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Abstract. This is the first of a series of papers which will be devoted to
the study of the extended G-actions on torus manifolds (M2n, T n), where G

is a compact, connected Lie group whose maximal torus is T n. The goal of
this paper is to characterize codimension 0 extended G-actions up to essential

isomorphism. For technical reasons, we do not assume that torus manifolds

are omnioriented. The main result of this paper is as follows: a homogeneous
torus manifold M2n is (weak equivariantly) diffeomorphic to a product of com-

plex projective spaces
∏
CP (l) and quotient spaces of a product of spheres

(
∏

S2m)/A with standard torus actions, where A is a subgroup of
∏
Z2 gen-

erated by the antipodal involutions on S2m. In particular, if the homogeneous

torus manifold M2n is a compact (non-singular) toric variety or a quasitoric

manifold, then M2n is just a product of complex projective spaces
∏
CP (l).

1. Introduction

A torus manifold is an even dimensional oriented manifold M2n acted on by
a half-dimensional torus Tn with non-empty fixed point set: typical examples are
the complex projective space CP (n) and the even dimensional sphere S2n equipped
with the natural Tn-actions. As is well known, the natural Tn-action on CP (n) is
induced from the transitive U(n+1)-action (or PU(n+1)-action) on CP (n), that is,
this Tn-action extends to a U(n+1)-action or PU(n+1)-action (see Example 2.2).
Moreover, there is a similar property for the Tn-action on S2n (see Example 2.3).
So we can naturally ask which torus manifolds possess such extended actions (the
exact definition is in Section 2.1). In a series of papers we focus on this extension
problem of torus actions on torus manifolds.

This problem is reminiscent of the study of automorphism groups of toric vari-
eties by Demazure in [5], where here a toric variety is a normal algebraic variety V
on which an algebraic torus (C∗)n acts with a dense orbit (see [6]). We note that a
compact non-singular toric variety is a torus manifold by restricting its (C∗)n-action
to a Tn-action ((C∗)n contains the topological torus Tn = (S1)n as its maximal
compact subgroup). The automorphism group Aut(V ) of V contains (C∗)n and the
action of Aut(V ) restricted to (C∗)n coincides with the original (C∗)n-action on V .
Hence, we can regard Demazure’s study as the study of the extension problem of
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(C∗)n-actions on toric varieties. In fact the notion of torus manifold (or unitary
toric manifold in the earlier terminology) was introduced by Hattori and Masuda
in [8, 11] as a far-reaching topological generalization of compact non-singular toric
varieties. Consequently, our extension problem may be interpreted as the topolog-
ical version of Demazure’s work. (From this point we assume our groups in this
paper are always compact.)

In a series of papers, we will study extended G-actions. In particular, in the
present paper and the next papers, we will characterize extended G-actions which
have codimension 0 (i.e., G acts transitively) and 1 principal orbits up to essential
isomorphism (i.e., the induced effective actions are same: see Section 2.4). We often
call a torus manifold on which G acts transitively a homogeneous torus manifold.
For technical reasons, in this paper, we do not assume that torus manifolds are
omnioriented.

Let Z2 be defined as {I2mj+1, −I2mj+1} ⊂ O(2mj + 1), and let PU(x) be
a projective unitary group (see Example 2.2), SO(x) a special orthogonal group,
O(x) an orthogonal group. Our main result (Theorem 3.4) is as follows:

Theorem 1. Suppose a torus manifold (M2n, Tn) extends to a transitive G-
action, where G is a compact, connected Lie group whose maximal torus is Tn.
Then (M2n, G) is essentially isomorphic to a∏

i=1

CP (li)×
∏b

j=1 S
2mj

A
,

a∏
i=1

PU(li + 1)×
b∏

j=1

SO(2mj + 1)

 ,

where A can be any subgroup of
∏b

j=1 Z2, and
∏a

i=1 PU(li +1)×
∏b

j=1 SO(2mj +1)

acts on
∏a

i=1 CP (li)×
∏b

j=1 S
2mj/A in the natural way, and

∑a
i=1 li +

∑b
j=1mj =

n.
Furthermore, M2n is orientable if and only if A ⊂ SO(2m1 + · · ·+ 2mb + b).

We also have the following result (see Corollary 3.9):

Corollary 2. Suppose a compact, non-singular toric variety or a quasitoric
manifold (M2n, Tn) extends to a transitive G-action, where G is a compact, con-
nected Lie group whose maximal torus is Tn. Then (M2n, G) is essentially iso-
morphic to (

a∏
i=1

CP (li),
a∏

i=1

PU(li + 1)

)
,

where
∑a

i=1 li = n.

Here, a Tn-manifold M2n is called a quasitoric manifold over a simple polytope
Pn if the following two conditions are satisfied (see [3, 4]1):

(1) the Tn-action is locally standard, that is, locally modelled by the standard
action on Cn;

(2) there is the orbit projection map π : M2n → M2n/Tn = Pn constant on
Tn-orbits which maps every k-dimensional orbit to a point in the interior
of k-dimensional face of Pn, k = 0, · · · , n.

1Davis and Januszkiewicz use the term “toric manifold” in [4], but in this paper we use
the term “quasitoric manifold” in [3] because we would like to reserve the use of the term “toric

manifold” to mean a “non-singular toric variety”.
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Quasitoric manifolds were defined by Davis and Januszkiewicz as a topological
counterpart of projective, non-singular toric varieties in [4]. We note that every
smooth projective toric variety is a quasitoric manifold (e.g. [3, Chapter 5]). From
our main result Theorem 1, we may conclude that if a compact, non-singular toric
variety has a transitive G-action, then this manifold is a product of CP (l)’s (Corol-
lary 2). Hence, such manifolds are projective toric varieties; thus, they are also
quasitoric manifolds.

The organization of this paper is as follows. In Section 2, we first set up some
notation and basic facts. Next we prove our main result Theorem 3.4, that is,
we characterize homogeneous torus manifolds G/H in Section 3. A key lemma
for this characterization is Lemma 3.2, as well as the classification result of simply
connected, simple Lie groups and their maximal rank maximal connected subgroups
in classical Lie theory proved in [1]. Finally, we remark that our methods, in
particular Lemma 3.2, do not work for other T -manifolds in Section 4.

2. Preliminaries to the characterization

In this section, we recall some fundamental results. We start with recalling
some basic notation associated to a torus manifold and an extended G-action.

2.1. Basic notations and examples. A torus manifold is a 2n-dimensional,
closed, connected, smooth manifold M2n(= M) with smooth, finite kernel action
of an n-dimensional torus Tn = (S1)n(= T ) such that MT 6= ∅ (see Section 2.4
for the kernel of an action). Let MT denote the T -fixed point set. Automatically,
every fixed point is isolated, because dimM = 2 dimT and T acts on M with finite
kernel.

Remark 2.1. In the paper [8], the definition of torus manifolds involves the
choice of orientations of manifold M and its characteristic submanifolds called an
omniorientation on M . Because we will classify extended actions up to essential
isomorphism in this paper, we do not need to choose an omniorientation on M .
Moreover, the T -action on M does not need to be effective.

Let ϕ : Tn ×M2n → M2n be a Tn-action on M2n. Assume that a compact,
connected Lie group G has Tn as its maximal torus subgroup. If there exists an
action Φ : G ×M2n → M2n such that the restricted Tn-action Φ|T n×M2n is the
given ϕ, then we call Φ an extended G-action of (M2n, Tn), and we also denote
Φ as (M2n, G). If a principal G-orbit is of codimension k, we call (M2n, G) a
codimension k extended G-action of (M2n, Tn). Here, the integer k satisfies 0 ≤
k ≤ n. Because M and G are compact, if (M2n, G) is a codimension 0 extended G-
action then the G-action on M2n is transitive and M2n is a homogeneous manifold.
The following three examples are standard and important.

Example 2.2. If the Tn-action ϕ : Tn ×CP (n) → CP (n) on CP (n) is defined
by

ϕ((t1, · · · , tn), [z0; z1; · · · ; zn]) = [z0; t1z1; · · · ; tnzn],

where (t1, · · · , tn) ∈ Tn and [z0; z1; · · · ; zn] ∈ CP (n), then we can easily check
that this is a torus manifold whose fixed points are (n+ 1) points:

[1; 0; · · · ; 0], [0; 1; 0; · · · ; 0], · · · , [0; · · · ; 0; 1].
3



Considering the above Tn as the diagonal subgroup of U(n+ 1) with a unit in the
(1, 1)-entry, this action extends to the transitive U(n+1)/Z(U(n+1))-action, where
Z(U(n+1)) is the center of U(n+1). Therefore (CP (n), U(n+1)/Z(U(n+1))) =
(CP (n), PU(n + 1)) is a codimension 0 extended action of the torus manifold
(CP (n), Tn). Remark that PU(n+1) = U(n+1)/Z(U(n+1)) ' SU(n+1)/Zn+1 ≈
SU(n+ 1) has Tn as its maximal torus subgroup, where G ' G′ means G and G′

are isomorphic, G ≈ G′ means G and G′ have a same Lie algebra, and Zn+1 is the
center of SU(n+ 1).

Example 2.3. Assume the Tn-action ϕ : Tn×S2n → S2n on S2n ⊂ R2n⊕R =
R2n+1 is defined as follows: first we identify Tn with SO(2)n ⊂ SO(2n); and next
Tn acts on R2n by the restriction of the natural SO(2n)-action on R2n. Then we
can easily check that this is a torus manifold whose fixed points are 2 points: the
North pole (0, · · · , 0, 1) and the South pole (0, · · · , 0, −1) of S2n. Moreover
this action extends to the SO(2n)-action whose orbits are principal orbits S2n−1

(codimension 1 orbits) and two singular orbits which are the 2 fixed points of the
Tn-action. Therefore (S2n, SO(2n)) is a codimension 1 extended action of the
torus manifold (S2n, Tn). Remark that (S2n, Tn) also extends to a codimension
0 extended action (S2n, SO(2n+ 1)).

Example 2.4. In the above Example 2.3, S2n ⊂ R2n+1 has a free involu-
tion by −I2n+1 ∈ O(2n + 1), where I2n+1 is the identity element in the orthog-
onal group O(2n + 1). Now we define the manifold RP (2n) by S2n/Z2, where
Z2 = {I2n+1, −I2n+1}. Because the Tn-action on S2n commutes with the Z2-
action, we can define a Tn-action on RP (2n) induced by the Tn-action on S2n.
Moreover, the two Tn-fixed points on S2n, the North and South poles, go to the
same point in RP (2n) under the Z2-quotient, and this point is the unique fixed
point of this Tn-action on RP (2n). We can easily check (RP (2n), Tn) is effective,
because (S2n, Tn) is effective and Tn ∩ Z2 = {I2n+1}. Therefore, (RP (2n), Tn)
is a torus manifold; however, we remark that RP (2n) is a non-orientable manifold.
Furthermore, we have that (RP (2n), Tn) has a codimension 1 extended action
(RP (2n), SO(2n)) and a codimension 0 extended action (RP (2n), SO(2n + 1)),
because the SO(2n)-action and the SO(2n+1)-action on S2n in Example 2.3 com-
mute with this Z2-action. Remark that the orbits of the codimension 1 extended
action (RP (2n), SO(2n)) consist of: principal orbits S2n−1, one singular orbit
which coincides with the unique Tn-fixed point of (RP (2n), Tn), and one excep-
tional orbit RP (2n− 1).

In order to characterize torus manifolds which have codimension 0 extended
actions, i.e., homogeneous torus manifolds, we will also need the following basic
facts, summarized in Section 2.2 to 2.4.

2.2. Homogeneous space G/H with finite T -fixed points. First we dis-
cuss homogeneous spaces with T -actions. Let T be a maximal torus in a compact
Lie group G, and H a closed subgroup in G. Suppose that (G/H, T ) is a torus
manifold, that is, it satisfies the following three properties:

(1) the T -action on G/H has finite kernel;
(2) dimG/H = 2dimT ;
(3) the T -fixed point set (G/H)T 6= ∅.
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Because of the third property, there is an element gH ∈ G/H such that TgH = gH.
It follows that T ⊂ gHg−1 for some g ∈ G. Hence we can take a subgroup H as
follows:

T ⊂ Ho ⊂ H ⊂ G,

where Ho is the identity component of H. Since T is a maximal torus in G, we
have

rank G = rank Ho = dimT = n,

where the rank of a compact connected Lie group is the dimension of a maximal
torus subgroup. Consequently, we need to consider maximal rank subgroups of G.

2.3. Facts from classical Lie theory. In order to consider maximal rank
subgroups, we recall some classical Lie theory (see [13, Chapter V]).

For any compact, connected Lie group G, there is a finite covering map:

p : G̃ = G1 × · · · ×Gk → G,(2.1)

where Gi (i = 1, · · · , k) is a compact, simply connected, simple Lie group, or a
compact, connected, commutative Lie group, i.e., a torus. Let the kernel of p be
denoted by N . Then we have

G ' (G1 × · · · ×Gk)/N,

where N is some finite central normal subgroup in G1 × · · · ×Gk.
Now we have the following lemma for a product of Lie groups (see [13, Theorem

7.2]).

Lemma 2.5. Let Gi (i = 1, · · · , k) be compact, connected Lie groups and let
G be their product. Assume Ho is the identity connected maximal rank subgroup in
G. Then Ho = H1 × · · · ×Hk, where Hi is a maximal rank subgroup in Gi.

2.4. Essential isomorphism and a remark for the characterization. In
this subsection, we define an essential isomorphism.

We first need some notations. The kernel of (M, G) is defined as the inter-
section of all isotropy subgroups ∩x∈MGx. If the kernel N is the identity element,
then this action is an effective action. The induced action (M, G/N) is always ef-
fective, and we call it the induced effective action. We may now define an essential
isomorphism.

Definition 2.6. Let N be the kernel of (M, G) and N ′ the kernel of (M ′, G′).
We say that (M, G) and (M ′, G′) are essentially isomorphic if their induced
effective actions (M, G/N) and (M ′, G′/N ′) are weak equivariantly diffeomorphic,
that is, there are an isomorphism ρ : G/N → G′/N ′ and a diffeomorphism f :
M → M ′ such that f(ϕ(g, x)) = ψ(ρ(g), f(x)) for (g, x) ∈ G/N × M , where
ϕ : G/N ×M →M and ψ : G′/N ′ ×M ′ →M ′ are two induced effective actions.

Example 2.7. In Example 2.2, (CP (n), PU(n+ 1)) is essentially isomorphic
to the natural transitive action (CP (n), SU(n+ 1)).

Example 2.8. Let Spin(m) be the universal (double) covering of SO(m)
(m ≥ 3). This group Spin(m) acts on a sphere and a real projective space through
the projection to SO(m). In Example 2.3 (resp. Example 2.4), the codimension
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1 extended action (S2n, SO(2n)) (resp. (RP (2n), SO(2n))) is essentially isomor-
phic to (S2n, Spin(2n)) (resp. (RP (2n), Spin(2n))) for n ≥ 2, and the codi-
mension 0 extended action (S2n, SO(2n + 1)) (resp. (RP (2n), SO(2n + 1))) is
essentially isomorphic to the natural transitive action (S2n, Spin(2n + 1)) (resp.
(RP (2n), Spin(2n+ 1))) for n ≥ 1.

Let G̃ = G1 × · · · × Gk be a covering of G defined in (2.1) such that each Gi

(i = 1, · · · , k) is a compact, simply connected, simple Lie group, or a torus group.
Then (M, G) is essentially isomorphic to

(M, G̃) = (M, G1 × · · · ×Gk).(2.2)

Therefore, we only need to consider products of simply connected, simple Lie groups
and tori as the transformation groups on a homogeneous torus manifold. In the
next section we characterize homogeneous torus manifolds.

3. Characterization of homogeneous torus manifolds

Assume (M, G) is a codimension 0 extended G-action of a torus manifold
(M2n, Tn). In this section, we will classify such (M, G) up to essential isomor-
phism.

3.1. Structure of torus manifolds. Now we can put M = G/H and T is
a maximal torus subgroup of H and G by the argument in Section 2.2. Moreover,
a T -action of (G/H, T ) is defined by a natural inclusion of T to G. By (2.2),
(G/H, G) is essentially isomorphic to

(G/H, G̃) = (G/H, G1 × · · · ×Gk).

Let p : G̃→ G be the projection of (2.1). Then we have

G/H ∼= G̃/p−1(H),(3.1)

where X ∼= Y means X and Y are diffeomorphic. Therefore it is sufficient to classify
G̃ and its subgroup p−1(H). To classify such G̃ and p−1(H), we first consider the
identity component of p−1(H).

Let H̃ (resp. T̃ ) be the identity component of p−1(H) (resp. p−1(T ))2. Because
of Lemma 2.5, G̃/H̃ is decomposed into a product as follows:

G̃/H̃ = G1/H1 × · · · ×Gk/Hk,

whereHi ⊂ Gi is a maximal rank, connected subgroup for all i = 1, · · · , k. Because
T is a maximal torus subgroup of G and H, we see that T̃ is also a maximal torus
subgroup of G̃ and H̃ such that p(T̃ ) = T . Moreover, we have the following lemma.

Lemma 3.1. If (G/H, T ) is a torus manifold, then (G̃/H̃, T̃ ) is also a torus
manifold, and each Gi is a compact, simply connected, simple Lie group.

Proof. We prove (G̃/H̃, T̃ ) satisfies the three properties in Section 2.2. Be-
cause T̃ is a maximal torus subgroup of G̃ and H̃, we can easily check (G̃/H̃)T̃ 6= ∅,
i.e., property (3) holds. Because dimG/H = 2dimT , we have dim G̃/H̃ = 2 dim T̃ ,
i.e., property (2) holds. Since (G/H, T ) is almost effective, (G̃/H̃, T̃ ) is also al-
most effective, i.e., property (1) holds. Moreover, we have each Gi is not a torus by
property (1), i.e., each Gi is a compact, simply connected, simple Lie group. �

2We remark that p−1(T ) = T̃ by [13, Theorem 4.9 in Chapter V].
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Taking a maximal torus subgroup Ti in Hi, the maximal torus subgroup T̃ is
decomposed into

T̃ = T1 × · · · × Tk ⊂ H1 × · · · ×Hk ⊂ G1 × · · · ×Gk.

The following structure lemma holds.

Lemma 3.2. Suppose that the torus manifold (M, T ) has a codimension 0
extended G-action and M = G/H such that T ⊂ H ⊂ G. Put G̃/H̃ = G1/H1 ×
· · · × Gk/Hk, T̃ = T1 × · · · × Tk, and Gi/Hi = Mi for all i = 1, · · · , k, where G̃
is a universal covering of G, its subgroup H̃ (resp. T̃ ) is the identity component of
p−1(H) (resp. p−1(T )), and Ti is a maximal torus subgroup in Gi and Hi. Then
each factor (Mi, Ti) = (Gi/Hi, Ti) is a torus manifold.

Proof. By Lemma 3.1, (G̃/H̃, T̃ ) is a torus manifold and each Gi is a simply
connected, simple Lie group. Because (G̃/H̃, T̃ ) is almost effective, we also have
that (Gi/Hi, Ti) is almost effective for all i = 1, · · · , k. Since Ti is a maximal torus
subgroup in Gi and Hi, we have (Gi/Hi)Ti 6= ∅ for all i = 1, · · · , k. Therefore, we
have

2 dimTi ≤ dim(Gi/Hi)

for all i = 1, · · · , k. Hence, the following equation holds:

2 dim T̃ =
k∑

i=1

2 dimTi ≤
k∑

i=1

dim(Gi/Hi) = dim G̃/H̃.

On the other hand 2 dim T̃ = dim G̃/H̃. Consequently, we have 2 dimTi = dimGi/Hi

for all i = 1, · · · , k, and each factor (Mi, Ti) = (Gi/Hi, Ti) is a torus manifold. �

From Lemma 3.2, in order to classify G̃/H̃, we need to consider each factor
Gi/Hi constructed by a compact, simply connected, simple Lie group Gi and its
maximal rank connected subgroup Hi, such that

dimGi/Hi = dimGi − dimHi = 2 dimTi = 2 rank Gi = 2 rank Hi.

In the next subsection we classify all codimension 0 extended G-actions of torus
manifolds (M, Tn) up to essential isomorphism.

3.2. Characterization of homogeneous torus manifolds. Let S be a
compact, connected, simple Lie group, and S′ a compact, connected, maximal rank,
maximal subgroup of S. Here, a maximal subgroup means that if S′′ is another com-
pact, connected, maximal rank subgroup in S and there is an element g ∈ S such
that S′ ⊂ gS′′g−1 then S′ = gS′′g−1. For such S and S′, the classification of these
types, i.e., the Lie algebras of S and S′, is known by classical Lie theory: see the
Table 1 (see [1] or [13, Chapter V]3).

Here, in the Table 1, Al ≈ SU(l+1), Bl ≈ SO(2l+1), Cl ≈ Sp(l), Dl ≈ SO(2l)
are the classical Lie groups and E6, E7, E8, F4, G2 are the exceptional Lie groups

3The Table 1 is based on the list in [13]. In the list in [1, 13], the cases i = 1, l in Al do not

appear; however, we can easily check these cases should be included in their list by making use of

[13, Theorem 7.16 in Chapter V]. Moreover, for the cases that i is not fixed in Bl, Cl and Dl in
[13], we can easily check that indices of S′ (G′ in [13]) should be the indices in the above list by

making use of [13, Theorem 7.16 in Chapter V].

7



Table 1. maximal rank subgroups

S Al (l ≥ 1) Bl (l ≥ 2)
S′ Ai−1 ×Al−i × T 1 (1 < i < l) Al−1 × T 1 (i = 1, l) Bl−1 × T 1 (i = 1)
S Bl (l ≥ 2) Cl (l ≥ 3)
S′ Di ×Bl−i (1 < i < l) Dl (i = l) Ci × Cl−i (1 ≤ i < l)
S Cl (l ≥ 3) Dl (l ≥ 4)
S′ Al−1 × T 1 (i = l) Dl−1 × T 1 (i = 1) Di ×Dl−i (1 < i < l − 1)
S Dl (l ≥ 4) E6

S′ Al−1 × T 1 (i = l − 1, l) D5 × T 1 A1 ×A5

S E6 E7

S′ A2 ×A2 ×A2 D6 ×A1 A7

S E7 E8

S′ A2 ×A5 E6 × T 1 D8

S E8

S′ A8 A4 ×A4 E6 ×A2

S E8 F4

S′ E7 ×A1 C3 ×A1 A2 ×A2

S F4 G2

S′ B4 A2 A1 ×A1

(indices indicate their rank), and S ≈ X means S and X have the same Lie algebra.
Note that each dimension of S is as follows:

dimAl = l2 + 2l; dimBl = dimCl = (2l + 1)l; dimDl = l(2l − 1);
dimE6 = 78; dimE7 = 133; dimE8 = 248; dimF4 = 52; dimG2 = 14.

Therefore dimS/S′ can be computed as in Table 2 below.
It follows easily from Table 2 that the following two cases are the only possible

cases of dimS/S′ = 2 rankS:

Al/(Al−1 × T 1) and Bl/Dl.

If S′′ is not a maximal subgroup but is a maximal rank compact connected sub-
group, then S′′ is a subgroup of a conjugation of one of the maximal subgroups
S′ in Table 1. Hence we have dimS/S′′ > dimS/S′. By Table 2, we have
dimS/S′′ > dimS/S′ ≥ 2 rankS, hence such S′′ does not occur. Moreover, if
S′1 and S′2 are compact, connected, maximal rank, maximal compact subgroups
in the compact, connected, simple Lie group S with same Lie algebra type, i.e.,
S′1 ≈ S′2, then S′1 and S′2 are unique up to conjugation in S (see [13, Chapter V]).
Therefore we have the following Lemma 3.3.

Lemma 3.3. Let (Gi/Hi, Ti) be a pair such that Gi ⊃ Hi ⊃ Ti and dimGi/Hi =
2 dimTi = 2l. Assume Gi is a connected, simple Lie group, Hi is a connected, closed
subgroup, and rank Gi = rank Hi = dimTi. Then there are just the following two
cases:

Gi/Hi = SU(l + 1)/S(U(l)× U(1)) ∼= CP (l);

Gi/Hi = Spin(2l + 1)/Spin(2l) ∼= SO(2l + 1)/SO(2l) ∼= S2l.
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Table 2. dimension of S/S′

S/S′ Al/(Ai−1 ×Al−i × T 1) Al/(Al−1 × T 1) Bl/(Bl−1 × T 1)

dim 2i(l − i+ 1); 1 < i < l 2l; 1 ≤ l 2(2l − 1); 2 ≤ l

S/S′ Bl/(Di ×Bl−i) Bl/Dl Cl/(Ci × Cl−i)

dim 2i(2l − 2i+ 1); 1 < i < l 2l; 2 ≤ l 4i(l − i); 1 ≤ i < l, 3 ≤ l

S/S′ Cl/(Al−1 × T 1) Dl/(Dl−1 × T 1) Dl/(Di ×Dl−i)

dim l(l + 1); 3 ≤ l 4(l − 1); 4 ≤ l 4i(l − i); 1 < i < l − 1, 4 ≤ l

S/S′ Dl/(Al−1 × T 1) E6/(D5 × T 1) E6/(A1 ×A5)

dim l(l − 1); 4 ≤ l 32 40

S/S′ E6/(A2 ×A2 ×A2) E7/(D6 ×A1) E7/A7

dim 54 64 70

S/S′ E7/(A2 ×A5) E7/(E6 × T 1) E8/D8

dim 90 54 128

S/S′ E8/A8 E8/(A4 ×A4) E8/(E6 ×A2)

dim 168 200 162

S/S′ E8/(E7 ×A1) F4/(C3 ×A1) F4/(A2 ×A2)

dim 112 28 36

S/S′ F4/B4 G2/A2 G2/(A1 ×A1)

dim 16 6 8

From Lemma 3.3, we have G̃ =
∏a

i=1 SU(li + 1) ×
∏b

j=1 Spin(2mj + 1). Be-
cause an Spin(m)-action can be identified with an SO(m)-action up to essential
isomorphism (see Section 2.3 and Example 2.8), we can assume that

G̃ =
a∏

i=1

SU(li + 1)×
b∏

j=1

SO(2mj + 1),

where a+ b = k.
Because H̃ = H1 × · · · ×Hk is the identity component of p−1(H), we have the

following relation:

H̃ ⊂ p−1(H) ⊂ N(H̃) ⊂ G̃;(3.2)

N(H̃) =
a∏

i=1

S(U(li)× U(1))×
b∏

j=1

S(O(2mj)×O(1)),
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where N(H̃) is a normalizer group of H̃ in G̃. Hence, we have the following fibration
for the torus manifold G/H ∼= G̃/p−1(H):

A = p−1(H)/H̃ −→ G̃/H̃ −→ G̃/p−1(H) ∼= G/H,(3.3)

where p−1(H)/H̃ = A is a subgroup inN(H̃)/H̃ '
∏b

j=1 Z2, because of S(O(2mj)×
O(1))/SO(2mj) ' Z2 and the above (3.2). Note that we can regard Z2 as the group
generated by the antipodal involution on S2mj , i.e., Z2 ' O(2mj + 1)/SO(2mj +
1) = {I2mj+1, −I2mj+1}. Therefore, A acts on

∏b
j=1 S

2mj freely. Moreover,

we have that this A-action on
∏b

j=1 S
2mj is orientation preserving if and only

if A ⊂ SO(2m1 + · · ·+ 2mb + b). Consequently, we have the following theorem.

Theorem 3.4. Suppose a torus manifold (M2n, Tn) extends to a codimension
0 extended G-action, where G is a compact, connected Lie group whose maximal
torus is Tn. Then (M2n, G) is essentially isomorphic to a∏

i=1

CP (li)×
∏b

j=1 S
2mj

A
,

a∏
i=1

PU(li + 1)×
b∏

j=1

SO(2mj + 1)

 ,

where A can be any subgroup of
∏b

j=1 Z2 whose factor Z2 = {I2mj+1, −I2mj+1}
for j = 1, · · · , b, and

∏a
i=1 PU(li +1)×

∏b
j=1 SO(2mj +1) acts on

∏a
i=1 CP (li)×∏b

j=1 S
2mj/A in the natural way, and

∑a
i=1 li +

∑b
j=1mj = n.

Furthermore, M2n is orientable if and only if A ⊂ SO(2m1 + · · ·+ 2mb + b).

Here, we give two examples.

Example 3.5. Let I = I2m+b be the identity element in O(2m + b). We
have {I, −I} ⊂

∏b
j=1 Z2 ⊂ O(2m + b), and the following manifold is one of the

homogeneous torus manifolds in Theorem 3.4:

RPb(2m) = (
b∏

j=1

S2mj )/{I, −I},

where {I, −I} acts on
∏b

j=1 S
2mj ⊂

∏b
j=1 R2mj+1 = R2m+b canonically. Note

that if b = 1, this manifold RP1(2m) is an even dimensional real projective space
RP (2m). If b is even (resp. odd), then {I, −I} ⊂ SO(2m + b) (resp. {I, −I} 6⊂
SO(2m + b)). Therefore the following two conditions are equivalent by Theorem
3.4:

(1) RPb(2m) is orientable;
(2) b is even.

Example 3.6. Let us consider the product of three spheres S2m1 × S2m2 ×
S2m3 ⊂ R2m1+1 × R2m2+1 × R2m3+1. We define the group A as follows:

A = 〈(−I2m1+1, −I2m2+1, I2m3+1), (I2m1+1, −I2m2+1, −I2m3+1)〉
= {(I2m1+1, I2m2+1, I2m3+1), (−I2m1+1, −I2m2+1, I2m3+1),

(I2m1+1, −I2m2+1, −I2m3+1), (−I2m1+1, I2m2+1, −I2m3+1)}
' Z2 × Z2,

where I2mj+1 ∈ O(2mj +1) is the identity element. Because A ⊂ SO(2m1 +2m2 +
2m3 + 3), we see that (S2m1 × S2m2 × S2m3)/A is a homogeneous torus manifold
and orientable by Theorem 3.4.
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We can easily show the following corollaries.

Corollary 3.7. If a simply connected torus manifold has a codimension 0 ex-
tended G-action, (M2n, G) is essentially isomorphic to a∏

i=1

CP (li)×
b∏

j=1

S2mj ,
a∏

i=1

PU(li + 1)×
b∏

j=1

SO(2mj + 1)

 ,

where
∑a

i=1 li +
∑b

j=1mj = n.

Remark 3.8. We can assume mj ≥ 2 in the above Corollary 3.7, because
(S2, SO(3)) and (CP (1), PU(2)) are essentially isomorphic. Therefore, diffeomor-
phism types of simply connected, homogeneous torus manifolds can be completely
determined by sequences (l1, · · · , la) and (m1, · · · , ma) such that 0 < l1 ≤ · · · ≤
la, 2 ≤ m1 ≤ · · · ≤ mb,

∑a
i=1 li +

∑b
j=1mj = n. We also remark that these

sequences do not determine the omniorientation on M .

The set of torus manifolds is a topological generalization of compact non-
singular toric varieties, and this set also contains all quasitoric manifolds. As
is well known, every quasitoric manifold is simply connected and their cohomol-
ogy rings are generated by second degree cohomology classes (see [6] for the case of
toric varieties, and [3, Theorem 5.18], or [4, Theorem 4.14] for the case of quasitoric
manifolds). Consequently, we have the following corollary by Corollary 3.7.

Corollary 3.9. If a compact non-singular toric variety or a quasitoric manifold
(M2n, Tn) has a codimension 0 extended G-action, then (M2n, G) is essentially
isomorphic to (

a∏
i=1

CP (li),
a∏

i=1

PU(li + 1)

)
,

where
∑a

i=1 li = n.

Remark 3.10. If a compact algebraic variety has a codimension 0 extended
compact G-action, then this variety is non-singular. Hence, in this case we may
omit the assumption of non-singularity in the above corollary.

4. On other T -manifolds

Finally, in this section, we give an application of the above argument for other
T -manifolds (M, T ).

Suppose a Tm-manifold (M2n, Tm) extends to a transitive G-action, where G
has Tm as its maximal torus. Assume that this Tm-action is almost effective and
has finitely many fixed points. Then we have n ≥ m (if n = m then M is a torus
manifold). From the same argument as in Section 2.2, we also have M ∼= G/H such
that Tm ⊂ Ho ⊂ G and rank G = rank Ho = m. Therefore we can apply the same
argument as for torus manifolds, and we obtain the diffeomorphism type of M2n.

For example, applying the above argument for (M4n, Tn+1), we have the fol-
lowing proposition, where a decomposable manifold M means that the manifold M
is diffeomorphic to M1 ×M2 such that dimM1, dimM2 6= 0.

Proposition 4.1. Assume that (M4n, Tn+1) has finitely many fixed points, M
is simply connected, and that the Tn+1-action is almost effective. If (M4n, Tn+1)

11



has a codimension 0 extended G-action (where rank G = n + 1) and M is not a
decomposable manifold, then M4n is diffeomorphic to one of the followings:

G2(Cn+2) = SU(n+ 2)/S(U(n)× U(2));
HP (n) = Sp(n+ 1)/(Sp(n)× Sp(1));
Q2n = SO(2n+ 2)/(SO(2n)× SO(2)),

where G2(Cn+2) is the complex Grassmannian of 2-planes in Cn+2, HP (n) is the
quaternionic projective space, and Q2n is the complex quadric.

Proof. Because M is not decomposable, we can assume that G is a simply
connected, compact, simple Lie group. First we assume M = G/H. With a method
similar to that demonstrated in Section 2.2, we can easily show that rank G =
rank H. Because M is simply connected, we have H = Ho. Assume H is a maximal
compact subgroup. In this case, we will see from Table 2 that the pair (G, H) such
that rank G = rank H = n+ 1 and dimG = dimH = 4n is one of the three pairs
in the statement of this proposition (remark that (B2, D2) ≈ (C2, C1 × C1) and
(D4, A3 × T 1) ≈ (D4, D3 × T 1)).

Next we assume M = G/K and K = Ko is not maximal. Then we have
dimG/K > dimG/H where H is maximal and rank G = rank H = rank K = n+1.
If G is one of the next Lie groups: Bn+1, E6, E7, E8, F4, G2, then we always
have dimG/H > 4n from the list in Table 2. Therefore we can assume that G is
one of the next three Lie groups: An+1, Cn+1, Dn+1.

IfG isAn+1, then an inequality dimG/H < 4n holds only whenAn+1/(An×T 1)
from the list in Table 2. Thus, we have G ⊃ H ⊃ K where H ≈ An × T 1. If K
is maximal in such subgroup, we also have K ≈ (Aj−1 × An−j × T 1) × T 1 for
1 ≤ j ≤ n. Then we can easily check that dimG/K > 4n. Hence this case does
not occur.

If G is Cn+1 or Dn+1, then we always have dimG/H ≥ 4n from the list in
Table 2. Hence only the maximal case occurs. �

Remark 4.2. In general (M4n, Tn+1) can be decomposed into a product (M1×
· · · ×Mk, T1 × · · · × Tk), but we can easily prove that the type decomposition of
Lemma 3.2 does not hold (except k = 1). For example (S6 × S2, T 2 × T 1) is one
of the elements in the class (M4n, Tn+1) for n = 2, and it has the codimension
0 extended G2 × SO(3)-action, where S6 = G2/SU(3) and S2 = SO(3)/SO(2).
However, the two factors (S6, T 2) and (S2, T 1) are not in the class (M4n, Tn+1).
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