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Abstract

Consider the problem A%u = coK (z)uPs, u > 0in Q, u = Au =0
on 9, where Q is a smooth bounded domain in RN(N > 5), ¢y =
(N—-4)(N—-2)N(N+2),p=(N+4)/(N—-4),p.=p—cand K isa
smooth positive function on .

Under some assumptions on the coeflicient function K, which in-
clude the nondegeneracy of its unique maximum point as a critical
point of HessK, we prove that least energy solutions of the problem
are nondegenerate for £ > 0 small.

1 Introduction
Consider the problem

A%y = co K (z)uPe in Q,
w>0 in Q, (1.1)
u=Au=0 on 012,

where 2 C RY(N > 5) is a smooth bounded domain, ¢y = (N — 4)(N —
2)N(N+2),p. =p—e,p=(N+4)/(N —4) is the critical Sobolev exponent
with respect to the Sobolev embedding H? N Hy(Q) < LPT(Q), and ¢ > 0
is a small parameter. Here, K is a positive function in C2(€).

We put an assumption on the coefficient function K:

(K): K € C?(Q),0 < K(x) <1, K Y(maxgK) = {zo} C Q with K(z¢) =1,
and xg is a nondegenerate critical point of K.

In the following, as solutions of (1.1) we consider only least energy solutions
u, such that

fQ |Au5’2d$ B > fQ IAude
2 - . ]
(Jo K (@)|uc[ptida) st w20 ([ ) (2)[ulptda) 7T

We easily check that least energy solutions blow up in the sense that ||u.|| L @) =
ue(z:) — 400 as € — 0, and that the maximum point x. of u. converges to



a maximum point of K in Q. Therefore we have z. — z, as ¢ — 0, here by
the assumption (K), xg is the unique interior maximum point of K.

In this note, we prove the nondegeneracy of least energy solutions to (1.1)
when £ > 0 is sufficiently small, under the assumption (K). Here as usual,
the nondegeneracy of u. for small € means that the problem
A%y, = cop. K (z)uP="tv,  in Q, (1.2)

ve =Av, =0 on OS2 '

admits no solution except for the trivial one for € > 0 small enough.

Theorem 1.1 Let Q C RN(N > 5) be a smooth bounded domain. Under the
assumption (K), least energy solution u. to (1.1) is nondegenerate for e > 0
small.

The precise asymptotic behavior of least energy solutions as ¢ — 0 when
K # 1 was obtained in [6] under the assumption (K). Using this result, we
prove Theorem 1.1 along the line of [7] and [8], the original idea of which
comes from [4].

2 Preliminaries

In this section, we recall some facts which are needed in the sequel. Let
G = G(z,z) denote the Green function of A? under the Navier boundary
condition:

A%G(,z) =4, in Q,
G(,z) =AG(,z)=0  on0f.

We decompose G as G(z,2) = I'(z,2) — H(z, z), where I'(z, 2) is the funda-
mental solution of A?:

S N >5,

1
’ +log |z — 2|7, N =4,

where oy is the volume of the (N — 1) dimensional unit sphere in R and
H(z, z) is the regular part of the Green function. Finally, let R(z) = H(z, 2)
denote the Robin function of the Green function of A? with the Navier



boundary condition. By the maximum principle, we have R > 0 on {2
and R(z) — 400 as z tends to the boundary of Q. In the following, we
set G = —AG. Then G is the Green function of —A under the Dirichlet
boundary condition, and satisfy

AG=0C, -AG=46. inQ
G>0,G>0 in €,
G=G=0 on Jf).

Lemma 2.1 For any z € €1, there holds

/m((w —2) " Va) (g-i) <§f) (z,2)ds, = (N — 4)R(z), (2.1)

oG oG OR .
e, OV (x,z)a—%(x,z)m(x)dsx = a-. (), (i=1,---,N), (2.2)
OG\ 0 [0G IG\ 0 [0G
/aQ (&cl) 8_zj (an> (x,z)ds, + /89 (8@) a_zj (ayx) (x, z)ds,
9’R o
:82‘82(2)7 (Z,]:L--. ,N) (23)
iU<j

Here v, is the outer unit normal at x € 0.

Proof. See [3]:Lemma 3.1 and Lemma 3.3. Note that our sign convention
is different from that of [3]. By differentiating (2.2) with respect to z;, noting

that <5—G(x,z)> vi(z) = 9% (x, 2), (ﬁ(x, z)) vi(x) = 2% (z, 2) on 00, we see

Ve T Oz Ovg Ox;

that (2.3) holds. O

Lemma 2.2 Let u. be a solution to (1.1) and v. be a solution to (1.2).
Denote u, = —Au. and v. = —Av.. Then the following identities hold true:

fote={(G) (5) + (5) (5)

= ¢y /Q ulrv.(x — z) - VK (z)dz (2.4)

for any z € RY and

ou ov ou Ju 0K
: E - - = P 2.
/aQ { (aﬂvz) ((91/1) * (8:171) (8yx)}d8” CO/Q (3%) ufvedz (2.5)

fori=1,2,--- N.




Proof. For smooth f, g, we have the formula

/Q (A2f)g — (A%)f) du

_ OAf 0Ag of g
- /BQ ( vy ) a (8% ) fdsa /ag <8yx> Ag - (ayx) Afds,. (2.6)

Set we(x) = (z — z) - Vue(x) + au(x) where a, = zﬁ‘ Direct computation
yields that

Aw, = (o +4)co K (2)ub +cop K (x)uls ™ (2 — 2) - V. +cou* (v —2) - VK ().
Since v, satisfies A?v. = cop.uP="1v,, we have
(Aw.)v. — (A% )w. = (. + 4 — p.ag)coulav, = 0.

Integrating this identity on 2 with the formula (2.6), and noting that

Ou, 0Au,

8_%)’ Aw.(r) = (v — 2) - Vz(a—yx)

w(z) = (& — 2) - v

for x € 02, we have (2.4).
On the other hand, differentiating the equation in (1.1) with respect to

x;, we have
Ou, 41 { Ou. .
A? (31}1) = copeuls™! (a_xz) in €.

Multiplying this by v., and the equation of v. by (gﬁf_ ) and subtracting, we
obtain 3 3
u u
A%p) | =— ) — [ A? < . =0.
( v)(axz’) ( <3$i>)v
Finally, integration by parts formula (2.6) yields (2.5). a

Next is the asymptotic result by [6]. In what follows, we use a symbol
|| - || to denote the L* norm of functions.

Theorem 2.3 Let Q C RV, N > 5 be a smooth bounded domain. Let u. be
a least energy solution to (P- ) for e > 0 and let x. € Q be a point such
that us(z.) = ||luel|. Assume (K). Then after passing to a subsequence, the
following estimate holds true:



There exists a constant C' > 0 independent of € such that for any R. — oo
pe—1

with . = Rel|ue||” ¢ — 0,
Ua(x) < C 4||u5|| N-4» fOT |3§‘ - xa‘ < Tes
(1 e 7 e (2.7)
uz;”(x) S ||1ZHW’ fO?"{|.CE—$g| >T€}mQ‘

Furthermore, as € — 0,

O {m —a| =O(uell ) N=5, (2.8)
|2e — x| = o([Jue|[|T¥=F) N >6,

2)fluel® — 1, (2.9)

(3) e ||uc(x) — 2(N = 4)(N = 2)onG(x,30) in Cpo(Q\ {z0}),  (2.10)
elluc|> — 7w R(o) N =5,

(4) < ellue|* = —3AK (xo) + 480w R(x) N =6, (2.11)
eflu| ¥ — — R AK (20) N>T.

Now, consider the scaled function

N 1 Yy
Ua(y) = H’LL Hua ( pe—1 +l’5) ; Yy e QE = ||u€||

[l ™

Pe

T(Q-e). (212)

. satisfies 0 < @, < 1,1.(0) = 1, and

l[uell 1

A%, = oK (—Y%— + z.)ube in €.,
U = Au, =0 on 0f),.

Since ||u.|| — oo as e — 0 and z. does not approach to 99, we see ), — R¥.
By standard elliptic estimates, we have a subsequence denoted also by .
that

@. — U compact uniformly in RY (2.13)

as € — 0 for some function U. Passing to the limit, we obtain that U is a
solution of

AU = coUP  in RY,

0<U<1,U(0)=1,

hm|y|ﬂoo U(y) =0.



According to the uniqueness theorem by Chang Shou Lin [5], we obtain

N—-4

Uly) = <%|y|2> L (2.14)

In terms of @, in (2.12), the estimate (2.7) reads

y CU(y for [y| < R.,
ua<y>s{ 2 v!

2.15
CW for {’y‘ > RE} N Qs> ( )

where R, — oo is any sequence as in the above.
Here, we recall a theorem by Bartsch, Weth and Willem [1].

Lemma 2.4 Let vy be a solution to
A?vg = copUP~ 1y in RY,
Jan [AvePdy < 0.

Then there ezist aj (j =1,2,--- ,N),b € R such that vy can be written as

N

w=) Ui BRP kU]
0T LT i an i

3 Proof of Theorem 1.1

In this section, we will prove Theorem 1.1.

We argue by contradiction. We assume there exists a non-trivial solution
ve to (1.2) satisfying ||ve|| = |luc|| for any € > 0.

Consider the scaled function

1 pe—1
B.(y) = — . Y 4o ), yeQ=|u](@Q-2). (31)
e[\ e ™5

We see 0 < 9. < 1 and v, satisfies

pe—1
flue |l

7.=Ad.=0 ond., (3.2)

[9e ]| Loe 0y = 1.

A%D, = cop. K (—4— + z)al="'0. in Q.



By [|0z]|Lo(q.) = 1, elliptic estimate implies that
0. — vy compact uniformly in RY (3.3)
for some vy and vy satisfies

A%y = copUPlyy  in RY.

Also by arguing as in [7], we have
/ |AT,|*dy < C (3.4)
Qe

for some C' > 0 independent of € > 0 small. By (3.4) and Fatou’s lemma, we
also have

/ |Avg|*dy < C.
RN
Thus by Lemma 2.4, we have

N

Y; 1 —|y]?
= . b ) 3.5
v jz—;a] (1+ |y2) V=272 * (1+ [y V=272 (3:5)

In the following, we divide the proof into three steps.
Step 1. b = 0.
Step 2. a; =0,5=1,---,N.
Step 3. vy = 0 leads to a contradiction.

First, by using the Kelvin transformation and a local supremum estimate
for weak solutions to a linear biharmonic equation by Caristi and Mitidieri
2], we can obtain the pointwise estimate for the scaled function 0., just as
in [7] Lemma 3.1.

Lemma 3.1 Let 0. be a solution of (3.2). Then we have the estimate
0(y)| < CU(y), Vye (3.6)

for some C' > 0.



Also by Lemma 3.1 and Theorem 2.3 (2.7), we have the following conver-
gence result. For a proof, see Lemma 3.2 in [7].

Lemma 3.2 Let w C 2 be any neighborhood of 02 not containing xy. Then
we have

lue|lve — —2(N — 2)(N — 4)onbG(-, 7o) in O3 (w). (3.7)

Proof of Step 1. Here, we prove only the case N > 7. Proof of the cases
N =5 and N = 6 will be done by a similar argument; see [8] for the second
order —A case.

Putting z = 20 in (2.4) and multiplying ||u.||* =% we have

4 0| ue ||ue 0| ue |-
N 2 — . d
fud #57 [ (= (D) (el g,
a4 Ol|uc|[we\ [ O|luellve
N—-4 2 J— .
+ ||ue| /BQ((x To) - Vi) ( o0, v, ds,

= flucl e, / Wz — 2) - VK (2)de. (3.8)
Q

As 4 < 2if N > 7, LHS of (3.8) converges to 0 as ¢ — 0. On the other
hand, by Taylor’s formula and the change of variables, we write

(RHS) of (38) =: 01 + CQ + 03 + 04
where, putting b;; = %(aso),

Cl _ cOHu HN L Hpetl— (PE I)N_(p52_1 / upsve Z bljylyjdy,

2j1

_4 _(pe—1 _(Pe—1 ~ ~
Cy = 200||UE||N_4+p5+1 (B )N (P55 )/ = (y) Z bisyi(Tej — 20;)dy,
Qe

t,j=1

_4 L
Cy = coljue|[ 7= P15 N/ = . (y sz<17ei — x0;)(Tej — Toj)dy,
Qe

3
A 0 (h_%ﬁ+%‘ﬂ>@*
Qe U




By (2.15), (3.6), (2.9), (2.8) and the dominated convergence theorem, we see

Co= Ol x 0 ([ 0ty +o(1)) x ol ) = o),

Cy = O(||uc|| ¥

P 0([ Urutiy o)) x offud ) = o),

4 N-a_ o 3
Cy = O(|Ju||[7=""7 )/Q U= v (y) (O (‘ﬁ >+O(|1’e—$0|3))

= Ol ) % Ol 55 x 0 (|| Tau bl + 1y + o))
= O(Jjuc]|~~")

as ¢ — 0. As for (', we see

N—
Cy = col|ue]| T T / aP= v (y Z bijyiy,dy
Q.

i,7=1
RN

Thus letting ¢ — 0 in (3.8), we have

1—Jy”
Zbljyzy]dy_ bAK(xo)/ Up(!l)w@\%iy-

i,7=1 RN
O:AK([L’()) x b.

Hence we obtain b = 0, because our nondegeneracy assumption of z( assures
that AK (zg) < 0 strictly.

Proof of Step 2.
In this step, we prove a; = 0,5 = 1,2,--- , N in (3.5) by using the next

lemma.

Lemma 3.3 Assume b = 0 and a = (a1, -+ ,ay) # 0 in (3.5). Then we

have N
N-2 oG
||u5||N*4ve — 2(N — 2>0szlaj (8_2](x7 Z))

in Cioe(Q\ {zo}).

10



Proof. Since —Av. = cop. K (z)ul="'v, in Q, . = 0 on 91, the Green
representation formula implies that

Te(x) = cope /Qa(x, 2)K (2)ubs 1 (2)v.(2)d= (3.9)

for any x € Q\ {x0}, here G(z,z) = —A,G(z,2) is the Green function of
—A under the Dirichlet boundary condition. By a change of variables, we
see

cops/Qﬁ(x,z)K(z)uﬁE1(z)vs(z)dz

pe—1

~( N / G (2, y) Ko ()5 (y)dy

= COP&H“éHPE

where G.(z,y) = G(x, - ‘pe —Y ++4ux.)and K.(y) = K(””TjoE) By (2.13)
and (3.3), we obtain b )

uniformly on compact subsets of RY.
Now, let us consider the following linear first order PDE

0
Zw e _ = 'o.(y), yeRY

with the initial condition w,|r, = (N+4 ~—=UP(y), where T', = {x € RN|z - a =
0}. Here, the right hand side is assumed to be 0 outside of .. By the
unique solvability, we have the solution w, of this problem with the estimate
w(y) = O(ly|~ ") as [y| — oo, since a2='o.(y) = O(Jy|~™*) by (2.15)
and (3.6). Also we have
-1
(N +4)

[ e = gy L oo = (v11) (vv)

11

we — UP  uniformly on compact subsets on RY

and




by the dominated convergence theorem. Using integration by parts, we have

N

_(Pe= aw
= —cope P >N2aj / 5o (). 0) )

Ps 1 Pe 1
= —cop TV Zaj | o= (G oxe)
J

65('%) = CoPe ”ue

Note that p. — (21N — (2=) = —(822) + ¢(252). Now, we see

ai (G ar |,

luell &
- (g—Gu)) K (wv) + G(, 70) (a—J@co))
= g—z(x,xo)

uniformly on compact subsets of RY as 5 — 0, since xq is a critical point of
K with K(z) = 1. Also we note that <25 +p. — (1) N — (&271) = (2)e.
Therefore, we have the convergence

e [ ¥4 (2) — = cop (N_+14) < N+2 )iaﬂ < o )

Jj=1

2=x0

N

= 20N =2)ox 3o, (g_z(x’ Z)>

for any z € Q\ {7¢}. Elliptic estimates implies this convergence holds true
in CL (Q\ {zo}). This proves Lemma. O

loc

zZ=x0

Now, assume the contrary that a = (aq,--- ,ax) # 0. We multiply both

12



sides of (2.5) in Lemma 2.2 by ||ue ||V =2/WV=4 x |lu.|| 7! to get

- O\ (Ao, Ollucluc ( Ollucl| 7.
2
[|lu| [/&m < oz, o, ds, + oz, o ds,
N—2 0K
= 71+N74 Pe
||ua|| CO/Q (8172) U, Uadx (310)

As ¢ — 0, we see that

O]\ ( Oflucl| ¥ Oueluc\ ( Ollue]| =7
d d
/89 ( Ox; oV, So F ox; v, Sz

tends to

N
AN = 4)(N =2)°0% ) a;x
j=1

L) 2 (22 o+ (52) & () o

here we have used Theorem 2.3 (2.10), Lemma 3.3 and Lemma 2.1 (2.3).
Thus we have (LHS) of (3.10) tends to 0 as ¢ — 0.
On the other hand, again we solve the linear PDE

ow.  _ .
Za-i:ué’fvs(y), y e RN (3.11)

with the initial condition we|r, = 7z UP*!(y), where I', = {z € RN|z-a = 0}.
Here as before, the RHS of (3.11) is understood as 0 outside of .. The
solution w, satisfies the estimate w.(y) = O(|y|™>"*1) as |y| — oo, since

P, (y) = O(UP*(y)) = O(Jy|~2) by (2.15) and (3.6). As before, we have

-1
w, — WU PH1 - yniformly on compact subsets on RY

and

1 1
()dy — — | Urtdy = —onC
/Qew(y) Y7ON Jan Y= NoNEN

13



by the dominated convergence theorem, where C'y = fooo ({IT;;Ndr — LW/

20(N) °
N
Thus, (RHS of (2.5)) x ||uc[|¥="" is
- 0K
co||u5||_1+%—i/( )u’a’gvedm
o \ Oz;
—2 Pe— aK
:COHUEH%H)E_( 41)N/ ( ( yprl + x. ) Ul v.dy
-\ ) |5
1 oK Y al w
-\ ) | j=1 0y;
=l RN S, | () Gt ) o
= o Oy | \O%i) w5
N3 al PK
S Noa e (B N— (B . d
colle So [ ()@l L w
J=1 luell " 4
N
_ PK
= ol Il ) S g o) CYRD
N
N K
= —cyonC
g 0N N;“Ja ,ax]( 0)

Thus we have N
’K
— =0.
Zl 4 8.’131836] (1’0)

J]=

By our assumption of the nondegeneracy of x(, the matrix (82?{5; ) (zo) is
10T
invertible. Therefore we obtain that a; = 0 for all j = 1,--- , N. Thus we

have proved Step 2. |

Proof of Step 3.

By Step 1 and Step 2, we have obtained that the limit function lim._,o 0. =
vo = 0. Since ||| pe(.) = 1, there exists y. € €. such that 0.(y.) = 1
and |y.| — oo, because the above convergence 0. — vy = 0 is uniform on
compact sets of RY. But this is not possible because of Lemma 3.1. This
proves Theorem 1.1. O

14
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