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Abstract

Consider the problem ∆2u = c0K(x)upε , u > 0 in Ω, u = ∆u = 0
on ∂Ω, where Ω is a smooth bounded domain in RN (N ≥ 5), c0 =
(N − 4)(N − 2)N(N + 2), p = (N + 4)/(N − 4), pε = p− ε and K is a
smooth positive function on Ω.

Under some assumptions on the coefficient function K, which in-
clude the nondegeneracy of its unique maximum point as a critical
point of HessK, we prove that least energy solutions of the problem
are nondegenerate for ε > 0 small.

1 Introduction

Consider the problem





∆2u = c0K(x)upε in Ω,

u > 0 in Ω,

u = ∆u = 0 on ∂Ω,

(1.1)

where Ω ⊂ RN(N ≥ 5) is a smooth bounded domain, c0 = (N − 4)(N −
2)N(N +2), pε = p− ε, p = (N +4)/(N − 4) is the critical Sobolev exponent
with respect to the Sobolev embedding H2 ∩H1

0 (Ω) ↪→ Lp+1(Ω), and ε > 0
is a small parameter. Here, K is a positive function in C2(Ω).

We put an assumption on the coefficient function K:

(K): K ∈ C2(Ω), 0 < K(x) ≤ 1, K−1(maxΩK) = {x0} ⊂ Ω with K(x0) = 1,
and x0 is a nondegenerate critical point of K.

In the following, as solutions of (1.1) we consider only least energy solutions
uε such that

∫
Ω
|∆uε|2dx

(∫
Ω

K(x)|uε|pε+1dx
) 2

pε+1

= inf
u∈H2∩H1

0 (Ω)

∫
Ω
|∆u|2dx

(∫
Ω

K(x)|u|pε+1dx
) 2

pε+1

.

We easily check that least energy solutions blow up in the sense that ‖uε‖L∞(Ω) =
uε(xε) → +∞ as ε → 0, and that the maximum point xε of uε converges to
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a maximum point of K in Ω. Therefore we have xε → x0 as ε → 0, here by
the assumption (K), x0 is the unique interior maximum point of K.

In this note, we prove the nondegeneracy of least energy solutions to (1.1)
when ε > 0 is sufficiently small, under the assumption (K). Here as usual,
the nondegeneracy of uε for small ε means that the problem

{
∆2vε = c0pεK(x)upε−1

ε vε in Ω,

vε = ∆vε = 0 on ∂Ω
(1.2)

admits no solution except for the trivial one for ε > 0 small enough.

Theorem 1.1 Let Ω ⊂ RN(N ≥ 5) be a smooth bounded domain. Under the
assumption (K), least energy solution uε to (1.1) is nondegenerate for ε > 0
small.

The precise asymptotic behavior of least energy solutions as ε → 0 when
K 6≡ 1 was obtained in [6] under the assumption (K). Using this result, we
prove Theorem 1.1 along the line of [7] and [8], the original idea of which
comes from [4].

2 Preliminaries

In this section, we recall some facts which are needed in the sequel. Let
G = G(x, z) denote the Green function of ∆2 under the Navier boundary
condition:

{
∆2G(·, z) = δz in Ω,

G(·, z) = ∆G(·, z) = 0 on ∂Ω.

We decompose G as G(x, z) = Γ(x, z)−H(x, z), where Γ(x, z) is the funda-
mental solution of ∆2:

Γ(x, z) =

{
1

(N−4)(N−2)σN
|x− z|4−N , N ≥ 5,

1
σ4

log |x− z|−1, N = 4,

where σN is the volume of the (N − 1) dimensional unit sphere in RN and
H(x, z) is the regular part of the Green function. Finally, let R(z) = H(z, z)
denote the Robin function of the Green function of ∆2 with the Navier
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boundary condition. By the maximum principle, we have R > 0 on Ω
and R(z) → +∞ as z tends to the boundary of Ω. In the following, we
set G = −∆G. Then G is the Green function of −∆ under the Dirichlet
boundary condition, and satisfy





−∆G = G, −∆G = δz in Ω,

G > 0, G > 0 in Ω,

G = G = 0 on ∂Ω.

Lemma 2.1 For any z ∈ Ω, there holds
∫

∂Ω

((x− z) · νx)

(
∂G

∂νx

)(
∂G

∂νx

)
(x, z)dsx = (N − 4)R(z), (2.1)

∫

∂Ω

∂G

∂νx

(x, z)
∂G

∂νx

(x, z)νi(x)dsx =
∂R

∂zi

(z), (i = 1, · · · , N), (2.2)

∫

∂Ω

(
∂G

∂xi

)
∂

∂zj

(
∂G

∂νx

)
(x, z)dsx +

∫

∂Ω

(
∂G

∂xi

)
∂

∂zj

(
∂G

∂νx

)
(x, z)dsx

=
∂2R

∂zi∂zj

(z), (i, j = 1, · · · , N). (2.3)

Here νx is the outer unit normal at x ∈ ∂Ω.

Proof. See [3]:Lemma 3.1 and Lemma 3.3. Note that our sign convention
is different from that of [3]. By differentiating (2.2) with respect to zj, noting

that
(

∂G
∂νx

(x, z)
)

νi(x) = ∂G
∂xi

(x, z),
(

∂G
∂νx

(x, z)
)

νi(x) = ∂G
∂xi

(x, z) on ∂Ω, we see

that (2.3) holds.

Lemma 2.2 Let uε be a solution to (1.1) and vε be a solution to (1.2).
Denote uε = −∆uε and vε = −∆vε. Then the following identities hold true:

∫

∂Ω

((x− z) · νx)

{(
∂uε

∂νx

)(
∂vε

∂νx

)
+

(
∂uε

∂νx

)(
∂vε

∂νx

)}
dsx

= c0

∫

Ω

upε
ε vε(x− z) · ∇K(x)dx (2.4)

for any z ∈ RN and
∫

∂Ω

{(
∂uε

∂xi

)(
∂vε

∂νx

)
+

(
∂uε

∂xi

)(
∂vε

∂νx

)}
dsx = c0

∫

Ω

(
∂K

∂xi

)
upε

ε vεdx (2.5)

for i = 1, 2, · · · , N .
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Proof. For smooth f, g, we have the formula
∫

Ω

(
(∆2f)g − (∆2g)f

)
dx

=

∫

∂Ω

(
∂∆f

∂νx

)
g −

(
∂∆g

∂νx

)
fdsx +

∫

∂Ω

(
∂f

∂νx

)
∆g −

(
∂g

∂νx

)
∆fdsx. (2.6)

Set wε(x) = (x− z) ·∇uε(x)+αεuε(x) where αε = 4
pε−1

. Direct computation
yields that

∆2wε = (αε+4)c0K(x)upε
ε +c0pεK(x)upε−1

ε (x−z)·∇uε+c0u
pε
ε (x−z)·∇K(x).

Since vε satisfies ∆2vε = c0pεu
pε−1
ε vε, we have

(∆2wε)vε − (∆2vε)wε = (αε + 4− pεαε)c0u
pε
ε vε = 0.

Integrating this identity on Ω with the formula (2.6), and noting that

wε(x) = (x− z) · νx(
∂uε

∂νx

), ∆wε(x) = (x− z) · νx(
∂∆uε

∂νx

)

for x ∈ ∂Ω, we have (2.4).
On the other hand, differentiating the equation in (1.1) with respect to

xi, we have

∆2

(
∂uε

∂xi

)
= c0pεu

pε−1
ε

(
∂uε

∂xi

)
in Ω.

Multiplying this by vε, and the equation of vε by
(

∂uε

∂xi

)
and subtracting, we

obtain

(∆2vε)

(
∂uε

∂xi

)
−

(
∆2

(
∂uε

∂xi

))
vε = 0.

Finally, integration by parts formula (2.6) yields (2.5).

Next is the asymptotic result by [6]. In what follows, we use a symbol
‖ · ‖ to denote the L∞ norm of functions.

Theorem 2.3 Let Ω ⊂ RN , N ≥ 5 be a smooth bounded domain. Let uε be
a least energy solution to (Pε,K) for ε > 0 and let xε ∈ Ω be a point such
that uε(xε) = ‖uε‖. Assume (K). Then after passing to a subsequence, the
following estimate holds true:
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There exists a constant C > 0 independent of ε such that for any Rε →∞
with rε = Rε‖uε‖− pε−1

4 → 0,




uε(x) ≤ C ‖uε‖
„

1+‖uε‖
4

N−4 |x−xε|2
«N−4

2
, for |x− xε| ≤ rε,

uε(x) ≤ C
‖uε‖

1
|x−xε|N−4 , for {|x− xε| > rε} ∩ Ω.

(2.7)

Furthermore, as ε → 0,

(1)

{
|xε − x0| = O(‖uε‖−2) N = 5,

|xε − x0| = o(‖uε‖−
2

N−4 ) N ≥ 6,
(2.8)

(2)‖uε‖ε → 1, (2.9)

(3)‖uε‖uε(x) → 2(N − 4)(N − 2)σNG(x, x0) in C3
loc(Ω \ {x0}), (2.10)

(4)





ε‖uε‖2 → 215

21
πR(x0) N = 5,

ε‖uε‖2 → −1
4
∆K(x0) + 480π3R(x0) N = 6,

ε‖uε‖
4

N−4 → − 2
(N−2)(N−4)

∆K(x0) N ≥ 7.

(2.11)

Now, consider the scaled function

ũε(y) :=
1

‖uε‖uε

(
y

‖uε‖ pε−1
4

+ xε

)
, y ∈ Ωε := ‖uε‖

pε−1
4 (Ω− ε). (2.12)

ũε satisfies 0 < ũε ≤ 1, ũε(0) = 1, and

{
∆2ũε = c0K( y

‖uε‖
pε−1

4
+ xε)ũ

pε
ε in Ωε,

ũε = ∆ũε = 0 on ∂Ωε.

Since ‖uε‖ → ∞ as ε → 0 and xε does not approach to ∂Ω, we see Ωε → RN .
By standard elliptic estimates, we have a subsequence denoted also by ũε

that
ũε → U compact uniformly in RN (2.13)

as ε → 0 for some function U . Passing to the limit, we obtain that U is a
solution of





∆2U = c0U
p in RN ,

0 < U ≤ 1, U(0) = 1,

lim|y|→∞ U(y) = 0.
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According to the uniqueness theorem by Chang Shou Lin [5], we obtain

U(y) =

(
1

1 + |y|2
)N−4

2

. (2.14)

In terms of ũε in (2.12), the estimate (2.7) reads

ũε(y) ≤
{

CU(y) for |y| ≤ Rε,

C 1
|y|N−4 for {|y| > Rε} ∩ Ωε,

(2.15)

where Rε →∞ is any sequence as in the above.
Here, we recall a theorem by Bartsch, Weth and Willem [1].

Lemma 2.4 Let v0 be a solution to
{

∆2v0 = c0pU
p−1v0 in RN ,∫

RN |∆v0|2dy < ∞.

Then there exist aj (j = 1, 2, · · · , N), b ∈ R such that v0 can be written as

v0 =
N∑

j=1

aj
yj

(1 + |y|2)(N−2)/2
+ b

1− |y|2
(1 + |y|2)(N−2)/2

.

3 Proof of Theorem 1.1

In this section, we will prove Theorem 1.1.
We argue by contradiction. We assume there exists a non-trivial solution

vε to (1.2) satisfying ‖vε‖ = ‖uε‖ for any ε > 0.
Consider the scaled function

ṽε(y) =
1

‖uε‖vε

(
y

‖uε‖ pε−1
4

+ xε

)
, y ∈ Ωε = ‖uε‖

pε−1
4 (Ω− xε). (3.1)

We see 0 < ṽε ≤ 1 and ṽε satisfies




∆2ṽε = c0pεK( y

‖uε‖
pε−1

4
+ xε)ũ

pε−1
ε ṽε in Ωε,

ṽε = ∆ṽε = 0 on ∂Ωε,

‖ṽε‖L∞(Ωε) = 1.

(3.2)
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By ‖ṽε‖L∞(Ωε) = 1, elliptic estimate implies that

ṽε → v0 compact uniformly in RN (3.3)

for some v0 and v0 satisfies

∆2v0 = c0pU
p−1v0 in RN .

Also by arguing as in [7], we have

∫

Ωε

|∆ṽε|2dy ≤ C (3.4)

for some C > 0 independent of ε > 0 small. By (3.4) and Fatou’s lemma, we
also have ∫

RN

|∆v0|2dy ≤ C.

Thus by Lemma 2.4, we have

v0 =
N∑

j=1

aj
yj

(1 + |y|2)(N−2)/2
+ b

1− |y|2
(1 + |y|2)(N−2)/2

. (3.5)

In the following, we divide the proof into three steps.

Step 1. b = 0.

Step 2. aj = 0, j = 1, · · · , N .

Step 3. v0 = 0 leads to a contradiction.

First, by using the Kelvin transformation and a local supremum estimate
for weak solutions to a linear biharmonic equation by Caristi and Mitidieri
[2], we can obtain the pointwise estimate for the scaled function ṽε, just as
in [7] Lemma 3.1.

Lemma 3.1 Let ṽε be a solution of (3.2). Then we have the estimate

|ṽε(y)| ≤ CU(y), ∀y ∈ Ωε (3.6)

for some C > 0.
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Also by Lemma 3.1 and Theorem 2.3 (2.7), we have the following conver-
gence result. For a proof, see Lemma 3.2 in [7].

Lemma 3.2 Let ω ⊂ Ω be any neighborhood of ∂Ω not containing x0. Then
we have

‖uε‖vε → −2(N − 2)(N − 4)σNbG(·, x0) in C3(ω). (3.7)

Proof of Step 1. Here, we prove only the case N ≥ 7. Proof of the cases
N = 5 and N = 6 will be done by a similar argument; see [8] for the second
order −∆ case.

Putting z = x0 in (2.4) and multiplying ‖uε‖4/(N−4), we have

‖uε‖
4

N−4
−2

∫

∂Ω

((x− x0) · νx)

(
∂‖uε‖uε

∂νx

)(
∂‖uε‖vε

∂νx

)
dsx

+ ‖uε‖
4

N−4
−2

∫

∂Ω

((x− x0) · νx)

(
∂‖uε‖uε

∂νx

)(
∂‖uε‖vε

∂νx

)
dsx

= ‖uε‖
4

N−4 c0

∫

Ω

upε
ε vε(x− z) · ∇K(x)dx. (3.8)

As 4
N−4

< 2 if N ≥ 7, LHS of (3.8) converges to 0 as ε → 0. On the other
hand, by Taylor’s formula and the change of variables, we write

(RHS) of (3.8) =: C1 + C2 + C3 + C4

where, putting bij = ∂2K
∂xi∂xj

(x0),

C1 = c0‖uε‖
4

N−4
+pε+1−( pε−1

4
)N−( pε−1

2
)

∫

Ωε

ũpε
ε ṽε(y)

N∑
i,j=1

bijyiyjdy,

C2 = 2c0‖uε‖
4

N−4
+pε+1−( pε−1

4
)N−( pε−1

4
)

∫

Ωε

ũpε
ε ṽε(y)

N∑
i,j=1

bijyi(xεj − x0j)dy,

C3 = c0‖uε‖
4

N−4
+pε+1−( pε−1

4
)N

∫

Ωε

ũpε
ε ṽε(y)

N∑
i,j=1

bij(xεi − x0i)(xεj − x0j)dy,

C4 = c0‖uε‖
4

N−4
+pε+1−( pε−1

4
)N

∫

Ωε

ũpε
ε ṽε(y)

(
O

∣∣∣ y

‖uε‖ pε−1
4

+ xε − x0

∣∣∣
3
)

dy.
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By (2.15), (3.6), (2.9), (2.8) and the dominated convergence theorem, we see

C2 = O(‖uε‖
2

N−4
+N−3

4
ε)×O

(∫

RN

Upv0(y)|y|dy + o(1)

)
× o(‖uε‖−

2
N−4 ) = o(1),

C3 = O(‖uε‖
4

N−4
+N−4

4
ε)×O

(∫

RN

Upv0(y)dy + o(1)

)
× o(‖uε‖−

4
N−4 ) = o(1),

C4 = O(‖uε‖
4

N−4
+N−4

4
ε)

∫

Ωε

ũpε
ε ṽε(y)

(
O

(∣∣∣ y

‖uε‖ pε−1
2

∣∣∣
3
)

+ O(|xε − x0|3)
)

= O(‖uε‖
4

N−4 )×O(‖uε‖−
6

N−4 )×O

(∫

RN

Upv0(y)(|y|3 + 1)dy + o(1)

)

= O(‖uε‖−
2

N−4 )

as ε → 0. As for C1, we see

C1 = c0‖uε‖(N−2
4

)ε

∫

Ωε

ũpε
ε ṽε(y)

N∑
i,j=1

bijyiyjdy

→ c0

∫

RN

Up(y)v0(y)
N∑

i,j=1

bijyiyjdy =
c0

N
b∆K(x0)

∫

RN

Up(y)
1− |y|2

(1 + |y|2)N/2
|y|2dy.

Thus letting ε → 0 in (3.8), we have

0 = ∆K(x0)× b.

Hence we obtain b = 0, because our nondegeneracy assumption of x0 assures
that ∆K(x0) < 0 strictly.

Proof of Step 2.
In this step, we prove aj = 0, j = 1, 2, · · · , N in (3.5) by using the next

lemma.

Lemma 3.3 Assume b = 0 and a = (a1, · · · , aN) 6= 0 in (3.5). Then we
have

‖uε‖
N−2
N−4 vε → 2(N − 2)σN

N∑
j=1

aj

(
∂G

∂zj

(x, z)

) ∣∣∣
z=x0

in C3
loc(Ω \ {x0}).
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Proof. Since −∆vε = c0pεK(x)upε−1
ε vε in Ω, vε = 0 on ∂Ω, the Green

representation formula implies that

vε(x) = c0pε

∫

Ω

G(x, z)K(z)upε−1
ε (z)vε(z)dz (3.9)

for any x ∈ Ω \ {x0}, here G(x, z) = −∆xG(x, z) is the Green function of
−∆ under the Dirichlet boundary condition. By a change of variables, we
see

c0pε

∫

Ω

G(x, z)K(z)upε−1
ε (z)vε(z)dz

= c0pε‖uε‖pε−( pε−1
4

)N

∫

Ωε

Gε(x, y)Kε(y)ũpε−1
ε ṽε(y)dy

where Gε(x, y) = G(x, y

‖uε‖
pε−1

4
+xε) and Kε(y) = K( y

‖uε‖
pε−1

4
+xε). By (2.13)

and (3.3), we obtain

Kε(y)ũpε−1
ε ṽε(y) →

N∑
j=1

aj

(
∂

∂yj

−1

(N + 4)
Up(y)

)

uniformly on compact subsets of RN .
Now, let us consider the following linear first order PDE

N∑
j=1

aj
∂wε

∂yj

= ũpε−1
ε ṽε(y), y ∈ RN

with the initial condition wε|Γa = −1
(N+4)

Up(y), where Γa = {x ∈ RN |x · a =

0}. Here, the right hand side is assumed to be 0 outside of Ωε. By the
unique solvability, we have the solution wε of this problem with the estimate
wε(y) = O(|y|−(N+3)) as |y| → ∞, since ũpε−1

ε ṽε(y) = O(|y|−(N+4)) by (2.15)
and (3.6). Also we have

wε → −1

(N + 4)
Up uniformly on compact subsets on RN

and
∫

Ωε

wε(y)dy → −1

(N + 4)

∫

RN

Updy =

( −1

N + 4

) (
2σN

N(N + 2)

)
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by the dominated convergence theorem. Using integration by parts, we have

vε(x) = c0pε‖uε‖pε−( pε−1
4

)N

∫

Ωε

Gε(x, y)Kε(y)
N∑

j=1

aj
∂wε

∂yj

dy

= −c0pε‖uε‖pε−( pε−1
4

)N

N∑
j=1

aj

∫

Ωε

∂

∂yj

{
Gε(x, y)Kε(y)

}
wε(y)dy

= −c0pε‖uε‖pε−( pε−1
4

)N−( pε−1
4

)

N∑
j=1

aj

∫

Ωε

∂

∂zj

{
G(x, z)K(z)

} ∣∣∣
z= y

‖uε‖
pε−1

4

+xε

wε(y)dy.

Note that pε − (pε−1
4

)N − (pε−1
4

) = −(N−2
N−4

) + ε(N−3
4

). Now, we see

∂

∂zj

{
G(x, z)K(z)

} ∣∣∣
z= y

‖uε‖
pε−1

4

+xε

→
(

∂G

∂zj

(x, x0)

)
K(x0) + G(x, x0)

(
∂K

∂zj

(x0)

)

=
∂G

∂zj

(x, x0)

uniformly on compact subsets of RN as ε → 0, since x0 is a critical point of
K with K(x0) = 1. Also we note that N

N−2
+pε− (pε−1

2
)N − (pε−1

2
) = (N−1

2
)ε.

Therefore, we have the convergence

‖uε‖
N−2
N−4 vε(x) →− c0p

( −1

N + 4

)(
2σN

N(N + 2)

) N∑
j=1

aj

(
∂G

∂zj

(x, z)

) ∣∣∣
z=x0

= 2(N − 2)σN

N∑
j=1

aj

(
∂G

∂zj

(x, z)

) ∣∣∣
z=x0

for any x ∈ Ω \ {x0}. Elliptic estimates implies this convergence holds true
in C1

loc(Ω \ {x0}). This proves Lemma.

Now, assume the contrary that a = (a1, · · · , aN) 6= 0. We multiply both
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sides of (2.5) in Lemma 2.2 by ‖uε‖(N−2)/(N−4) × ‖uε‖−1 to get

‖uε‖−2

[∫

∂Ω

(
∂‖uε‖uε

∂xi

) (
∂‖uε‖

N−2
N−4 vε

∂νx

)
dsx +

(
∂‖uε‖uε

∂xi

) (
∂‖uε‖

N−2
N−4 vε

∂νx

)
dsx

]

= ‖uε‖−1+N−2
N−4 c0

∫

Ω

(
∂K

∂xi

)
upε

ε vεdx (3.10)

As ε → 0, we see that

∫

∂Ω

(
∂‖uε‖uε

∂xi

) (
∂‖uε‖

N−2
N−4 vε

∂νx

)
dsx +

(
∂‖uε‖uε

∂xi

) (
∂‖uε‖

N−2
N−4 vε

∂νx

)
dsx

tends to

4(N − 4)(N − 2)2σ2
N

N∑
j=1

aj×
∫

∂Ω

{(
∂G

∂xi

)
∂

∂νx

(
∂G

∂zj

)
(x, x0) +

(
∂G

∂xi

)
∂

∂νx

(
∂G

∂zj

)
(x, x0)

}
dsx

= 4(N − 4)(N − 2)2σ2
N

N∑
j=1

aj
∂2R

∂zi∂zj

(z)
∣∣∣
z=x0

,

here we have used Theorem 2.3 (2.10), Lemma 3.3 and Lemma 2.1 (2.3).
Thus we have (LHS) of (3.10) tends to 0 as ε → 0.

On the other hand, again we solve the linear PDE

N∑
j=1

aj
∂wε

∂yj

= ũpε
ε ṽε(y), y ∈ RN (3.11)

with the initial condition wε|Γa = −1
2N

Up+1(y), where Γa = {x ∈ RN |x·a = 0}.
Here as before, the RHS of (3.11) is understood as 0 outside of Ωε. The
solution wε satisfies the estimate wε(y) = O(|y|−2N+1) as |y| → ∞, since
ũpε

ε ṽε(y) = O(Upε+1(y)) = O(|y|−2N) by (2.15) and (3.6). As before, we have

wε → −1

2N
Up+1 uniformly on compact subsets on RN

and ∫

Ωε

wε(y)dy → −1

2N

∫

RN

Up+1dy =
−1

2N
σNCN
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by the dominated convergence theorem, where CN =
∫∞

0
rN−1

(1+r2)N dr = Γ(N/2)2

2Γ(N)
.

Thus, (RHS of (2.5))× ‖uε‖
N

N−2
−1 is

c0‖uε‖−1+N−2
N−4

∫

Ω

(
∂K

∂xi

)
upε

ε vεdx

= c0‖uε‖
N−2
N−4

+pε−( pε−1
4

)N

∫

Ωε

(
∂K

∂xi

)
(

y

‖uε‖ pε−1
4

+ xε)ũ
pε
ε ṽεdy

= c0‖uε‖
N−2
N−4

+pε−( pε−1
4

)N

∫

Ωε

(
∂K

∂xi

)
(

y

‖uε‖ pε−1
4

+ xε)
N∑

j=1

aj
∂wε

∂yj

dy

= −c0‖uε‖
N−2
N−4

+pε−( pε−1
4

)N
N∑

j=1

aj

∫

Ωε

∂

∂yj

{(
∂K

∂xi

)
(

y

‖uε‖ pε−1
4

+ xε)

}
wε(y)dy

= −c0‖uε‖
N−2
N−4

+pε−( pε−1
4

)N−( pε−1
4

)
N∑

j=1

aj

∫

Ωε

(
∂2K

∂xi∂xj

)
(x)

∣∣∣
x= y

‖uε‖
pε−1

4

+xε

wε(y)dy

→ −c0

(
lim
ε→0

‖uε‖(N−3
4

)ε
) N∑

j=1

aj
∂2K

∂xi∂xj

(x0)

(
lim
ε→0

∫

Ωε

wε(y)dy

)

=
N

2
c0σNCN

N∑
j=1

aj
∂2K

∂xi∂xj

(x0).

Thus we have
N∑

j=1

aj
∂2K

∂xi∂xj

(x0) = 0.

By our assumption of the nondegeneracy of x0, the matrix
(

∂2K
∂xi∂xj

)
(x0) is

invertible. Therefore we obtain that aj = 0 for all j = 1, · · · , N . Thus we
have proved Step 2.

Proof of Step 3.
By Step 1 and Step 2, we have obtained that the limit function limε→0 ṽε =

v0 ≡ 0. Since ‖ṽε‖L∞(Ωε) = 1, there exists yε ∈ Ωε such that ṽε(yε) = 1
and |yε| → ∞, because the above convergence ṽε → v0 ≡ 0 is uniform on
compact sets of RN . But this is not possible because of Lemma 3.1. This
proves Theorem 1.1.
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