that (N − 2)(pε − 1)(p + 1)/(p− 1 + δ) > N if δ < 4/(N − 2)− 2ε, so
the last integral is bounded by a constant. Therefore, we have

∫

Ωε

|ṽε|p+1dy ≤ C. (3.5)

Finally, again by the Hölder inequality, (3.5) and (2.11), we have

∫

Ωε

|∇ṽε|2dy ≤
∫

Ωε

cε(y)|ṽε|2−δdy

≤
(∫

Ωε

|ṽε|p+1dy

)(2−δ)/(p+1) (∫

Ωε

|cε(y)|(p+1)/(p−1+δ)dy

)(p−1+δ)/(p+1)

≤ C.

Thus we have confirmed ∫

Ωε

|∇ṽε|2dy ≤ C (3.6)

for some C > 0 independent of ε > 0. (3.6) and Fatou’s lemma implies (3.4).
Now, by (3.4) and Lemma 2.4, we have (2.12), i.e.

v0 =
N∑

j=1

aj
yj

(1 + |y|2)N/2
+ b

1− |y|2
(1 + |y|2)N/2

. (3.7)

In the following, we divide the proof into several steps.

Step 1. b = 0 in (3.7).

Step 2. aj = 0, j = 1, · · · , N in (3.7).

Step 3. v0 = 0 leads to a contradiction.

In the sequel, we need the following pointwise estimate for ṽε.
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Lemma 3.1 Let ṽε be a solution of (3.2). Then we have the estimate

|ṽε(y)| ≤ C

(
1

1 + |y|2
)(N−2)/2

, ∀y ∈ Ωε (3.8)

for some C > 0.

Proof: Consider the Kelvin transformation of ṽε:

ṽ∗ε(z) = |z|2−N ṽε(
z

|z|2 ), z ∈ Ω∗
ε := { y

|y|2 : y ∈ Ωε}. (3.9)

To prove (3.8), it will be enough to show that |ṽ∗ε | is bounded in B(0, R)∩Ω∗
ε

for some R > 0, since |ṽε(y)| ≤ 1 for y ∈ Ωε, |y| small. Direct calculation
shows that

∆zṽ
∗
ε(z) = |z|−2−N∆yṽε(y), z ∈ Ω∗

ε,∫

Ω∗ε

|ṽ∗ε |p+1dz =

∫

Ωε

|ṽε|p+1dy.

Thus by (3.2), ṽ∗ε satisfies the equation

{ −∆ṽ∗ε = |z|−4cε(
z
|z|2 )ṽ

∗
ε in Ω∗

ε,

ṽ∗ε = 0 on ∂Ω∗
ε.

(3.10)

We claim that
aε(z) := |z|−4cε(

z

|z|2 ) ∈ L∞(Ω∗
ε). (3.11)

Indeed, since Ωε ⊂ B(0, γ‖uε‖(pε−1)/2) for some γ > 0, the domain Ω∗
ε satisfies

Ω∗
ε ⊂ RN \B(0, 1

γ‖uε‖(pε−1)/2 ). By (2.11), we have

|cε(y)| ≤ CUpε−1(y) for y ∈ Ωε.

Therefore, we have

|z|−4cε(
z

|z|2 ) ≤ C|z|−4

( |z|2
1 + |z|2

)(N−2
2

)(pε−1)

= C|z|−4+(N−2)(pε−1) 1

(1 + |z|2)2−ε(N−2
2

)

≤ C|z|−4+(N−2)(pε−1) = C|z|−ε(N−2)
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Since |z| ≥ 1
γ‖uε‖(pε−1)/2 for z ∈ Ω∗

ε, we have

|z|−ε(N−2) ≤ γε(N−2)‖uε‖ε(N−2)(pε−1)/2 → 1

as ε → 0 by (2.7). From these, we confirm that the claim (3.11).
Now, for any R > 0, we have

∫

Ω∗ε∩B(0,2R)

|ṽ∗ε |p+1dz ≤
∫

Ω∗ε

|ṽ∗ε |p+1dz =

∫

Ωε

|ṽε|p+1dy

≤
(

S−1
N

∫

Ωε

|∇ṽε|2dy

)(p+1)/2

≤ C,

here we have used the Sobolev inequality and (3.6). Then by a result of
classical elliptic regularity ([5] Theorem 8.17), we obtain

sup
B(0,R)∩Ω∗ε

|ṽ∗ε | ≤ C

[
1

RN

∫

B(0,2R)∩Ω

|ṽ∗ε |p+1dz

]1/(p+1)

≤ C

for some R > 0.

By Lemma 3.1, we have the following convergence result.

Lemma 3.2 Let ω ⊂ Ω be any neighborhood of ∂Ω not containing x0. Then
we have

‖uε‖vε → −(N − 2)σNbG(·, x0) in C1(ω). (3.12)

Proof: We see

−∆ (‖uε‖vε) = ‖uε‖c0pεK(x)upε−1
ε vε =: fε(x) (3.13)

for x ∈ Ω with the boundary condition ‖uε‖vε = 0 on ∂Ω. By using (2.11),
(3.8), (2.7) and the dominated convergence theorem, we obtain

∫

Ω

fε(x)dx = c0pε‖uε‖pε+1−( pε−1
2

)N

∫

Ωε

Kε(y)ũpε−1
ε (y)ṽε(y)dy

→ c0p

∫

RN

Up−1v0dy = c0pb

∫

RN

1− |y|2
(1 + |y|2)N/2+2

dy

= c0pbσN

(∫ ∞

0

rN−1

(1 + r2)N/2+2
dr −

∫ ∞

0

rN+1

(1 + r2)N/2+2
dr

)

= −(N − 2)bσN .
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Note that the integral involving the aj terms of v0 must vanish by the oddness
of the integrand. Last integral can be computed by the formula

∫ ∞

0

rα

(1 + r2)β
dr =

Γ((α + 1)/2)Γ(β − (α + 1)/2)

2Γ(β)

where α > 0, β > 0 with β − (α + 1)/2 > 0. Furthermore, for any x 6= x0,
we have by (2.5) and (3.8),

fε(x) ≤ C‖uε‖ ‖uε‖pε

(
1 + ‖uε‖

4
N−2 |x− xε|2

)N−2
2

pε

≤ C
‖uε‖−(pε−1)

|x− xε|(N−2)pε
→ 0

since −(pε − 1) = −4/(N − 2) + ε < 0 for ε > 0 small. In conclusion, we
confirm that

fε → −(N − 2)σNbδx0 (3.14)

in the sense of distributions. On the other hand, from the equation (3.13)
with the boundary condition, we have the uniform boundary C1,α-estimate
([8] Lemma 2)

‖‖uε‖vε‖C1,α(ω) ≤ C(ω)
(‖fε‖L1(Ω) + ‖fε‖L∞(ω′)

)
,

here ω ⊂⊂ ω′ is a neighborhood of ∂Ω not containing 0. Since the RHS
of the above estimate is bounded by a constant independent of ε, Ascoli-
Arzelà theorem implies that the function ‖uε‖vε converges to some function
in C1,α-topology. Finally, (3.14) implies that this limit function is −(N −
2)σNbG(x, x0).

Assume for the moment that the proof of Step 1 and Step 2 is finished.
Then the proof of Step 3 is as follows. By Step 1 and Step 2, we deduce
that limε→0 ṽε = v0 ≡ 0. Since ‖ṽε‖L∞(Ωε) = 1, there exists yε ∈ Ωε such that
ṽε(yε) = 1. Since ṽε → v0 ≡ 0 uniformly on compact sets of RN , we must
have |yε| → ∞. But this is not possible because of Lemma 3.1.

Proof of Step 1.
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First, we treat the case N = 3 or N = 4. Putting z = x0 in (2.3) and
multiplying ‖uε‖2, we have

∫

∂Ω

((x− x0) · νx)

(
∂‖uε‖uε

∂νx

)(
∂‖uε‖vε

∂νx

)
dsx

= c0‖uε‖2

∫

Ω

upε
ε vε(x)(x− x0) · ∇K(x)dx. (3.15)

By Theorem 2.3 (2.8) and (3.12), we see

(LHS) of (3.15) →− (N − 2)2σ2
Nb

∫

∂Ω

((x− x0) · νx)

(
∂G(x, x0)

∂νx

)2

dsx

= −(N − 2)3σ2
NbR(x0) (3.16)

as ε → 0. Here we have used (2.1) in Lemma 2.1.
Also by Taylor’s theorem, we have

K(x) = 1 +
1

2

N∑
i,j=1

bij(xi − x0i)(xj − x0j) + O(|x− x0|3)

and
∂K

∂xj

(x) =
N∑

i=1

bij(xi − x0i) + O(|x− x0|2)

where bij = ∂2K
∂xi∂xj

(x0). Thus

(x− x0) · ∇K(x) =
N∑

i,j=1

bij(xi − x0i)(xj − x0j) + O(|x− x0|3).

When N = 3, we write

(RHS) of (3.15)

= ‖uε‖2

∫

Ω

upε
ε vεO(|x− xε|2)dx + ‖uε‖2

∫

Ω

upε
ε vεO(|xε − x0|2)dx

=: A1 + A2.

By a change of variables, we see

|A1| ≤ ‖uε‖2

∫

Ω

upε
ε |vε|O(|x− xε|2)dx

= ‖uε‖3+pε−( pε−1
2

)N−(pε−1)

∫

Ωε

O(|y|2)ũpε
ε (y)|ṽε(y)|dy.
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By (2.11), (3.8), (2.7) and the dominated convergence theorem, we have
∫

Ωε

O(|y|2)ũpε
ε (y)|ṽε(y)|dy →

∫

RN

O(|y|2)Up(y)|v0(y)|dy

which is finite if N ≥ 3. On the other hand, the exponent of ‖uε‖ is 3 +
pε − (pε−1

2
)N − (pε − 1) = (2N − 8)/(N − 2) + εN/2 < 0 when N = 3 and

ε > 0 small, thus A1 → 0 as ε → 0. Similarly by Theorem 2.3 (2.6) and the
dominated convergence theorem, we see

A2 = ‖uε‖2

∫

Ω

upε
ε vεO(|xε − x0|2)dx

= ‖uε‖2 ×
(∫

RN

Upv0(y)dy + o(1)

)
×O

(‖uε‖−4
)

= o(1)

as ε → 0. Thus together with (3.16), we have

−σ2
3bR(x0) = 0

when N = 3, which leads to b = 0.
When N = 4, we write

(RHS) of (3.15) = c0‖uε‖2

∫

Ω

upε
ε vε(x)

N∑
i,j=1

bij(xi − x0i)(xj − x0j)dx

+ ‖uε‖2

∫

Ω

upε
ε vε(x)O(|x− x0|3)dx.

As before, by Theorem 2.3 (2.6), we see

‖uε‖2

∫

Ω

upε
ε vε(x)O(|x− x0|3)dx

= ‖uε‖2

∫

Ω

upε
ε vε(x)O(|x− xε|3)dx + ‖uε‖2

∫

Ω

upε
ε vε(x)O(|xε − x0|3)dx

= ‖uε‖3+pε−( pε−1
2

)N−3( pε−1
2

)

(∫

RN

O(|y|3)Up(y)|v0(y)|dy + o(1)

)

+ ‖uε‖2 ×
(∫

RN

Up(y)|v0(y)|dy + o(1)

)
× o(‖uε‖−3)

= o(1)
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as ε → 0, since 3 + pε − (pε−1
2

)N − 3(pε−1
2

) = 2(N−5)
N−2

+ εN+1
2

< 0 for N = 4
and ε > 0 small.

On the other hand, by a change of variables, we have

c0‖uε‖2

∫

Ω

upε
ε vε(x)

N∑
i,j=1

bij(xi − x0i)(xj − x0j)dx

= c0‖uε‖3+pε−( pε−1
2

)N

∫

Ωε

ũpε
ε ṽε(y)×

N∑
i,j=1

bij

(
yi

‖uε‖ pε−1
2

+ xεi − x0i

)(
yj

‖uε‖ pε−1
2

+ xεj − x0j

)
dy

=: B1 + B2 + B3

where

B1 = c0‖uε‖3+pε−( pε−1
2

)N−(pε−1)

∫

Ωε

ũpε
ε ṽε(y)

N∑
i,j=1

bijyiyjdy,

B2 = 2c0‖uε‖3+pε−( pε−1
2

)N−( pε−1
2

)

∫

Ωε

ũpε
ε ṽε(y)

N∑
i,j=1

bijyi(xεj − x0j)dy,

B3 = c0‖uε‖3+pε−( pε−1
2

)N

∫

Ωε

ũpε
ε ṽε(y)

N∑
i,j=1

bij(xεi − x0i)(xεj − x0j)dy.

The exponents are

3 + pε − (
pε − 1

2
)N − (pε − 1) = 2ε,

3 + pε − (
pε − 1

2
)N − (

pε − 1

2
) = 1 + (3/2)ε,

3 + pε − (
pε − 1

2
)N = 2 + ε

when N = 4. Thus by Theorem 2.3 (2.6), (2.7) and the dominated conver-
gence theorem as before, we see

|B2| ≤ 2c0‖uε‖1+ 3
2
ε

∣∣∣∣∣
∫

Ωε

ũpε
ε ṽε(y)

N∑
i,j=1

bijyidy

∣∣∣∣∣ o(‖uε‖−1)

= o(‖uε‖(3/2)ε) = o(1) as ε → 0
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and

|B3| ≤ c0‖uε‖2+ε

∣∣∣∣
∫

Ωε

ũpε
ε ṽε(y)dy

∣∣∣∣ o(‖uε‖−2)

= o(‖uε‖ε) = o(1) as ε → 0.

Now, we treat the term B1. By (2.11), (3.8), (2.7) and the dominated con-
vergence theorem as before, we have

B1 = c0‖uε‖2ε

∫

Ωε

ũpε
ε ṽε(y)

N∑
i,j=1

bijyiyjdy

→ c0

∫

RN

Up(y)v0(y)
N∑

i,j=1

bijyiyjdy

= c0

∫

RN

Up(y)b
1− |y|2

(1 + |y|2)N/2

N∑
i,j=1

bijyiyjdy

= c0

∫

RN

Up(y)b
1− |y|2

(1 + |y|2)N/2

N∑
i=1

biiy
2
i dy

=
c0

N

∫

RN

Up(y)b
1− |y|2

(1 + |y|2)N/2
∆K(x0)|y|2dy

= (N − 2)b∆K(x0)

(∫

RN

|y|2
(1 + |y|2)N+1

dy −
∫

RN

|y|4
(1 + |y|2)N+1

dy

)

= (N − 2)b∆K(x0)×−σN

Γ(N
2

+ 1)Γ(N
2
− 1)

Γ(N + 1)

= −b∆K(x0)σ4

6
when N = 4.

Note that by the oddness of the integrand,
∫

RN

Up(y)
1

(1 + |y|2)N/2
yiyjykdy = 0

for any i, j, k ∈ {1, · · · , N}, so the integral involving aj terms in v0 must
vanish.

Returning to (3.16), we obtain

−8σ2
4bR(x0) = −b∆K(x0)σ4

6
.
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Since ∆K(x0) ≤ 0 and R(x0) > 0, we conclude that b = 0 when N = 4.

Next, we treat the case N ≥ 5. In this case, we multiply (2.3) by ‖uε‖
4

N−2

to get

‖uε‖
4

N−2
−2

∫

∂Ω

((x− x0) · νx)

(
∂‖uε‖uε

∂νx

)(
∂‖uε‖vε

∂νx

)
dsx

= c0‖uε‖
4

N−2

∫

Ω

upε
ε vε(x)(x− x0) · ∇K(x)dx. (3.17)

Since 4
N−2

< 2 if N ≥ 5, the LHS of (3.17) converges to 0 as ε → 0. On the
other hand, by Taylor’s formula and the change of variables, we write

(RHS) of (3.17) =: C1 + C2 + C3 + C4

where

C1 = c0‖uε‖
4

N−2
+pε+1−( pε−1

2
)N−(pε−1)

∫

Ωε

ũpε
ε ṽε(y)

N∑
i,j=1

bijyiyjdy,

C2 = 2c0‖uε‖
4

N−2
+pε+1−( pε−1

2
)N−( pε−1

2
)

∫

Ωε

ũpε
ε ṽε(y)

N∑
i,j=1

bijyi(xεj − x0j)dy,

C3 = c0‖uε‖
4

N−2
+pε+1−( pε−1

2
)N

∫

Ωε

ũpε
ε ṽε(y)

N∑
i,j=1

bij(xεi − x0i)(xεj − x0j)dy,

C4 = c0‖uε‖
4

N−2
+pε+1−( pε−1

2
)N

∫

Ωε

ũpε
ε ṽε(y)

(
O

(∣∣∣ y

‖uε‖ pε−1
2

+ xε − x0

∣∣∣
3
))

dy.

Again by (2.11), (3.8), (2.7), (2.6) and the dominated convergence theorem,
we see

C2 = O(‖uε‖
2

N−2
+N−1

2
ε)×O

(∫

RN

Upv0(y)|y|dy + o(1)

)
× o(‖uε‖−

2
N−2 ) = o(1),

C3 = O(‖uε‖
4

N−2
+N−2

2
ε)×O

(∫

RN

Upv0(y)dy + o(1)

)
× o(‖uε‖−

4
N−2 ) = o(1),

C4 = O(‖uε‖
4

N−2
+N−2

2
ε)

∫

Ωε

ũpε
ε ṽε(y)

(
O

(∣∣∣ y

‖uε‖ pε−1
2

∣∣∣
3
)

+ O(|xε − x0|3)
)

= O(‖uε‖
4

N−2 )×O(‖uε‖−
6

N−2 )×O

(∫

RN

Upv0(y)(|y|3 + 1)dy + o(1)

)

= O(‖uε‖−
2

N−2 )
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as ε → 0. As for C1, we see just as in the estimate of B1,

C1 = c0‖uε‖(N/2)ε

∫

Ωε

ũpε
ε ṽε(y)

N∑
i,j=1

bijyiyjdy

→= −(N − 2)b∆K(x0)σN

Γ(N
2

+ 1)Γ(N
2
− 1)

Γ(N + 1)
.

Thus letting ε → 0 in (3.17), we have

0 = ∆K(x0)× b.

Hence we obtain b = 0, because our nondegeneracy assumption of x0 assures
that ∆K(x0) < 0 strictly. This proves step 1 for all cases.

Proof of Step 2.
In this step, we prove aj = 0, j = 1, 2, · · · , N in (3.7). For this purpose,

we need a lemma, which is not in [6].

Lemma 3.3 Assume b = 0 and a = (a1, · · · , aN) 6= 0 in (3.7). Then we
have

‖uε‖N/(N−2)vε → σN

N∑
j=1

aj

(
∂G

∂zj

(x, z)

) ∣∣∣
z=x0

in C1
loc(Ω \ {x0}).

Proof. For any x ∈ Ω \ {x0}, the Green representation formula to (Lε,K)
and a change of variables imply that

vε(x) = c0pε

∫

Ω

G(x, z)K(z)upε−1
ε (z)vε(z)dz

= c0pε‖uε‖pε−( pε−1
2

)N

∫

Ωε

Gε(x, y)Kε(y)ũpε−1
ε ṽε(y)dy

where Gε(x, y) = G(x, y

‖uε‖
pε−1

2
+xε) and Kε(y) = K( y

‖uε‖
pε−1

2
+xε) for y ∈ Ωε.

By (2.10) and (3.3) with b = 0, we see

ũpε−1
ε (y) → Up−1(y),

ṽε(y) → v0 =
N∑

j=1

aj
yj

(1 + |y|2)N/2
=

−1

(N − 2)

N∑
j=1

aj
∂U

∂yj

(y)
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uniformly on compact subsets of RN , thus

ũpε−1
ε ṽε(y) →

N∑
j=1

aj

(
∂

∂yj

−1

(N + 2)
Up(y)

)

uniformly on compact subsets of RN .
Now, let us consider the following linear first order PDE

N∑
j=1

aj
∂wε

∂yj

= ũpε−1
ε ṽε(y), y ∈ RN (3.18)

with the initial condition wε|Γa = −1
(N+2)

Up(y), where Γa = {x ∈ RN |x·a = 0}.
The RHS of (3.18) should be understood as 0 outside of Ωε. By Lemma 2.5,
the solution wε satisfies the estimate wε(y) = O(|y|−(N+1)) as |y| → ∞, since
ũpε−1

ε ṽε(y) = O(Upε(y)) = O(|y|−(N+2)) by (2.11) and (3.8). Also we have

wε → −1

(N + 2)
Up uniformly on compact subsets on RN

and ∫

Ωε

wε(y)dy → −1

(N + 2)

∫

RN

Updy =
−1

N(N + 2)
σN

by the dominated convergence theorem.
Using integration by parts, we have

vε(x) = c0pε‖uε‖pε−( pε−1
2

)N

∫

Ωε

Gε(x, y)Kε(y)
N∑

j=1

aj
∂wε

∂yj

dy

= −c0pε‖uε‖pε−( pε−1
2

)N

N∑
j=1

aj

∫

Ωε

∂

∂yj

{Gε(x, y)Kε(y)}wε(y)dy

= −c0pε‖uε‖pε−( pε−1
2

)N−( pε−1
2

)

N∑
j=1

aj

∫

Ωε

∂

∂zj

{G(x, z)K(z)}
∣∣∣
z= y

‖uε‖
pε−1

2

+xε

wε(y)dy.
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Now, we see

∂

∂zj

{G(x, z)K(z)}
∣∣∣
z= y

‖uε‖
pε−1

2

+xε

→
(

∂G

∂zj

(x, x0)

)
K(x0) + G(x, x0)

(
∂K

∂zj

(x0)

)

=
∂G

∂zj

(x, x0)

uniformly on compact subsets of RN as ε → 0, since x0 is a critical point of
K with K(x0) = 1. Also we note that N

N−2
+pε− (pε−1

2
)N − (pε−1

2
) = (N−1

2
)ε.

Therefore, we have the convergence

‖uε‖N/(N−2)vε(x)

= −c0pε‖uε‖
N

N−2
+pε−( pε−1

2
)N−( pε−1

2
)

N∑
j=1

aj

∫

Ωε

∂

∂zj

{G(x, z)K(z)}
∣∣∣
z= y

‖uε‖
pε−1

2

+xε

wε(y)dy

→ −c0p

N∑
j=1

aj
∂G

∂zj

(x, x0)×
(

lim
ε→0

∫

Ωε

wε(y)dy

)

= σN

N∑
j=1

aj
∂G

∂zj

(x, x0)

for any x ∈ Ω \ {x0}. Elliptic estimates implies this convergence holds true
in C1

loc(Ω \ {x0}). This proves Lemma.

Now, multiply both sides of (2.4) by ‖uε‖N/(N−2)×‖uε‖−1. Letting ε → 0,
we see the LHS is

‖uε‖−2

∫

∂Ω

(
∂‖uε‖uε

∂xi

)(
∂‖uε‖N/(N−2)vε

∂νx

)
dsx

= ‖uε‖−2

(
(N − 2)σ2

N

∫

∂Ω

N∑
j=1

aj

(
∂G

∂xi

)
(x, x0)

∂

∂νx

(
∂G

∂zj

)
(x, z)

∣∣∣
z=x0

dsx + o(1)

)

= ‖uε‖−2

(
N − 2

2
σ2

N

N∑
j=1

aj
∂2R

∂zi∂zj

(x0) + o(1)

)
→ 0,
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here we have used (2.8), Lemma 3.3 and (2.2).
On the other hand, using Lemma 2.5 again, we solve the linear PDE

N∑
j=1

aj
∂wε

∂yj

= ũpε
ε ṽε(y), y ∈ RN (3.19)

with the initial condition wε|Γa = −1
2N

Up+1(y), where Γa = {x ∈ RN |x·a = 0}.
Here as before, the RHS of (3.19) is understood as 0 outside of Ωε.

Lemma 2.5 implies that the solution wε satisfies the estimate wε(y) =
O(|y|−2N+1) as |y| → ∞, since ũpε

ε ṽε(y) = O(Upε+1(y)) = O(|y|−2N) by
(2.11) and (3.8). As before, we have

wε → −1

2N
Up+1 uniformly on compact subsets on RN

and ∫

Ωε

wε(y)dy → −1

2N

∫

RN

Up+1dy =
−1

2N
σNCN

by the dominated convergence theorem, where CN =
∫∞

0
rN−1

(1+r2)N dr = Γ(N/2)2

2Γ(N)
.

Thus, (RHS of (2.4))× ‖uε‖
N

N−2
−1 is

c0‖uε‖−1+ N
N−2

∫

Ω

(
∂K

∂xi

)
upε

ε vεdx

= c0‖uε‖
N

N−2
+pε−( pε−1

2
)N

∫

Ωε

(
∂K

∂xi

)
(

y

‖uε‖ pε−1
2

+ xε)ũ
pε
ε ṽεdy

= c0‖uε‖
N

N−2
+pε−( pε−1

2
)N

∫

Ωε

(
∂K

∂xi

)
(

y

‖uε‖ pε−1
2

+ xε)
N∑

j=1

aj
∂wε

∂yj

dy

= −c0‖uε‖
N

N−2
+pε−( pε−1

2
)N

N∑
j=1

aj

∫

Ωε

∂

∂yj

{(
∂K

∂xi

)
(

y

‖uε‖ pε−1
2

+ xε)

}
wε(y)dy

= −c0‖uε‖
N

N−2
+pε−( pε−1

2
)N−( pε−1

2
)

N∑
j=1

aj

∫

Ωε

(
∂2K

∂xi∂xj

)
(x)

∣∣∣
x= y

‖uε‖
pε−1

2

+xε

wε(y)dy

→ −c0

(
lim
ε→0

‖uε‖(N−1
2

)ε
) N∑

j=1

aj
∂2K

∂xi∂xj

(x0)

(
lim
ε→0

∫

Ωε

wε(y)dy

)

=
N − 2

2
σNCN

N∑
j=1

aj
∂2K

∂xi∂xj

(x0).
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Thus we have
N∑

j=1

aj
∂2K

∂xi∂xj

(x0) = 0.

By our assumption of the nondegeneracy of x0, the matrix
(

∂2K
∂xi∂xj

)
(x0) is

invertible. Therefore we obtain that aj = 0 for all j = 1, · · · , N . Thus we
have proved Step 2, and consequently, Theorem 1.1.
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