A nondegeneracy result for least energy solutions to a biharmonic problem with nearly critical exponent

Tomohiko Sato
Computer Center
Gakushuin University
1-5-1 Mejiro, Toshima-ku
Tokyo, 171-8585, Japan
E-mail: tsato@gakushuin.ac.jp
and
Futoshi Takahashi
Department of Mathematics
Graduate School of Science
Osaka City University
3-3-138 Sugimoto, Sumiyoshi-ku
Osaka, 558-8585, Japan
Tel: $(+81)(0) 6-6605-2508$
E-mail: futoshi@sci.osaka-cu.ac.jp

Dedicated to professor Toshitaka Nagai on the occasion of his sixties birthday

Abstract

Consider the problem $\Delta^{2} u=c_{0} K(x) u^{p_{\varepsilon}}, u>0$ in $\Omega, u=\Delta u=0$ on $\partial \Omega$, where Ω is a smooth bounded domain in $\mathbb{R}^{N}(N \geq 5), c_{0}=$ $(N-4)(N-2) N(N+2), p=(N+4) /(N-4), p_{\varepsilon}=p-\varepsilon$ and K is a smooth positive function on $\bar{\Omega}$.

Under some assumptions on the coefficient function K, which include the nondegeneracy of its unique maximum point as a critical point of Hess K, we prove that least energy solutions of the problem are nondegenerate for $\varepsilon>0$ small.

1 Introduction

Consider the problem

$$
\begin{cases}\Delta^{2} u=c_{0} K(x) u^{p_{\varepsilon}} & \text { in } \Omega \tag{1.1}\\ u>0 & \text { in } \Omega \\ u=\Delta u=0 & \text { on } \partial \Omega\end{cases}
$$

where $\Omega \subset \mathbb{R}^{N}(N \geq 5)$ is a smooth bounded domain, $c_{0}=(N-4)(N-$ 2) $N(N+2), p_{\varepsilon}=p-\varepsilon, p=(N+4) /(N-4)$ is the critical Sobolev exponent with respect to the Sobolev embedding $H^{2} \cap H_{0}^{1}(\Omega) \hookrightarrow L^{p+1}(\Omega)$, and $\varepsilon>0$ is a small parameter. Here, K is a positive function in $C^{2}(\bar{\Omega})$.

We put an assumption on the coefficient function K :
(K): $K \in C^{2}(\bar{\Omega}), 0<K(x) \leq 1, K^{-1}\left(\max _{\bar{\Omega}} K\right)=\left\{x_{0}\right\} \subset \Omega$ with $K\left(x_{0}\right)=1$, and x_{0} is a nondegenerate critical point of K.

In the following, as solutions of (1.1) we consider only least energy solutions u_{ε} such that

$$
\frac{\int_{\Omega}\left|\Delta u_{\varepsilon}\right|^{2} d x}{\left(\int_{\Omega} K(x)\left|u_{\varepsilon}\right|^{p_{\varepsilon}+1} d x\right)^{\frac{2}{p_{\varepsilon}+1}}}=\inf _{u \in H^{2} \cap H_{0}^{1}(\Omega)} \frac{\int_{\Omega}|\Delta u|^{2} d x}{\left(\int_{\Omega} K(x)|u|^{p_{\varepsilon}+1} d x\right)^{\frac{2}{p_{\varepsilon}+1}}}
$$

We easily check that least energy solutions blow up in the sense that $\left\|u_{\varepsilon}\right\|_{L^{\infty}(\Omega)}=$ $u_{\varepsilon}\left(x_{\varepsilon}\right) \rightarrow+\infty$ as $\varepsilon \rightarrow 0$, and that the maximum point x_{ε} of u_{ε} converges to
a maximum point of K in $\bar{\Omega}$. Therefore we have $x_{\varepsilon} \rightarrow x_{0}$ as $\varepsilon \rightarrow 0$, here by the assumption (K), x_{0} is the unique interior maximum point of K.

In this note, we prove the nondegeneracy of least energy solutions to (1.1) when $\varepsilon>0$ is sufficiently small, under the assumption (K). Here as usual, the nondegeneracy of u_{ε} for small ε means that the problem

$$
\left\{\begin{array}{l}
\Delta^{2} v_{\varepsilon}=c_{0} p_{\varepsilon} K(x) u_{\varepsilon}^{p_{\varepsilon}-1} v_{\varepsilon} \quad \text { in } \Omega \tag{1.2}\\
v_{\varepsilon}=\Delta v_{\varepsilon}=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

admits no solution except for the trivial one for $\varepsilon>0$ small enough.
Theorem 1.1 Let $\Omega \subset \mathbb{R}^{N}(N \geq 5)$ be a smooth bounded domain. Under the assumption (K), least energy solution u_{ε} to (1.1) is nondegenerate for $\varepsilon>0$ small.

The precise asymptotic behavior of least energy solutions as $\varepsilon \rightarrow 0$ when $K \not \equiv 1$ was obtained in [6] under the assumption (K). Using this result, we prove Theorem 1.1 along the line of [7] and [8], the original idea of which comes from [4].

2 Preliminaries

In this section, we recall some facts which are needed in the sequel. Let $G=G(x, z)$ denote the Green function of Δ^{2} under the Navier boundary condition:

$$
\left\{\begin{aligned}
\Delta^{2} G(\cdot, z) & =\delta_{z} & & \text { in } \Omega \\
G(\cdot, z) & =\Delta G(\cdot, z)=0 & & \text { on } \partial \Omega
\end{aligned}\right.
$$

We decompose G as $G(x, z)=\Gamma(x, z)-H(x, z)$, where $\Gamma(x, z)$ is the fundamental solution of Δ^{2} :

$$
\Gamma(x, z)= \begin{cases}\frac{1}{(N-4)(N-2) \sigma_{N}}|x-z|^{4-N}, & N \geq 5 \\ \frac{1}{\sigma_{4}} \log |x-z|^{-1}, & N=4\end{cases}
$$

where σ_{N} is the volume of the $(N-1)$ dimensional unit sphere in \mathbb{R}^{N} and $H(x, z)$ is the regular part of the Green function. Finally, let $R(z)=H(z, z)$ denote the Robin function of the Green function of Δ^{2} with the Navier
boundary condition. By the maximum principle, we have $R>0$ on Ω and $R(z) \rightarrow+\infty$ as z tends to the boundary of Ω. In the following, we set $\bar{G}=-\Delta G$. Then \bar{G} is the Green function of $-\Delta$ under the Dirichlet boundary condition, and satisfy

$$
\begin{cases}-\Delta G=\bar{G},-\Delta \bar{G}=\delta_{z} & \text { in } \Omega, \\ G>0, \bar{G}>0 & \text { in } \Omega, \\ G=\bar{G}=0 & \text { on } \partial \Omega\end{cases}
$$

Lemma 2.1 For any $z \in \Omega$, there holds

$$
\begin{align*}
& \int_{\partial \Omega}\left((x-z) \cdot \nu_{x}\right)\left(\frac{\partial G}{\partial \nu_{x}}\right)\left(\frac{\partial \bar{G}}{\partial \nu_{x}}\right)(x, z) d s_{x}=(N-4) R(z) \tag{2.1}\\
& \int_{\partial \Omega} \frac{\partial G}{\partial \nu_{x}}(x, z) \frac{\partial \bar{G}}{\partial \nu_{x}}(x, z) \nu_{i}(x) d s_{x}=\frac{\partial R}{\partial z_{i}}(z), \quad(i=1, \cdots, N) \tag{2.2}\\
& \int_{\partial \Omega}\left(\frac{\partial \bar{G}}{\partial x_{i}}\right) \frac{\partial}{\partial z_{j}}\left(\frac{\partial G}{\partial \nu_{x}}\right)(x, z) d s_{x}+\int_{\partial \Omega}\left(\frac{\partial G}{\partial x_{i}}\right) \frac{\partial}{\partial z_{j}}\left(\frac{\partial \bar{G}}{\partial \nu_{x}}\right)(x, z) d s_{x} \\
& =\frac{\partial^{2} R}{\partial z_{i} \partial z_{j}}(z), \quad(i, j=1, \cdots, N) \tag{2.3}
\end{align*}
$$

Here ν_{x} is the outer unit normal at $x \in \partial \Omega$.
Proof. See [3]:Lemma 3.1 and Lemma 3.3. Note that our sign convention is different from that of [3]. By differentiating (2.2) with respect to z_{j}, noting that $\left(\frac{\partial G}{\partial \nu_{x}}(x, z)\right) \nu_{i}(x)=\frac{\partial G}{\partial x_{i}}(x, z),\left(\frac{\partial \bar{G}}{\partial \nu_{x}}(x, z)\right) \nu_{i}(x)=\frac{\partial \bar{G}}{\partial x_{i}}(x, z)$ on $\partial \Omega$, we see that (2.3) holds.

Lemma 2.2 Let u_{ε} be a solution to (1.1) and v_{ε} be a solution to (1.2). Denote $\bar{u}_{\varepsilon}=-\Delta u_{\varepsilon}$ and $\bar{v}_{\varepsilon}=-\Delta v_{\varepsilon}$. Then the following identities hold true:

$$
\begin{align*}
& \int_{\partial \Omega}\left((x-z) \cdot \nu_{x}\right)\left\{\left(\frac{\partial u_{\varepsilon}}{\partial \nu_{x}}\right)\left(\frac{\partial \bar{v}_{\varepsilon}}{\partial \nu_{x}}\right)+\left(\frac{\partial \bar{u}_{\varepsilon}}{\partial \nu_{x}}\right)\left(\frac{\partial v_{\varepsilon}}{\partial \nu_{x}}\right)\right\} d s_{x} \\
& =c_{0} \int_{\Omega} u_{\varepsilon}^{p_{\varepsilon}} v_{\varepsilon}(x-z) \cdot \nabla K(x) d x \tag{2.4}
\end{align*}
$$

for any $z \in \mathbb{R}^{N}$ and

$$
\begin{equation*}
\int_{\partial \Omega}\left\{\left(\frac{\partial \bar{u}_{\varepsilon}}{\partial x_{i}}\right)\left(\frac{\partial v_{\varepsilon}}{\partial \nu_{x}}\right)+\left(\frac{\partial u_{\varepsilon}}{\partial x_{i}}\right)\left(\frac{\partial \bar{v}_{\varepsilon}}{\partial \nu_{x}}\right)\right\} d s_{x}=c_{0} \int_{\Omega}\left(\frac{\partial K}{\partial x_{i}}\right) u_{\varepsilon}^{p_{\varepsilon}} v_{\varepsilon} d x \tag{2.5}
\end{equation*}
$$

for $i=1,2, \cdots, N$.

Proof. For smooth f, g, we have the formula

$$
\begin{align*}
& \int_{\Omega}\left(\left(\Delta^{2} f\right) g-\left(\Delta^{2} g\right) f\right) d x \\
& =\int_{\partial \Omega}\left(\frac{\partial \Delta f}{\partial \nu_{x}}\right) g-\left(\frac{\partial \Delta g}{\partial \nu_{x}}\right) f d s_{x}+\int_{\partial \Omega}\left(\frac{\partial f}{\partial \nu_{x}}\right) \Delta g-\left(\frac{\partial g}{\partial \nu_{x}}\right) \Delta f d s_{x} . \tag{2.6}
\end{align*}
$$

Set $w_{\varepsilon}(x)=(x-z) \cdot \nabla u_{\varepsilon}(x)+\alpha_{\varepsilon} u_{\varepsilon}(x)$ where $\alpha_{\varepsilon}=\frac{4}{p_{\varepsilon}-1}$. Direct computation yields that

$$
\Delta^{2} w_{\varepsilon}=\left(\alpha_{\varepsilon}+4\right) c_{0} K(x) u_{\varepsilon}^{p_{\varepsilon}}+c_{0} p_{\varepsilon} K(x) u_{\varepsilon}^{p_{\varepsilon}-1}(x-z) \cdot \nabla u_{\varepsilon}+c_{0} u_{\varepsilon}^{p_{\varepsilon}}(x-z) \cdot \nabla K(x) .
$$

Since v_{ε} satisfies $\Delta^{2} v_{\varepsilon}=c_{0} p_{\varepsilon} u_{\varepsilon}^{p_{\varepsilon}-1} v_{\varepsilon}$, we have

$$
\left(\Delta^{2} w_{\varepsilon}\right) v_{\varepsilon}-\left(\Delta^{2} v_{\varepsilon}\right) w_{\varepsilon}=\left(\alpha_{\varepsilon}+4-p_{\varepsilon} \alpha_{\varepsilon}\right) c_{0} u_{\varepsilon}^{p_{\varepsilon}} v_{\varepsilon}=0
$$

Integrating this identity on Ω with the formula (2.6), and noting that

$$
w_{\varepsilon}(x)=(x-z) \cdot \nu_{x}\left(\frac{\partial u_{\varepsilon}}{\partial \nu_{x}}\right), \quad \Delta w_{\varepsilon}(x)=(x-z) \cdot \nu_{x}\left(\frac{\partial \Delta u_{\varepsilon}}{\partial \nu_{x}}\right)
$$

for $x \in \partial \Omega$, we have (2.4).
On the other hand, differentiating the equation in (1.1) with respect to x_{i}, we have

$$
\Delta^{2}\left(\frac{\partial u_{\varepsilon}}{\partial x_{i}}\right)=c_{0} p_{\varepsilon} u_{\varepsilon}^{p_{\varepsilon}-1}\left(\frac{\partial u_{\varepsilon}}{\partial x_{i}}\right) \quad \text { in } \Omega .
$$

Multiplying this by v_{ε}, and the equation of v_{ε} by $\left(\frac{\partial u_{\varepsilon}}{\partial x_{i}}\right)$ and subtracting, we obtain

$$
\left(\Delta^{2} v_{\varepsilon}\right)\left(\frac{\partial u_{\varepsilon}}{\partial x_{i}}\right)-\left(\Delta^{2}\left(\frac{\partial u_{\varepsilon}}{\partial x_{i}}\right)\right) v_{\varepsilon}=0
$$

Finally, integration by parts formula (2.6) yields (2.5).
Next is the asymptotic result by [6]. In what follows, we use a symbol $\|\cdot\|$ to denote the L^{∞} norm of functions.

Theorem 2.3 Let $\Omega \subset \mathbb{R}^{N}, N \geq 5$ be a smooth bounded domain. Let u_{ε} be a least energy solution to $\left(P_{\varepsilon, K}\right)$ for $\varepsilon>0$ and let $x_{\varepsilon} \in \Omega$ be a point such that $u_{\varepsilon}\left(x_{\varepsilon}\right)=\left\|u_{\varepsilon}\right\|$. Assume (K). Then after passing to a subsequence, the following estimate holds true:

There exists a constant $C>0$ independent of ε such that for any $R_{\varepsilon} \rightarrow \infty$ with $r_{\varepsilon}=R_{\varepsilon}\left\|u_{\varepsilon}\right\|^{-\frac{p_{\varepsilon}-1}{4}} \rightarrow 0$,

$$
\left\{\begin{array}{l}
u_{\varepsilon}(x) \leq C \frac{\left\|u_{\varepsilon}\right\|}{\left(1+\left\|u_{\varepsilon}\right\| \|^{\frac{4}{-4}}\left|x-x_{\varepsilon}\right|^{2}\right)^{\frac{N-4}{2}}}, \quad \text { for }\left|x-x_{\varepsilon}\right| \leq r_{\varepsilon} \tag{2.7}\\
u_{\varepsilon}(x) \leq \frac{C}{\left\|u_{\varepsilon}\right\|\left|x-x_{\varepsilon}\right|^{N-4}}, \quad \text { for }\left\{\left|x-x_{\varepsilon}\right|>r_{\varepsilon}\right\} \cap \Omega
\end{array}\right.
$$

Furthermore, as $\varepsilon \rightarrow 0$,

$$
\begin{align*}
& \text { (1) } \begin{cases}\left|x_{\varepsilon}-x_{0}\right|=O\left(\left\|u_{\varepsilon}\right\|^{-2}\right) & \\
\left|x_{\varepsilon}-x_{0}\right|=o\left(\left\|u_{\varepsilon}\right\|^{-\frac{2}{N-4}}\right) & \\
N \geq 6,\end{cases} \tag{2.8}\\
& \text { (2) }\left\|u_{\varepsilon}\right\|^{\varepsilon} \rightarrow 1 \text {, } \tag{2.9}\\
& \text { (3) }\left\|u_{\varepsilon}\right\| u_{\varepsilon}(x) \rightarrow 2(N-4)(N-2) \sigma_{N} G\left(x, x_{0}\right) \quad \text { in } C_{\text {loc }}^{3}\left(\bar{\Omega} \backslash\left\{x_{0}\right\}\right) \text {, } \tag{2.10}\\
& \text { (4) } \begin{cases}\varepsilon\left\|u_{\varepsilon}\right\|^{2} \rightarrow \frac{2^{15}}{21} \pi R\left(x_{0}\right) & N=5, \\
\varepsilon\left\|u_{\varepsilon}\right\|^{2} \rightarrow-\frac{1}{4} \Delta K\left(x_{0}\right)+480 \pi^{3} R\left(x_{0}\right) & N=6, \\
\varepsilon\left\|u_{\varepsilon}\right\|^{\frac{4}{N-4} \rightarrow-\frac{2}{(N-2)(N-4)} \Delta K\left(x_{0}\right)} & N \geq 7 .\end{cases} \tag{2.11}
\end{align*}
$$

Now, consider the scaled function

$$
\begin{equation*}
\tilde{u}_{\varepsilon}(y):=\frac{1}{\left\|u_{\varepsilon}\right\|} u_{\varepsilon}\left(\frac{y}{\left\|u_{\varepsilon}\right\|^{\frac{p_{\varepsilon}-1}{4}}}+x_{\varepsilon}\right), \quad y \in \Omega_{\varepsilon}:=\left\|u_{\varepsilon}\right\|^{\frac{p_{\varepsilon}-1}{4}}(\Omega-\varepsilon) . \tag{2.12}
\end{equation*}
$$

\tilde{u}_{ε} satisfies $0<\tilde{u}_{\varepsilon} \leq 1, \tilde{u}_{\varepsilon}(0)=1$, and

$$
\begin{cases}\Delta^{2} \tilde{u}_{\varepsilon}=c_{0} K\left(\frac{y}{\left\|u_{\varepsilon}\right\| \frac{p_{\varepsilon-1}}{4}}+x_{\varepsilon}\right) \tilde{u}_{\varepsilon}^{p_{\varepsilon}} & \text { in } \Omega_{\varepsilon} \\ \tilde{u}_{\varepsilon}=\Delta \tilde{u}_{\varepsilon}=0 & \text { on } \partial \Omega_{\varepsilon}\end{cases}
$$

Since $\left\|u_{\varepsilon}\right\| \rightarrow \infty$ as $\varepsilon \rightarrow 0$ and x_{ε} does not approach to $\partial \Omega$, we see $\Omega_{\varepsilon} \rightarrow \mathbb{R}^{N}$. By standard elliptic estimates, we have a subsequence denoted also by \tilde{u}_{ε} that

$$
\begin{equation*}
\tilde{u}_{\varepsilon} \rightarrow U \quad \text { compact uniformly in } \mathbb{R}^{N} \tag{2.13}
\end{equation*}
$$

as $\varepsilon \rightarrow 0$ for some function U. Passing to the limit, we obtain that U is a solution of

$$
\left\{\begin{array}{l}
\Delta^{2} U=c_{0} U^{p} \quad \text { in } \mathbb{R}^{N} \\
0<U \leq 1, U(0)=1, \\
\lim _{|y| \rightarrow \infty} U(y)=0
\end{array}\right.
$$

According to the uniqueness theorem by Chang Shou Lin [5], we obtain

$$
\begin{equation*}
U(y)=\left(\frac{1}{1+|y|^{2}}\right)^{\frac{N-4}{2}} . \tag{2.14}
\end{equation*}
$$

In terms of \tilde{u}_{ε} in (2.12), the estimate (2.7) reads

$$
\tilde{u}_{\varepsilon}(y) \leq \begin{cases}C U(y) & \text { for }|y| \leq R_{\varepsilon} \tag{2.15}\\ C \frac{1}{|y|^{N-4}} & \text { for }\left\{|y|>R_{\varepsilon}\right\} \cap \Omega_{\varepsilon}\end{cases}
$$

where $R_{\varepsilon} \rightarrow \infty$ is any sequence as in the above.
Here, we recall a theorem by Bartsch, Weth and Willem [1].
Lemma 2.4 Let v_{0} be a solution to

$$
\left\{\begin{array}{l}
\Delta^{2} v_{0}=c_{0} p U^{p-1} v_{0} \quad \text { in } \mathbb{R}^{N} \\
\int_{\mathbb{R}^{N}}\left|\Delta v_{0}\right|^{2} d y<\infty
\end{array}\right.
$$

Then there exist $a_{j}(j=1,2, \cdots, N), b \in \mathbb{R}$ such that v_{0} can be written as

$$
v_{0}=\sum_{j=1}^{N} a_{j} \frac{y_{j}}{\left(1+|y|^{2}\right)^{(N-2) / 2}}+b \frac{1-|y|^{2}}{\left(1+|y|^{2}\right)^{(N-2) / 2}} .
$$

3 Proof of Theorem 1.1

In this section, we will prove Theorem 1.1.
We argue by contradiction. We assume there exists a non-trivial solution v_{ε} to (1.2) satisfying $\left\|v_{\varepsilon}\right\|=\left\|u_{\varepsilon}\right\|$ for any $\varepsilon>0$.

Consider the scaled function

$$
\begin{equation*}
\tilde{v}_{\varepsilon}(y)=\frac{1}{\left\|u_{\varepsilon}\right\|} v_{\varepsilon}\left(\frac{y}{\left\|u_{\varepsilon}\right\|^{\frac{p_{\varepsilon}-1}{4}}}+x_{\varepsilon}\right), \quad y \in \Omega_{\varepsilon}=\left\|u_{\varepsilon}\right\|^{\frac{p_{\varepsilon}-1}{4}}\left(\Omega-x_{\varepsilon}\right) . \tag{3.1}
\end{equation*}
$$

We see $0<\tilde{v}_{\varepsilon} \leq 1$ and \tilde{v}_{ε} satisfies

$$
\left\{\begin{array}{l}
\Delta^{2} \tilde{v}_{\varepsilon}=c_{0} p_{\varepsilon} K\left(\frac{y}{\left\|u_{\varepsilon}\right\| \frac{p_{\varepsilon}-1}{4}}+x_{\varepsilon}\right) \tilde{u}_{\varepsilon}^{p_{\varepsilon}-1} \tilde{v}_{\varepsilon} \text { in } \Omega_{\varepsilon} \tag{3.2}\\
\tilde{v}_{\varepsilon}=\Delta \tilde{v}_{\varepsilon}=0 \quad \text { on } \partial \Omega_{\varepsilon} \\
\left\|\tilde{v}_{\varepsilon}\right\|_{L^{\infty}\left(\Omega_{\varepsilon}\right)}=1
\end{array}\right.
$$

By $\left\|\tilde{v}_{\varepsilon}\right\|_{L^{\infty}\left(\Omega_{\varepsilon}\right)}=1$, elliptic estimate implies that

$$
\begin{equation*}
\tilde{v}_{\varepsilon} \rightarrow v_{0} \quad \text { compact uniformly in } \mathbb{R}^{N} \tag{3.3}
\end{equation*}
$$

for some v_{0} and v_{0} satisfies

$$
\Delta^{2} v_{0}=c_{0} p U^{p-1} v_{0} \quad \text { in } \mathbb{R}^{N} .
$$

Also by arguing as in [7], we have

$$
\begin{equation*}
\int_{\Omega_{\varepsilon}}\left|\Delta \tilde{v}_{\varepsilon}\right|^{2} d y \leq C \tag{3.4}
\end{equation*}
$$

for some $C>0$ independent of $\varepsilon>0$ small. By (3.4) and Fatou's lemma, we also have

$$
\int_{\mathbb{R}^{N}}\left|\Delta v_{0}\right|^{2} d y \leq C
$$

Thus by Lemma 2.4, we have

$$
\begin{equation*}
v_{0}=\sum_{j=1}^{N} a_{j} \frac{y_{j}}{\left(1+|y|^{2}\right)^{(N-2) / 2}}+b \frac{1-|y|^{2}}{\left(1+|y|^{2}\right)^{(N-2) / 2}} . \tag{3.5}
\end{equation*}
$$

In the following, we divide the proof into three steps.
Step 1. $b=0$.
Step 2. $a_{j}=0, j=1, \cdots, N$.
Step 3. $v_{0}=0$ leads to a contradiction.
First, by using the Kelvin transformation and a local supremum estimate for weak solutions to a linear biharmonic equation by Caristi and Mitidieri [2], we can obtain the pointwise estimate for the scaled function \tilde{v}_{ε}, just as in [7] Lemma 3.1.

Lemma 3.1 Let \tilde{v}_{ε} be a solution of (3.2). Then we have the estimate

$$
\begin{equation*}
\left|\tilde{v}_{\varepsilon}(y)\right| \leq C U(y), \quad \forall y \in \Omega_{\varepsilon} \tag{3.6}
\end{equation*}
$$

for some $C>0$.

Also by Lemma 3.1 and Theorem 2.3 (2.7), we have the following convergence result. For a proof, see Lemma 3.2 in [7].

Lemma 3.2 Let $\omega \subset \Omega$ be any neighborhood of $\partial \Omega$ not containing x_{0}. Then we have

$$
\begin{equation*}
\left\|u_{\varepsilon}\right\| v_{\varepsilon} \rightarrow-2(N-2)(N-4) \sigma_{N} b G\left(\cdot, x_{0}\right) \quad \text { in } C^{3}(\omega) . \tag{3.7}
\end{equation*}
$$

Proof of Step 1. Here, we prove only the case $N \geq 7$. Proof of the cases $N=5$ and $N=6$ will be done by a similar argument; see [8] for the second order $-\Delta$ case.

Putting $z=x_{0}$ in (2.4) and multiplying $\left\|u_{\varepsilon}\right\|^{4 /(N-4)}$, we have

$$
\begin{align*}
& \left\|u_{\varepsilon}\right\|^{\frac{4}{N-4}-2} \int_{\partial \Omega}\left(\left(x-x_{0}\right) \cdot \nu_{x}\right)\left(\frac{\partial\left\|u_{\varepsilon}\right\| u_{\varepsilon}}{\partial \nu_{x}}\right)\left(\frac{\partial\left\|u_{\varepsilon}\right\| \bar{v}_{\varepsilon}}{\partial \nu_{x}}\right) d s_{x} \\
& +\left\|u_{\varepsilon}\right\|^{\frac{4}{N-4}-2} \int_{\partial \Omega}\left(\left(x-x_{0}\right) \cdot \nu_{x}\right)\left(\frac{\partial\left\|u_{\varepsilon}\right\| \bar{u}_{\varepsilon}}{\partial \nu_{x}}\right)\left(\frac{\partial\left\|u_{\varepsilon}\right\| v_{\varepsilon}}{\partial \nu_{x}}\right) d s_{x} \\
& =\left\|u_{\varepsilon}\right\|^{\frac{4}{N-4}} c_{0} \int_{\Omega} u_{\varepsilon}^{p_{\varepsilon}} v_{\varepsilon}(x-z) \cdot \nabla K(x) d x . \tag{3.8}
\end{align*}
$$

As $\frac{4}{N-4}<2$ if $N \geq 7$, LHS of (3.8) converges to 0 as $\varepsilon \rightarrow 0$. On the other hand, by Taylor's formula and the change of variables, we write

$$
(\mathrm{RHS}) \text { of }(3.8)=: C_{1}+C_{2}+C_{3}+C_{4}
$$

where, putting $b_{i j}=\frac{\partial^{2} K}{\partial x_{i} \partial x_{j}}\left(x_{0}\right)$,

$$
\begin{aligned}
& C_{1}=c_{0}\left\|u_{\varepsilon}\right\| \frac{4}{N-4}+p_{\varepsilon}+1-\left(\frac{p_{\varepsilon}-1}{4}\right) N-\left(\frac{p_{\varepsilon}-1}{2}\right) \\
& C_{\Omega_{\varepsilon}}=2 c_{0}\left\|u_{\varepsilon}\right\|^{p_{\varepsilon}} \tilde{v}_{\varepsilon}(y) \sum_{i, j=1}^{N} b_{i j} y_{i} y_{j} d y, p_{\varepsilon}+1-\left(\frac{p_{\varepsilon}-1}{4}\right) N-\left(\frac{p_{\varepsilon}-1}{4}\right) \\
& \int_{\Omega_{\varepsilon}} \tilde{u}_{\varepsilon}^{p_{\varepsilon}} \tilde{v}_{\varepsilon}(y) \sum_{i, j=1}^{N} b_{i j} y_{i}\left(x_{\varepsilon j}-x_{0 j}\right) d y, \\
& C_{3}=c_{0}\left\|u_{\varepsilon}\right\| \frac{4}{N-4}+p_{\varepsilon}+1-\left(\frac{p_{\varepsilon}-1}{4}\right) N \\
& \int_{\Omega_{\varepsilon}} \tilde{u}_{\varepsilon}^{p_{\varepsilon}} \tilde{v}_{\varepsilon}(y) \sum_{i, j=1}^{N} b_{i j}\left(x_{\varepsilon i}-x_{0 i}\right)\left(x_{\varepsilon j}-x_{0 j}\right) d y, \\
& C_{4}=c_{0}\left\|u_{\varepsilon}\right\| \frac{4}{N-4}+p_{\varepsilon}+1-\left(\frac{p_{\varepsilon}-1}{4}\right) N \\
& \int_{\Omega_{\varepsilon}} \tilde{u}_{\varepsilon}^{p_{\varepsilon}} \tilde{v}_{\varepsilon}(y)\left(O\left|\frac{y}{\left\|u_{\varepsilon}\right\|^{\frac{p_{\varepsilon}-1}{4}}}+x_{\varepsilon}-x_{0}\right|^{3}\right) d y .
\end{aligned}
$$

By (2.15), (3.6), (2.9), (2.8) and the dominated convergence theorem, we see

$$
\begin{aligned}
C_{2} & =O\left(\left\|u_{\varepsilon}\right\|^{\frac{2}{N-4}+\frac{N-3}{4} \varepsilon}\right) \times O\left(\int_{\mathbb{R}^{N}} U^{p} v_{0}(y)|y| d y+o(1)\right) \times o\left(\left\|u_{\varepsilon}\right\|^{-\frac{2}{N-4}}\right)=o(1), \\
C_{3} & =O\left(\left\|u_{\varepsilon}\right\|^{\frac{4}{N-4}+\frac{N-4}{4} \varepsilon}\right) \times O\left(\int_{\mathbb{R}^{N}} U^{p} v_{0}(y) d y+o(1)\right) \times o\left(\left\|u_{\varepsilon}\right\|^{-\frac{4}{N-4}}\right)=o(1), \\
C_{4} & =O\left(\left\|u_{\varepsilon}\right\|^{\frac{4}{N-4}+\frac{N-4}{4} \varepsilon}\right) \int_{\Omega_{\varepsilon}} \tilde{u}_{\varepsilon}^{p_{\varepsilon}} \tilde{v}_{\varepsilon}(y)\left(O \left(\left\lvert\, \frac{y}{\left.\left.\left.\left\|u_{\varepsilon}\right\|^{\frac{p_{\varepsilon}-1}{2}}\right|^{3}\right)+O\left(\left|x_{\varepsilon}-x_{0}\right|^{3}\right)\right)}\right.\right.\right. \\
& =O\left(\left\|u_{\varepsilon}\right\|^{\frac{4}{N-4}}\right) \times O\left(\left\|u_{\varepsilon}\right\|^{-\frac{6}{N-4}}\right) \times O\left(\int_{\mathbb{R}^{N}} U^{p} v_{0}(y)\left(|y|^{3}+1\right) d y+o(1)\right) \\
& =O\left(\left\|u_{\varepsilon}\right\|^{-\frac{2}{N-4}}\right)
\end{aligned}
$$

as $\varepsilon \rightarrow 0$. As for C_{1}, we see

$$
\begin{aligned}
& C_{1}=c_{0}\left\|u_{\varepsilon}\right\|^{\left(\frac{N-2}{4}\right) \varepsilon} \int_{\Omega_{\varepsilon}} \tilde{u}_{\varepsilon}^{p_{\varepsilon}} \tilde{v}_{\varepsilon}(y) \sum_{i, j=1}^{N} b_{i j} y_{i} y_{j} d y \\
& \rightarrow c_{0} \int_{\mathbb{R}^{N}} U^{p}(y) v_{0}(y) \sum_{i, j=1}^{N} b_{i j} y_{i} y_{j} d y=\frac{c_{0}}{N} b \Delta K\left(x_{0}\right) \int_{\mathbb{R}^{N}} U^{p}(y) \frac{1-|y|^{2}}{\left(1+|y|^{2}\right)^{N / 2}}|y|^{2} d y .
\end{aligned}
$$

Thus letting $\varepsilon \rightarrow 0$ in (3.8), we have

$$
0=\Delta K\left(x_{0}\right) \times b
$$

Hence we obtain $b=0$, because our nondegeneracy assumption of x_{0} assures that $\Delta K\left(x_{0}\right)<0$ strictly.

Proof of Step 2.

In this step, we prove $a_{j}=0, j=1,2, \cdots, N$ in (3.5) by using the next lemma.

Lemma 3.3 Assume $b=0$ and $a=\left(a_{1}, \cdots, a_{N}\right) \neq 0$ in (3.5). Then we have

$$
\left.\left\|u_{\varepsilon}\right\|^{\frac{N-2}{N-4}} v_{\varepsilon} \rightarrow 2(N-2) \sigma_{N} \sum_{j=1}^{N} a_{j}\left(\frac{\partial G}{\partial z_{j}}(x, z)\right)\right|_{z=x_{0}}
$$

in $C_{\text {loc }}^{3}\left(\bar{\Omega} \backslash\left\{x_{0}\right\}\right)$.

Proof. Since $-\Delta \bar{v}_{\varepsilon}=c_{0} p_{\varepsilon} K(x) u_{\varepsilon}^{p_{\varepsilon}-1} v_{\varepsilon}$ in $\Omega, \bar{v}_{\varepsilon}=0$ on $\partial \Omega$, the Green representation formula implies that

$$
\begin{equation*}
\bar{v}_{\varepsilon}(x)=c_{0} p_{\varepsilon} \int_{\Omega} \bar{G}(x, z) K(z) u_{\varepsilon}^{p_{\varepsilon}-1}(z) v_{\varepsilon}(z) d z \tag{3.9}
\end{equation*}
$$

for any $x \in \bar{\Omega} \backslash\left\{x_{0}\right\}$, here $\bar{G}(x, z)=-\Delta_{x} G(x, z)$ is the Green function of $-\Delta$ under the Dirichlet boundary condition. By a change of variables, we see

$$
\begin{aligned}
& c_{0} p_{\varepsilon} \int_{\Omega} \bar{G}(x, z) K(z) u_{\varepsilon}^{p_{\varepsilon}-1}(z) v_{\varepsilon}(z) d z \\
& =c_{0} p_{\varepsilon}\left\|u_{\varepsilon}\right\|^{p_{\varepsilon}-\left(\frac{p_{\varepsilon}-1}{4}\right) N} \int_{\Omega_{\varepsilon}} \bar{G}_{\varepsilon}(x, y) K_{\varepsilon}(y) \tilde{u}_{\varepsilon}^{p_{\varepsilon}-1} \tilde{v}_{\varepsilon}(y) d y
\end{aligned}
$$

where $\bar{G}_{\varepsilon}(x, y)=\bar{G}\left(x, \frac{y}{\left\|u_{\varepsilon}\right\|^{\frac{p_{\varepsilon}-1}{4}}}+x_{\varepsilon}\right)$ and $K_{\varepsilon}(y)=K\left(\frac{y}{\left\|u_{\varepsilon}\right\|^{\frac{p_{\varepsilon}-1}{4}}}+x_{\varepsilon}\right)$. By (2.13) and (3.3), we obtain

$$
K_{\varepsilon}(y) \tilde{u}_{\varepsilon}^{p_{\varepsilon}-1} \tilde{v}_{\varepsilon}(y) \rightarrow \sum_{j=1}^{N} a_{j}\left(\frac{\partial}{\partial y_{j}} \frac{-1}{(N+4)} U^{p}(y)\right)
$$

uniformly on compact subsets of \mathbb{R}^{N}.
Now, let us consider the following linear first order PDE

$$
\sum_{j=1}^{N} a_{j} \frac{\partial w_{\varepsilon}}{\partial y_{j}}=\tilde{u}_{\varepsilon}^{p_{\varepsilon}-1} \tilde{v}_{\varepsilon}(y), \quad y \in \mathbb{R}^{N}
$$

with the initial condition $\left.w_{\varepsilon}\right|_{\Gamma_{a}}=\frac{-1}{(N+4)} U^{p}(y)$, where $\Gamma_{a}=\left\{x \in \mathbb{R}^{N} \mid x \cdot a=\right.$ $0\}$. Here, the right hand side is assumed to be 0 outside of Ω_{ε}. By the unique solvability, we have the solution w_{ε} of this problem with the estimate $w_{\varepsilon}(y)=O\left(|y|^{-(N+3)}\right)$ as $|y| \rightarrow \infty$, since $\tilde{u}_{\varepsilon}^{p_{\varepsilon}-1} \tilde{v}_{\varepsilon}(y)=O\left(|y|^{-(N+4)}\right)$ by (2.15) and (3.6). Also we have

$$
w_{\varepsilon} \rightarrow \frac{-1}{(N+4)} U^{p} \quad \text { uniformly on compact subsets on } \mathbb{R}^{N}
$$

and

$$
\int_{\Omega_{\varepsilon}} w_{\varepsilon}(y) d y \rightarrow \frac{-1}{(N+4)} \int_{\mathbb{R}^{N}} U^{p} d y=\left(\frac{-1}{N+4}\right)\left(\frac{2 \sigma_{N}}{N(N+2)}\right)
$$

by the dominated convergence theorem. Using integration by parts, we have

$$
\begin{aligned}
& \bar{v}_{\varepsilon}(x)=c_{0} p_{\varepsilon}\left\|u_{\varepsilon}\right\|^{p_{\varepsilon}-\left(\frac{p_{\varepsilon}-1}{4}\right) N} \int_{\Omega_{\varepsilon}} \bar{G}_{\varepsilon}(x, y) K_{\varepsilon}(y) \sum_{j=1}^{N} a_{j} \frac{\partial w_{\varepsilon}}{\partial y_{j}} d y \\
& =-c_{0} p_{\varepsilon}\left\|u_{\varepsilon}\right\|^{p_{\varepsilon}-\left(\frac{p_{\varepsilon}-1}{4}\right) N} \sum_{j=1}^{N} a_{j} \int_{\Omega_{\varepsilon}} \frac{\partial}{\partial y_{j}}\left\{\bar{G}_{\varepsilon}(x, y) K_{\varepsilon}(y)\right\} w_{\varepsilon}(y) d y \\
& =-\left.c_{0} p_{\varepsilon}\left\|u_{\varepsilon}\right\|^{p_{\varepsilon}-\left(\frac{p_{\varepsilon}-1}{4}\right) N-\left(\frac{p_{\varepsilon}-1}{4}\right)} \sum_{j=1}^{N} a_{j} \int_{\Omega_{\varepsilon}} \frac{\partial}{\partial z_{j}}\{\bar{G}(x, z) K(z)\}\right|_{z=\frac{y}{\left\|u_{\varepsilon}\right\| \frac{p_{\varepsilon}-1}{4}}+x_{\varepsilon}} w_{\varepsilon}(y) d y .
\end{aligned}
$$

Note that $p_{\varepsilon}-\left(\frac{p_{\varepsilon}-1}{4}\right) N-\left(\frac{p_{\varepsilon}-1}{4}\right)=-\left(\frac{N-2}{N-4}\right)+\varepsilon\left(\frac{N-3}{4}\right)$. Now, we see

$$
\begin{aligned}
& \left.\frac{\partial}{\partial z_{j}}\{\bar{G}(x, z) K(z)\}\right|_{z=\frac{y}{\left\|u_{\varepsilon}\right\|}{ }^{\frac{p_{\varepsilon}-1}{4}}+x_{\varepsilon}} \\
& \rightarrow\left(\frac{\partial \bar{G}}{\partial z_{j}}\left(x, x_{0}\right)\right) K\left(x_{0}\right)+\bar{G}\left(x, x_{0}\right)\left(\frac{\partial K}{\partial z_{j}}\left(x_{0}\right)\right) \\
& =\frac{\partial \bar{G}}{\partial z_{j}}\left(x, x_{0}\right)
\end{aligned}
$$

uniformly on compact subsets of \mathbb{R}^{N} as $\varepsilon \rightarrow 0$, since x_{0} is a critical point of K with $K\left(x_{0}\right)=1$. Also we note that $\frac{N}{N-2}+p_{\varepsilon}-\left(\frac{p_{\varepsilon}-1}{2}\right) N-\left(\frac{p_{\varepsilon}-1}{2}\right)=\left(\frac{N-1}{2}\right) \varepsilon$. Therefore, we have the convergence

$$
\begin{aligned}
\left\|u_{\varepsilon}\right\|^{\frac{N-2}{N-4}} \bar{v}_{\varepsilon}(x) \rightarrow & -\left.c_{0} p\left(\frac{-1}{N+4}\right)\left(\frac{2 \sigma_{N}}{N(N+2)}\right) \sum_{j=1}^{N} a_{j}\left(\frac{\partial \bar{G}}{\partial z_{j}}(x, z)\right)\right|_{z=x_{0}} \\
& =\left.2(N-2) \sigma_{N} \sum_{j=1}^{N} a_{j}\left(\frac{\partial \bar{G}}{\partial z_{j}}(x, z)\right)\right|_{z=x_{0}}
\end{aligned}
$$

for any $x \in \bar{\Omega} \backslash\left\{x_{0}\right\}$. Elliptic estimates implies this convergence holds true in $C_{l o c}^{1}\left(\bar{\Omega} \backslash\left\{x_{0}\right\}\right)$. This proves Lemma.

Now, assume the contrary that $a=\left(a_{1}, \cdots, a_{N}\right) \neq 0$. We multiply both
sides of (2.5) in Lemma 2.2 by $\left\|u_{\varepsilon}\right\|^{(N-2) /(N-4)} \times\left\|u_{\varepsilon}\right\|^{-1}$ to get

$$
\begin{align*}
& \left\|u_{\varepsilon}\right\|^{-2}\left[\int_{\partial \Omega}\left(\frac{\partial\left\|u_{\varepsilon}\right\| \bar{u}_{\varepsilon}}{\partial x_{i}}\right)\left(\frac{\partial\left\|u_{\varepsilon}\right\|^{\frac{N-2}{N-4}} v_{\varepsilon}}{\partial \nu_{x}}\right) d s_{x}+\left(\frac{\partial\left\|u_{\varepsilon}\right\| u_{\varepsilon}}{\partial x_{i}}\right)\left(\frac{\partial\left\|u_{\varepsilon}\right\|^{\frac{N-2}{N-4}} \bar{v}_{\varepsilon}}{\partial \nu_{x}}\right) d s_{x}\right] \\
& =\left\|u_{\varepsilon}\right\|^{-1+\frac{N-2}{N-4}} c_{0} \int_{\Omega}\left(\frac{\partial K}{\partial x_{i}}\right) u_{\varepsilon}^{p_{\varepsilon}} v_{\varepsilon} d x \tag{3.10}
\end{align*}
$$

As $\varepsilon \rightarrow 0$, we see that

$$
\int_{\partial \Omega}\left(\frac{\partial\left\|u_{\varepsilon}\right\| \bar{u}_{\varepsilon}}{\partial x_{i}}\right)\left(\frac{\partial\left\|u_{\varepsilon}\right\|^{N-2}{ }^{N-4} v_{\varepsilon}}{\partial \nu_{x}}\right) d s_{x}+\left(\frac{\partial\left\|u_{\varepsilon}\right\| u_{\varepsilon}}{\partial x_{i}}\right)\left(\frac{\partial\left\|u_{\varepsilon}\right\|^{N-2} \bar{v}_{\varepsilon}}{\partial \nu_{x}}\right) d s_{x}
$$

tends to

$$
\begin{aligned}
& 4(N-4)(N-2)^{2} \sigma_{N}^{2} \sum_{j=1}^{N} a_{j} \times \\
& \int_{\partial \Omega}\left\{\left(\frac{\partial \bar{G}}{\partial x_{i}}\right) \frac{\partial}{\partial \nu_{x}}\left(\frac{\partial G}{\partial z_{j}}\right)\left(x, x_{0}\right)+\left(\frac{\partial G}{\partial x_{i}}\right) \frac{\partial}{\partial \nu_{x}}\left(\frac{\partial \bar{G}}{\partial z_{j}}\right)\left(x, x_{0}\right)\right\} d s_{x} \\
& =\left.4(N-4)(N-2)^{2} \sigma_{N}^{2} \sum_{j=1}^{N} a_{j} \frac{\partial^{2} R}{\partial z_{i} \partial z_{j}}(z)\right|_{z=x_{0}}
\end{aligned}
$$

here we have used Theorem 2.3 (2.10), Lemma 3.3 and Lemma 2.1 (2.3). Thus we have (LHS) of (3.10) tends to 0 as $\varepsilon \rightarrow 0$.

On the other hand, again we solve the linear PDE

$$
\begin{equation*}
\sum_{j=1}^{N} a_{j} \frac{\partial w_{\varepsilon}}{\partial y_{j}}=\tilde{u}_{\varepsilon}^{p_{\varepsilon}} \tilde{v}_{\varepsilon}(y), \quad y \in \mathbb{R}^{N} \tag{3.11}
\end{equation*}
$$

with the initial condition $\left.w_{\varepsilon}\right|_{\Gamma_{a}}=\frac{-1}{2 N} U^{p+1}(y)$, where $\Gamma_{a}=\left\{x \in \mathbb{R}^{N} \mid x \cdot a=0\right\}$. Here as before, the RHS of (3.11) is understood as 0 outside of Ω_{ε}. The solution w_{ε} satisfies the estimate $w_{\varepsilon}(y)=O\left(|y|^{-2 N+1}\right)$ as $|y| \rightarrow \infty$, since $\tilde{u}_{\varepsilon}^{p_{\varepsilon}} \tilde{v}_{\varepsilon}(y)=O\left(U^{p_{\varepsilon}+1}(y)\right)=O\left(|y|^{-2 N}\right)$ by (2.15) and (3.6). As before, we have

$$
w_{\varepsilon} \rightarrow \frac{-1}{2 N} U^{p+1} \quad \text { uniformly on compact subsets on } \mathbb{R}^{N}
$$

and

$$
\int_{\Omega_{\varepsilon}} w_{\varepsilon}(y) d y \rightarrow \frac{-1}{2 N} \int_{\mathbb{R}^{N}} U^{p+1} d y=\frac{-1}{2 N} \sigma_{N} C_{N}
$$

by the dominated convergence theorem, where $C_{N}=\int_{0}^{\infty} \frac{r^{N-1}}{\left(1+r^{2}\right)^{N}} d r=\frac{\Gamma(N / 2)^{2}}{2 \Gamma(N)}$. Thus, (RHS of (2.5)) $\times\left\|u_{\varepsilon}\right\|^{\frac{N}{N-2}-1}$ is

$$
\begin{aligned}
& c_{0}\left\|u_{\varepsilon}\right\|^{-1+\frac{N-2}{N-4}} \int_{\Omega}\left(\frac{\partial K}{\partial x_{i}}\right) u_{\varepsilon}^{p_{\varepsilon}} v_{\varepsilon} d x \\
& =c_{0}\left\|u_{\varepsilon}\right\|^{\frac{N-2}{N-4}+p_{\varepsilon}-\left(\frac{p_{\varepsilon}-1}{4}\right) N} \int_{\Omega_{\varepsilon}}\left(\frac{\partial K}{\partial x_{i}}\right)\left(\frac{y}{\left\|u_{\varepsilon}\right\| \|_{\varepsilon}^{4}}+x_{\varepsilon}\right) \tilde{u}_{\varepsilon}^{p_{\varepsilon}} \tilde{v}_{\varepsilon} d y \\
& =c_{0}\left\|u_{\varepsilon}\right\| \frac{N-2}{N-4}+p_{\varepsilon}-\left(\frac{p_{\varepsilon}-1}{4}\right) N \\
& \left.=-c_{0}\left\|u_{\varepsilon}\right\|^{\frac{N-2}{N-4}+p_{\varepsilon}-\left(\frac{p_{\varepsilon}-1}{4}\right) N} \sum_{j=1}^{N} a_{j} \int_{\Omega_{\varepsilon}}^{\partial x_{i}}\right)\left(\frac{\partial}{\left\|u_{\varepsilon}\right\| \|_{\varepsilon}-1}+x_{\varepsilon}\right) \sum_{j=1}^{N} a_{j} \frac{\partial w_{\varepsilon}}{\partial y_{j}} d y \\
& \left.\left.=-c_{0}\left\|u_{\varepsilon}\right\| \frac{\partial K}{\partial x_{i}}\right)\left(\frac{y}{\left\|u_{\varepsilon}\right\|^{\frac{p_{\varepsilon}-1}{4}}}+x_{\varepsilon}\right)\right\} w_{\varepsilon}(y) d y \\
& \rightarrow-c_{0}\left(\lim _{\varepsilon \rightarrow 0}\left\|u_{\varepsilon}\right\| \|^{\left(\frac{N-3}{4}\right) \varepsilon}\right) \sum_{j=1}^{N} a_{j} \frac{\partial^{2} K}{\partial x_{i} \partial x_{j}}\left(x_{0}\right)\left(\lim _{\varepsilon \rightarrow 0} \int_{\Omega_{\varepsilon}} w_{\varepsilon}(y) d y\right) \\
& =\frac{N}{2} c_{0} \sigma_{N} C_{N} \sum_{j=1}^{N} a_{j} \frac{\partial^{2} K}{\partial x_{i} \partial x_{j}}\left(x_{0}\right) .
\end{aligned}
$$

Thus we have

$$
\sum_{j=1}^{N} a_{j} \frac{\partial^{2} K}{\partial x_{i} \partial x_{j}}\left(x_{0}\right)=0 .
$$

By our assumption of the nondegeneracy of x_{0}, the matrix $\left(\frac{\partial^{2} K}{\partial x_{i} \partial x_{j}}\right)\left(x_{0}\right)$ is invertible. Therefore we obtain that $a_{j}=0$ for all $j=1, \cdots, N$. Thus we have proved Step 2.

Proof of Step 3.

By Step 1 and Step 2, we have obtained that the limit function $\lim _{\varepsilon \rightarrow 0} \tilde{v}_{\varepsilon}=$ $v_{0} \equiv 0$. Since $\left\|\tilde{v}_{\varepsilon}\right\|_{L^{\infty}\left(\Omega_{\varepsilon}\right)}=1$, there exists $y_{\varepsilon} \in \Omega_{\varepsilon}$ such that $\tilde{v}_{\varepsilon}\left(y_{\varepsilon}\right)=1$ and $\left|y_{\varepsilon}\right| \rightarrow \infty$, because the above convergence $\tilde{v}_{\varepsilon} \rightarrow v_{0} \equiv 0$ is uniform on compact sets of \mathbb{R}^{N}. But this is not possible because of Lemma 3.1. This proves Theorem 1.1.

Acknowledgements. Part of this work was supported by JSPS Grant-in-Aid for Scientific Research (C), No. 20540216.

References

[1] T. Bartsch, and T. Weth, and M. Willem: A Sobolev inequality with remainder term and critical equations on domains with topology for the polyharmonic operator, Calc. Var. and PDE. 18 (2003) 253-268.
[2] G. Caristi, and E. Mitidieri: Harnack inequality and applications to solutions of biharmonic equations, Operator Theory: Advances and Appl. 168 (2006) 1-26.
[3] K. S. Chou, and D. Geng: Asymptotics of positive solutions for a biharmonic equation involving critical exponent, Diff. Int. Eq. 13 (2000) 921-940.
[4] M. Grossi: A nondegeneracy result for some nonlinear elliptic equation, NoDEA 12 (2005) 227-241.
[5] C. S. Lin: A classification of solutions of a conformally invariant fourth order equation in \mathbb{R}^{n}, Comment. Math. Helv. 73 (1998) 206-231.
[6] F. Takahashi: Asymptotic behavior of least energy solutions for a biharmonic problem with nearly critical growth, Asymptotic Anal. 60 (2008) 213-226.
[7] F. Takahashi: An asymptotic nondegeneracy result for a biharmonic equation with the nearly critical growth, NoDEA, 15 (2008) 623-637.
[8] F. Takahashi: Nondegeneracy of least energy solutions for an elliptic problem with nearly critical nonlinearity, (preprint)

