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Abstract. The goal of this paper is to classify quasitoric manifolds (M2n, T n)
with codimension 1 extended G-actions up to essential isomorphism, where G
is a compact, connected Lie group whose maximal torus is T n. For technical
reasons, we classify more general class which consists of simply connected torus
manifolds (M2n, T n) with codimension 1 extended G-actions such that two
singular orbits of extended G-actions are also simply connected torus mani-
folds. The main result of this paper is as follows: such M2n is a fibre bundle
over a product of some complex projective spaces CP (l) and even dimensional
spheres S2m whose fibre is a complex projective space or an even dimensional
sphere. As a result, if M2n is a quasitoric manifold with codimension 1 ex-
tended G-actions, then M2n is a complex projective bundle over a product of
complex projective spaces.

1. Introduction

One of the essential problems in geometry is to find the most natural group
action on the given space. A torus manifold is an even dimensional oriented mani-
fold M2n acted on by a half-dimensional torus Tn with non-empty fixed point set.
Since the previous papers [17], we have studied the extended G-actions (M2n, G)
on torus manifolds (M2n, Tn), where G is a compact, connected Lie group whose
maximal torus is Tn. To study extended actions of torus manifolds is to find the
natural group action on M which induces the given Tn-action on M .

In the previous paper [17], we classified homogeneous torus manifolds, i.e.,
torus manifolds with transitive extended G-actions (also see Theorem 2.3 in this
paper). If G acts on M transitively, then its principal orbit G/K is M itself,
i.e., M = G/K. In other words, the codimension of the principal orbit in the
transitive action is zero, i.e., dimM − dim G/K = 0. Therefore, we can regard the
classification in [17] as the classification of codimension 0 extended actions. So we
are naturally led to study codimension 1 extended actions, i.e., extended G-actions
on torus manifolds with codimension 1 principal orbits.

A torus manifold is called a quasitoric manifold over a simple polytope Pn if
the following two conditions are satisfied (see [5, 6]):
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(1) the Tn-action is locally standard, that is, locally modelled by the standard
Tn-action on Cn;

(2) there is a projection map π : M2n → Pn constant on Tn-orbits which
maps every k-dimensional orbit to a point in the interior of k-dimensional
face of Pn, k = 0, · · · , n,

where an n-dimensional convex polytope Pn is simple if precisely n codimension-
one faces (facets) meet at each vertex. The goal of the present paper is to classify
codimension 1 extended actions of Tn-actions on quasitoric manifolds. In order
to classify such actions, we classify more general classes as in the following main
theorem (Theorem 8.4, 8.6 and 8.8 for detail):

Theorem 1. Suppose a simply connected torus manifold M has a codimension
one extended G-action. If two singular orbits are also simply connected torus
manifolds, then (M, G) is essentially isomorphic to


b∏

j=1

S2mj ×N,

b∏

j=1

SO(2mj + 1)×H


 ,

where (N, H) is one of the followings:
N H(∏a

i=1 S2li+1
)×T a S(Ck

a ⊕ R)
∏a

i=1 SU(li + 1)× U(k)(∏a−1
i=1 S2li+1

)
×T a−1 P (Ck1

b ⊕ Ck2)
∏a−1

i=1 SU(li + 1)× S(U(k1)× U(k2))∏a
i=1 CP (li)× S(R2k ⊕ R)

∏a
i=1 SU(li + 1)× SO(2k)

where
∏

SO(2mj + 1) and
∏

SU(li + 1) act naturally on
∏

S2mj and
∏

S2li+1 (or∏
CP (li)) respectively; and U(k), S(U(k1)×U(k2)) and SO(2k) also act naturally

on Ck
a, Ck1

b ⊕ Ck2 and R2k respectively.

Using Theorem 1 and basic results for quasitoric manifolds, we reach our goal
as the following corollary:

Corollary 2. If a quasitoric manifold M has a codimension one extended
G-action, then (M, G) is essentially isomorphic to

(
a−1∏

i=1

S2li+1 ×T a−1 P (Ck1
b ⊕ Ck2),

a−1∏

i=1

SU(li + 1)× S(U(k1)× U(k2))

)
.

For the classification of codimension 0 extended actions on torus manifolds, we
only used classical Lie theory, in the previous paper [17]. However, for the classi-
fication of codimension 1 extended actions on torus manifolds, we need to use not
only classical Lie theory but also transformation group theory. In history of study-
ing transformation group theory, there are so many classification results of actions
with codimension 1 principal orbits, (e.g., [1, 9, 14, 16, 28, 29]). In particular,
the Uchida’s method in [28], developed the Wang’s method in [29], is very pow-
erful method in the case that we classify vast classes for compact transformation
groups on compact manifolds with codimension 1 principal orbits. So we apply the
Uchida’s method to classify our case.

When we use the Uchida’s method, we often need to divide our proof into two
cases (see [16, 28]); specifically, in our case, the case that two singular orbits of
G-actions are torus manifolds, and the other case that one of two singular orbits
of G-actions is not a torus manifold (see Lemma 3.2). Proofs of these two cases

2



are quite different; thus, we divide our paper into two papers: this paper and the
next paper [18]. In this paper, we focus on the first case, i.e., we classify the class
which consists of simply connected torus manifolds (M2n, Tn) with codimension
1 extended G-actions such that two singular orbits of extended G-actions are also
simply connected torus manifolds (see Theorem 1). In particular, quasitoric man-
ifolds with codimension 1 extended actions are contained in this class by Lemma
3.3 (also see Corollary 2).

Due to [17, Corollary 2], a homogeneous quasitoric manifold is a product of
CP (l)’s only. On the other hand, by making use of the above Corollary 2, a
quasitoric manifold which has codimension 1 extended actions is a complex pro-
jective bundle over a homogeneous quasitoric manifold. As we mentioned in the
previous paper [17], our extension problem is reminiscent of the study of auto-
morphism groups of toric varieties by Demazure in [7], where here a toric vari-
ety is a normal algebraic variety V on which an algebraic torus (C∗)n acts with
a dense orbit (see [8]). In fact, quasitoric manifolds were defined by Davis and
Januszkiewicz as a topological counterpart of projective, non-singular toric vari-
eties in [6]. In this paper, the term “dimension” means a real dimension. There-
fore, to classify codimension 1 extended G-actions belongs to purely topological
problems. However, the resulting manifolds in Corollary 2 are projective, non-
singular toric varieties, that is, these objects also belong to algebraic geometry.
Remark that

∏a−1
i=1 S2li+1 ×T a−1 P (Ck1

b ⊕ Ck2) is equivariantly diffeomorphic to∏a−1
i=1 C

li+1
0 ×(C∗)a−1 P (Ck1

b ⊕ Ck2), where Cli+1
0 = Cli+1 − {0} and C∗ = C− {0}.

Finally, we note that the classification results for low dimensional torus mani-
folds are known, e.g., [25] for simply connected, 4-dimensional torus manifolds or
[22] for simply connected, spin, 6-dimensional torus manifolds; however, in [22],
there is a mistake (see [19]).

The organization of this paper is as follows. In Section 2, we prepare some
fundamental results from toric topology, classical Lie theory, the previous paper,
and transformation group theory. In Section 3, we show that a G-orbit through
T -fixed points is a singular orbit, and give some difference between quasitoric man-
ifolds and torus manifolds with codimension 1 extended G-actions. From Section
4, we assume that our torus manifold is simply connected, our extended G-action
of torus manifold has two singular orbits and they are simply connected torus man-
ifolds. Moreover, from this section, we start the Uchida’s method; thus, we first
show a topological type of two singular orbits. In Section 5, we next classify two
tubular neighborhoods of two singular orbits by computing slice representations.
In Section 6, we get possibilities for G and two singular isotropy subgroups by com-
paring two slice representations. In Section 7, we study more precise structure of
slice representations and get possibilities for two tubular neighborhoods in (M, G).
The key lemmas of this classification are Lemma 7.1, 7.2 and 7.3, that is, two slice
representations of two singular isotropy groups must coincide up to sign. We also
have principal isotropy subgroups in this section. Finally, in Section 8, we compute
the attaching maps between boundaries of two tubular neighborhoods. Then we
can construct our manifolds explicitly as in Theorem 1. In final Section 9, as an
application, we show the following fact: codimension 1 (resp. 0) extended actions
of quasitoric manifolds can be lifted to actions on moment-angle manifolds with
codimension 1 (resp. 0) principal orbits. In other wards, codimension 1 (resp.
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0) extended actions of quasitoric manifolds are always induced from actions on
moment-angle manifolds with codimension 1 (resp. 0) principal orbits.

2. Preliminary

In this first section, we recall some basic notations and facts from toric topology
[11, 20], classical Lie theory [26], the previous paper [17], and transformation
group theory [4, 13]. Throughout of this paper, Tn is always an n-dimensional,
compact, abelian group, i.e., Tn is a product of n circles (S1)n, we often call it an
n-dimensional torus or just a torus.

2.1. Torus manifold. A torus manifold introduced in [11, 20] is the main
research object in this paper. First we recall this definition. A torus manifold is
a pair (M2n, Tn) of a smooth, 2n-dimensional, compact manifold M2n and an n-
dimensional (half dimensional) torus Tn which satisfies the following two properties:

(1) M2n is an oriented manifold equipped with an almost effective Tn-action
(also see Remark 2.1);

(2) its fixed point set is non-empty, i.e., MT 6= ∅,
and it is often denoted by (M, T ) or M simply. Automatically, the fixed point set
MT is finite and the principal orbit (defined in the next Section 2.2) is Tn itself.

A compact, connected, codimension two submanifold of M without boundary
is called characteristic if it is a connected component of the set fixed pointwise by
a certain circle subgroup of T and contains at least one T -fixed point. There are
only finitely many characteristic submanifolds and they are orientable, because M
is compact and orientable.

Remark 2.1. The concept of a torus manifold is an ultimate generalization
which can develop a topological generalization of toric theory. However, in this
paper we do not use this theory, that is, we do not use a multi-fan, so our definition
of a torus manifold becomes rather briefer than the definitions in [11, 20]. For
example, we do not need to define an omniorientation of the torus manifold and
characteristic submanifolds. For the torus manifold in [11, 20], we also need an
omniorientation. One of the reason to introduce this concept is to define a multi-
fan. However, in this paper we do not use a multi-fan. So we do not need an
omniorientation.

Furthermore, for technical reasons, we assume a T -action on M is an almost
effective, that is, the intersection of all isotropy subgroups ∩x∈MTx is finite set (if
this set only consists of the identity element, then this action is effective).

2.2. Review of classical Lie theory and the previous paper. In order
to study extended actions of torus actions on torus manifolds, we next introduce
some terminology and fact from classical Lie theory, transformation group theory
and our previous paper [17]. We start with recalling general terminology.

Let (M, G) be a pair of a manifold M and its smooth G-action. A principal
orbit in (M, G) is a maximal orbit in (M, G). A singular orbit in (M, G) is an
orbit whose dimension is strictly less than the dimension of principal orbits. An
exceptional orbit in (M, G) is an orbit which is not maximal but whose dimension
is the same as that of a principal orbit (see Example 3.6). Let Gx be an isotropy
subgroup of x ∈ M , i.e., Gx = {g ∈ G | gx = x}.

In this paper and the next paper, we will classify (M, G) up to essential
isomorphism. So we next define an essential isomorphism. Let N be the intersection
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of all isotropy subgroups ∩x∈MGx of (M, G). Then the induced action (M, G/N) is
always effective, and we call it the induced effective action. If two induced effective
actions of (M, G) and (M ′, G′) are weak equivariantly diffeomorphic, that is, there
are an isomorphism ρ : G/N → G′/N ′ and a diffeomorphism f : M → M ′ such
that f(ϕ(g, x)) = ψ(ρ(g), f(x)) for (g, x) ∈ G/N ×M (where ϕ : G/N ×M → M
and ψ : G′/N ′ × M ′ → M ′ are two induced effective actions), then we call that
(M, G) and (M ′, G′) are essentially isomorphic. Now we may recall the following
facts (see [26, Section 5]). For any compact, connected Lie group G, there is a
finite covering, homomorphic map:

p : G̃ = G1 × · · · ×Gk → G,(2.1)

where Gi is a compact, (simply) connected, simple Lie group, or a torus for
i = 1, · · · , k. Let the kernel of p be denoted as N . Because p is a surjective
homomorphism, we have

G ' (G1 × · · · ×Gk)/N,

where N is some finite, central, normal subgroup in G1 × · · · × Gk. By the defi-
nition of p, we have that (M, G) can be lifted to (M, G̃) and they are essentially
isomorphic.

A rank of G is the dimension of a maximal torus subgroup of G. The following
lemma is known for a maximal rank subgroup Ho of G (see [26, Theorem 7.2]).

Lemma 2.2. Let Gi (i = 1, · · · , k) be compact, connected Lie groups and let
G be their product. Assume Ho is a compact, connected, maximal rank subgroup in
G. Then Ho = H1 × · · · ×Hk, where Hi is a maximal rank subgroup in Gi.

We next recall the results of the previous paper [17]. In order to recall it, we
introduce the extended action. Let (M, T ) be a torus manifold, and ϕ : T×M → M
be its T -action. Suppose that a compact, connected Lie group G has T as its
maximal torus subgroup. If there exists an action Φ : G × M → M such that
the restricted T -action Φ|T×M is the given ϕ, then we call Φ is an extended G-
action of (M, T ), and Φ also denotes (M, G). If there is a principal G-orbit G(x)
such that dim G(x) = dim M2n − k = 2n − k in the extended G-action, then we
call (M2n, G) a codimension k extended G-action of (M, T ), where an integer k
satisfies 0 ≤ k ≤ n. In this paper and the next paper, we study the case k = 1.

Before we state the results in [17], we need to introduce some actions. Let Z2 be
defined as {I2mj+1, −I2mj+1} ⊂ O(2mj + 1), where O(2mj + 1) is the orthogonal
group. We remark that Z2 acts on the 2mj-dimensional sphere S2mj ⊂ R2mj+1

canonically (we call this action the antipodal action on sphere). LetA be a subgroup
of

∏b
j=1 Z2. Then A acts on

∏b
j=1 S2mj through the canonical

∏b
j=1 Z2-action on∏b

j=1 S2mj (the product of antipodal actions). For codimension 0 extended G-
actions, we proved the following two classification results (see [17, Theorem 1,
Corollary 3.7 and Remark 3.8]):

Theorem 2.3. Let (M2n, Tn) be a 2n-dimensional, compact, connected mani-
fold M equipped with an almost effective, half dimensional torus T -action with fixed
points. Suppose (M2n, Tn) extends to a codimension 0 extended G-action, where
G is a compact, connected Lie group whose maximal torus is Tn. Then (M2n, G)
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is essentially isomorphic to



a∏

i=1

CP (li)×
∏b

j=1 S2mj

A ,

a∏

i=1

SU(li + 1)×
b∏

j=1

SO(2mj + 1)


 ,

where the above group acts on M2n in the natural way, and
∑a

i=1 li+
∑b

j=1 mj = n.

Corollary 2.4. If a simply connected torus manifold has a codimension 0
extended G-action, (M2n, G) is essentially isomorphic to




a∏

i=1

CP (li)×
b∏

j=1

S2mj ,

a∏

i=1

SU(li + 1)×
b∏

j=1

SO(2mj + 1)


 ,

where
∑a

i=1 li +
∑b

j=1 mj = n and mj ≥ 2 for all j = 1, · · · , b.

Remark 2.5. In [17, Theorem 1 and Corollary 3.7], we did not use SU(l + 1).
Instead, we used PU(l+1) as the transformation group, where PU(l+1) is defined as
the quotient of SU(l+1) by its center Z(SU(l+1)). However, (

∏
CP (l),

∏
SU(l+

1)) is essentially isomorphic to (
∏
CP (l),

∏
PU(l + 1)) (see [17, Example 2.7]).

So we may change PU(l + 1)’s into SU(l + 1)’s of [17, Theorem 1 and Corollary
3.7]. For technical reasons, in this paper, we use SU(l + 1).

In order to classify codimension 1 extended G-actions, we need to use the above
results.

2.3. Review of transformation group theory. Next we recall some fact
from transformation group theory. For the general codimension 1 actions, the
following theorem is known (see [4, 8.2 Theorem in Chapter IV] or [28, Lemma
1.2.1]):

Theorem 2.6. Let G be a compact, connected Lie group and M a compact,
connected manifold without boundary such that H1(M ; Z2) = 0. Assume G acts
smoothly on M with codimension one orbits G/K. Then all codimension one orbits
G/K are principal orbits, and there are just two singular orbits G/K1 and G/K2.
Furthermore, there exists a closed, invariant tubular neighborhood Xs (of G/Ks for
s = 1, 2) such that

M = X1 ∪X2 and X1 ∩X2 = ∂X1 = ∂X2.

The Figure 1 shows the image of (M, G) with codimension 1 principal orbits.

Figure 1. The orbit structure of (M, G) with codimension 1 orbits.
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Once we know the singular orbits G/K1 and G/K2, then their tubular neigh-
borhoods X1 and X2 are also known by the following differentiable slice theorem,
the slice theorem for short (see, e.g., [4, 13]).

Theorem 2.7 (differentiable slice theorem). Let G be a compact Lie group and
M a smooth G-manifold, and Gx an isotropy subgroup of x ∈ M . Then, for all
x ∈ M , there is a closed G-invariant neighborhood X (of the orbit G(x) ∼= G/Gx)
such that X ∼= G ×Gx

Dx as a G-diffeomorphism, where Dx ⊂ RN is some closed
disk, G ×Gx Dx is the quotient space (G × Dx)/Gx induced by the Gx-action on
G × Dx. Here, this Gx-action is defined as follows: Gx canonically acts on G
as a subgroup of G; and on a closed disk Dx through an orthogonal representation
σ : Gx → O(Dx), where O(Dx) is an orthogonal group of Dx ⊂ RN (N = dim Dx =
dim M − dim G(x)).

In Theorem 2.7, σ is called a slice representation of Gx, and Dx a slice of X
on x. We identify a tubular neighborhood X of G(x) with G ×Gx

Dx. The slice
theorem will be often used throughout this paper.

Suppose a compact Lie group G acts on a manifold M smoothly and it has a
fixed point p ∈ MG. Using the slice theorem, the tangent space Tp(M) of p ∈ MG

is an orthogonal G-representation space. We call it a tangential representation
space, or simply a tangential representation on p. Let αi be a representation from
T to S1 ' SO(2), i.e., αi : T → S1 ' SO(2)(∈ Hom(T, S1) ' Zn), and let
V (αi) ' R2 be a representation space of αi. For tangential representation spaces
of torus manifolds, the following proposition holds.

Proposition 2.8. Let (M, T ) be a torus manifold and p ∈ M a fixed point.
Then there is the following decomposition for the tangential representation space
on p:

Tp(M) ' V (α1)⊕ · · · ⊕ V (αn)

such that {α1, · · · , αn} is linearly independent in Hom(T, S1)⊗ R ' Rn.

Proof. Because p ∈ MT , we may regard Tp(M) as an orthogonal T -representation
space by the slice theorem. From the definition of the torus manifold, the T -action
on M is an almost effective. It follows that there is a non-degenerate representa-
tion ρ from Tn to the orthogonal group O(Tp(M)) ' O(2n), i.e., the image of ρ is
also an n-dimensional torus. Moreover, the image of ρ is in the special orthogonal
group SO(2n) because Tn is connected. Therefore, the image of ρ and the diagonal
maximal torus SO(2)×· · ·×SO(2) ⊂ SO(2n) are conjugate in SO(2n). This gives
an equivalence between ρ and α1 ⊕ · · · ⊕ αn for some αi = ki ◦ πi, where πi is the
i-th projection πi : SO(2) × · · · × SO(2) → SO(2) and ki is a non-degenerate
representation ki : SO(2) → SO(2), i.e., ki 6= 1 : SO(2) → {I2} ⊂ SO(2)
(i = 1, · · · , n). Moreover, we can easily see that {α1, · · · , αn} is linearly in-
dependent in Hom(T, S1)⊗ R ' Rn by their definitions. ¤

3. Orbits in extended actions

In this section, we study orbits in extended actions (M, G) of torus manifolds
(M, T ).
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3.1. G-orbits on T -fixed points. By the definition of the torus manifold
(M, T ), there are non-empty isolated fixed points MT . We first consider a G-orbit
on a fixed point p ∈ MT .

If p is in the T -fixed point set MT , then we have

T ⊂ Gp ⊂ G,(3.1)

where Gp is the isotropy subgroup of p. We have the following lemma.

Lemma 3.1. Suppose that a torus manifold (M2n, Tn) has a codimension 1
extended G-action. Then a G-orbit G/K1 of a T -fixed point is a singular orbit in
(M, G), i.e., dim G/K1 < 2n − 1. In other words, there is at least one singular
orbit in (M, G).

Proof. Let p be a fixed point (p ∈ MT ). We shall prove that the orbit G(p)
is a singular orbit, i.e., dim G(p) < 2n − 1. By the above relation (3.1), rank Go

p

coincides with rank G = dim T . It follows that the Euler character of G/Go
p is not

zero (e.g. [10, Theorem 1.1 (2), (3)]), and thus dim G/Gp = dim G/Go
p is even.

Because (M2n, G) is a codimension 1 extended action, the dimension of a principal
orbit is 2n−1. Therefore, we have dim G(p) = dim G/Gp = dim G/Go

p < 2n−1. ¤

Moreover, we see that a G-orbit on a fixed point p ∈ MT is a torus manifold
by the following lemma.

Lemma 3.2. Let G/K1 be a singular orbit of (M, G) which contains a fixed
point of (M, T ), i.e., G/K1 ∩MT 6= ∅. Then there is some subtorus T ′ ⊂ T such
that (G/K1, T ′) is a torus manifold.

Proof. Let p : G̃ → G be a covering of G in (2.1), and let K̃1 (resp. T̃ ) be a
connected component of p−1(K1) (resp. p−1(T )). By (3.1), we have T̃ is a maximal
torus subgroup of G̃ and K̃1. By the argument of Section 2.2 and Lemma 2.2, there
is the following decomposition:

G̃ = G′1 ×G′′1 , K̃1 = K ′
1 ×G′′1 , T̃ = T ′1 × T ′′1 ,

where G′1 and G′′1 are products of compact, simply connected, simple Lie groups
and tori, and G′′1 is the same factor in G̃ and K̃1, that is, the connected component
of the intersection of all isotropy subgroup ∩x∈G/K1G̃x (i.e., the kernel of the G̃
action on G/K1). Here, G′1 and G′′1 satisfy that rank G′1 = rank K ′

1 = dim T ′1 and
rank G′′1 = dim T ′′1 .

Because K̃1 ⊂ p−1(K1) ⊂ G̃, we also have the following decomposition:

p−1(K1) = H ′
1 ×G′′1 ,

where K ′
1 ⊂ H ′

1 ⊂ G′1 and the connected component of H ′
1 is K ′

1. Then the
projection p induces the diffeomorphism between G′1/H ′

1 and G1/K1. We remark
that T ′′1 is a connected component of the kernel of T̃ -action on G′1/H ′

1. Now we
may prove that (G′1/H ′

1, T ′1) is an unoriented torus manifold, i.e., a torus manifold
which does not assume orientability. Because T ′1 is a maximal torus of G′1 and
K ′

1 = (H ′
1)

o, we have that this T ′1-action on G′1/H ′
1 is almost effective and there

are fixed points. Moreover, we have the following decomposition on the fixed point
q ∈ G/K1 ∩MT :

TqM = TqG/K1 ⊕NqG/K1.
8



Now T ′1 acts on TqG/K1 and T ′′1 acts on NqG/K1 through the finite covering
p. Moreover, using a T -action on TqM , we have an irreducible decomposition of
TqM = V (α1)⊕ · · ·⊕V (αn) (by Proposition 2.8). Therefore, we have dimG/K1 =
2n−2k1 and 2k1 = dim NqG/K1 = 2 dim T ′′1 . Hence, (G′1/H ′

1, T ′1) is an unoriented
torus manifold.

We define T ′ as p(T ′1) and T ′′ as p(T ′′1 ). Because (G′1/H ′
1, T ′1) is an unoriented

torus manifold, (G1/K1, T ′) is also an unoriented torus manifold. Furthermore,
we see that G1/K1 is one of the fixed pointwise connected component of MT ′′ .
Therefore, G1/K1 can be written as some connected component of an intersection
of characteristic manifolds. Because all characteristic manifolds are orientable,
G1/K1 is an oriented manifold. Hence, (G1/K1, T ′) is a torus manifold. ¤

In the next subsection, we recall quasitoric manifolds briefly, and give some
differences between quasitoric manifolds and torus manifolds with codimension 1
extended G-actions.

3.2. Differences between quasitoric manifolds and torus manifolds.
The concept of a quasitoric manifold introduced in [6] is a topological counterpart
of the projective toric variety. Let Pn be a simple convex polytope, i.e., a convex
hull of some vertices such that neighborhoods of all vertices look like simplexes. If
the torus manifold (M2n, Tn) satisfies the following two properties:

(1) Tn-action is locally standard, that is, locally looks like the standard torus
representation in Cn;

(2) there is a projection map π : M2n → Pn constant on Tn-orbits which
maps every k-dimensional orbit to a point in the interior of k-dimensional
face of Pn, k = 0, · · · , n,

then we call (M2n, Tn) a quasitoric manifold. For quasitoric manifolds with codi-
mension 1 extended G-actions, we have the following lemma.

Lemma 3.3. Suppose that the quasitoric manifold (M2n, Tn) has a codimension
1 extended G-action. Then there are just two singular orbits in (M, G), and these
two singular orbits are quasitoric manifolds.

Proof. Let p ∈ MT . We first prove that an orbit G(p) = G/K1 is a quasitoric
manifolds. By Lemma 3.2, there is a subtorus T ′ ⊂ T such that (G/K1, T ′) is a
torus manifold. Because (M, T ) satisfies the locally standard property, (G/K1, T ′)
is also locally standard.

Moreover, G/K1 is a fixed pointwise connected component of MT ′′ (see the
proof of Lemmal 3.2). In other wards, G/K1 can be constructed by an intersection
of some characteristic submanifolds Mi, i.e., G/K1 = ∩Mi. Because (M, T ) is
a quasitoric manifold, an orbit space Mi/T of a characteristic submanifold Mi

corresponds with a facet in M/T , i.e., a codimension 1 subface in a simple convex
polytope M/T . Hence, (G/K1)/T is a subface of M/T , and it becomes a simple
convex polytope. Thus, G/K1 is a quasitoric manifold.

If all p ∈ MT are included in G/K1, then the convex hull of MT and (G/K1)T

must be same, that is, M/T = (G/K1)/T . This gives a contradiction to dimensions
of M/T and (G/K1)/T . Hence, both two singular orbits G/K1 and G/K2 contain
fixed points of (M, T ), and we have that G/K2 is also a quasitoric manifold by the
same argument for G/K1. ¤
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This Lemma 3.3 does not hold for all torus manifolds, the following two exam-
ples give a simple difference between quasitoric manifolds and torus manifolds.

Example 3.4. Let (M, T ) = (CP (2), T 2) be the torus manifold defined by the
standard multiplication of T 2 on the last two coordinates in [z0 : z1 : z2] ∈ CP (2)
(also see [17, Example 2.2]). This torus manifold has a codimension 1 extended
G = PU(2) × T 1-action: for [z0 : z1 : z2] ∈ CP (2), PU(2) = U(2)/Z(U(2))
acts on the first two coordinates (z0, z1) by the canonical multiplication where
Z(U(2)) is the center of U(2); and T 1 also acts on the third coordinate z2 by the
canonical multiplication. Now we can easily check (M, T ) is a quasitoric manifold
(also see the left “triangle” in Figure 2), and (M, G) has codimension 1 orbits
G([1 : 0 : 1]) ∼= CP (1) × S1 and two singular orbits G([1 : 0 : 0]) ∼= CP (1) and
G([0 : 0 : 1]) ∼= {∗} (one point). We can also check both singular orbits are
quasitoric manifolds (also see Lemma 3.3).

Example 3.5. Let (M, T ) = (S4, T 2) be the torus manifold defined by the
standard multiplication of T 2 = SO(2) × SO(2) on S4 ∩ R4, where S4 ⊂ R ⊕ R4

(also see [17, Example 2.3]). This torus manifold has a codimension 1 extended
G = SO(3) × T 1-action: for (x, y) ∈ S4 ⊂ R3 ⊕ R2, SO(3) canonically acts on
x ∈ R3; and T 1 ' SO(2) also acts on y ∈ R2 canonically. Now we can check
(M, T ) is not a quasitoric manifold because its orbit space is not a convex polytope
(see the right “half-moon” in Figure 2, this half-moon is not a convex polytope),
and (M, G) has codimension 1 orbits G(e1, f1) ∼= S2 × S1 and two singular orbits
G(e1, 0) ∼= S2 and G(0, f1) ∼= S1, where e1 = (1, 0, 0) ∈ R3 and f1 = (1, 0) ∈ R2.
We can easily check S1 is not a torus manifold because its dimension is not even.
Hence, Lemma 3.3 does not hold in this case.

The Figure 2 shows the difference of the quasitoric manifold and the torus
manifold in the above Examples 3.4 and 3.5.

Figure 2. This is an image of a reason why Lemma 3.3 does not
hold for all torus manifolds, and which submanifolds correspond to
singular orbits. The left triangle shows the orbit space CP (2)/T 2,
the right half-moon also shows the orbit space S4/T 2, and interval
shows the orbit space of CP (2)/(PU(2)×T 1) and S4/(SO(3)×T 1).

We also remark the following example:

Example 3.6. Let (S4, T 2) be a torus manifold defined in Example 3.5. Then
we may naturally define the product of two copies (S4 × S4, T 2 × T 2), and this
is a torus manifold with 4 fixed points. If N and S denote the 2 fixed points in
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(S4, T 2), then the 4 fixed points in (S4×S4, T 2×T 2) can be denoted as (N, N),
(N, S), (S, N) and (S, S).

Let Z2 be the group generated by (−I5, −I5), where −I5 is the antipodal
involution on S4 ⊂ R5 and I5 is the identity map on R5. We remark that −I5 does
not preserve an orientation on S4; however, (−I5, −I5) preserves an orientation on
S4 × S4. Now we may consider the following manifold

(S4 × S4)/Z2 = S4 ×Z2 S4.

Since (−I5, −I5) preserves an orientation of S4 × S4 and (−I5, −I5) commutes
with T 2 × T 2-action on S4 × S4, we have that S4 ×Z2 S4 is an oriented manifold
equipped with T 2 × T 2-action induced from (S4 × S4, T 2 × T 2). Moreover, there
are 2 fixed points denoted by [N : N ] = [S : S] and [N : S] = [S : N ]. Therefore,
(S4 ×Z2 S4, T 2 × T 2) is a torus manifold (also see Theorem 2.3).

This action extends to the canonical G = SO(5) × SO(4)-action on S4 ×Z2

S4. Then we have the following three orbit types: G([e1 : e1]) = (SO(5) ×
SO(4))/(SO(4)×SO(4)) = S4; G([e1 : e2]) ∼= (SO(5)×SO(4))/(SO(4)×SO(3)×
Z2) ∼= S4 ×Z2 S3; and G([e1 : e1 + e2]) = (SO(5) × SO(4))/(SO(4) × SO(3)) =
S4 × S3. Here, e1, · · · , e5 are the canonical basis of R5. Therefore, in this case
there are one singular orbit S4, principal orbits S4 × S3, and the exceptional orbit
S4 ×Z2 S3.

From the above Example 3.6, we know that there is a case which has an excep-
tional orbit in (M, G). However, in this paper, we do not need to deal with such
kind of actions (we will discuss with such actions in the next paper [18]) by the
assumption that our manifold M is simply connected and Theorem 2.6 (see Section
4).

3.3. Singular orbit G/K1. Next we study more precise structures of a sin-
gular orbit by making use of Theorem 2.3, i.e., the classification result for homo-
geneous torus manifolds. Let (M, G) be a codimension 1 extended G-action of a
torus manifold (M, T ), and let (G/K1, T ) be one of the singular orbits through
T -fixed points on M . By (3.1), we see that G and K1 have the same maximal torus
T . Moreover, by Lemma 3.2, there is some subtorus T ′ ⊂ T such that (G/K1, T ′)
is a torus manifold.

By the argument of Section 2.2, (M, G) is essentially isomorphic to (M, G̃),
where G̃ is a product of connected, compact, simple Lie groups. Let p : G̃ → G be a
finite projection in (2.1), and let K̃1 (resp. T̃ ) be the identity component of p−1(K1)
(resp. p−1(T )). We note that p(K̃1) = Ko

1 , p(T̃ ) = T and G̃/K̃1
∼= G/Ko

1 induced
by p, where Ko

1 is the identity component of K1. Let G′′1 be the same factors in G̃

and K̃1. By the proof of Lemma 3.2, there are the following decompositions:

T̃ = T ′1 × T ′′1 ⊂ K̃1 = K ′
1 ×G′′1 ⊂ p−1(K1) = H ′

1 ×G′′1 ⊂ G̃ = G′1 ×G′′1

such that the identity component of H ′
1 is K ′

1.
Now (G′1/H ′

1, T ′1) is a torus manifold. Therefore, we have from Theorem 2.3,

G′1 =
∏a

i=1 SU(li + 1)×∏b
j=1 SO(2mj + 1) and H ′

1 =
∏a

i=1 S(U(1)× U(li))× S,

where we may take S as the following subgroup:
∏b

j=1 SO(2mj) ⊂ S ⊂
(∏b

j=1 S(O(1)×O(2mj))
)
,
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such that the manifold
∏b

j=1 SO(2mj + 1)/S has an orientation.
In summary, we have the following proposition by Theorem 2.3.

Proposition 3.7. Suppose that a torus manifold (M, T ) extends to a codi-
mension 1 extended action. Then this codimension 1 extended action is essentially
isomorphic to (M, G), such that its singular orbit G/K1 which contains one of the
fixed points MT can be denoted as follows:

G = G′1 ×G′′1 , Ko
1 = K ′

1 ×G′′1 and K1 = H ′
1 ×G′′1 ,

where G′′1 is a product of compact, connected, simple Lie groups or tori, and
(G′1, K ′

1, H ′
1) is

G′1 =
a∏

i=1

SU(li + 1)×
b∏

j=1

SO(2mj + 1),

K ′
1 =

a∏

i=1

S(U(li)× U(1))×
b∏

j=1

SO(2mj),

H ′
1 =

a∏

i=1

S(U(li)× U(1))× S,

where
∑a

i=1 li +
∑b

j=1 mj = n− rank G′′1 .

4. Assumptions and structures of two singular orbits

In the remainder of the paper, we assume (M, T ) is a torus manifold, where
M is simply connected. Because M is simply connected, we have H1(M ; Z2) = 0.
Hence, by Theorem 2.6, a codimension 1 extended action has just two singular
orbits. Moreover, by the argument of Section 2.2, we may only consider that
a codimension 1 extended action (M, G) such that G is a product of compact,
connected, simple Lie groups, up to essential isomorphism.

Because of Lemma 3.1, one of the singular orbit has T -fixed points. Thus, we
need to discuss the following two cases:

• both of two singular orbits contain Tn-fixed points (see e.g. Example 3.4);
• one singular orbit contains all Tn-fixed points, but the other singular orbit

has no Tn-fixed points (see e.g. Example 3.5).
In this paper, we only discuss the first case, i.e., both singular orbits contain Tn-
fixed points. Moreover, we assume two singular orbits are simply connected. In
order to classify quasitoric manifolds with codimension 1 extended G-actions, it is
enough to classify such torus manifolds, by using Lemma 3.3 in this paper and [6,
Corollary 3.9], i.e., the fact that quasitoric manifolds are simply connected.

In this case, Proposition 3.7 holds for two singular orbits. Because G/K1

and G/K2 are simply connected, we also have K1 = Ko
1 and K2 = Ko

2 . Since
SU(2)/S(U(1)×U(1)) ∼= SO(3)/SO(2) ∼= S2, we can regard S2 = SU(2)/S(U(1)×
U(1)) if there is an S2 factor in G/Ks. It follows that we can assume mj ≥ 2 for all
j = 1, · · · , b in Proposition 3.7. In summary, we have the following proposition.

Proposition 4.1. If two singular orbits G/K1 and G/K2 contain Tn-fixed
points and they are simply connected, then there are the following decompositions:
for s = 1, 2,

G = G′s ×G′′s , Ks = Ko
s = K ′

s ×G′′s ,
12



where G′′s is a product of simply connected, compact, simple Lie groups or tori, and

G′1 =
a∏

i=1

SU(li + 1)×
b∏

j=1

SO(2mj + 1), K ′
1 =

a∏

i=1

S(U(li)× U(1))×
b∏

j=1

SO(2mj);

G′2 =
c∏

i=1

SU(l′i + 1)×
d∏

j=1

SO(2m′
j + 1), K ′

2 =
c∏

i=1

S(U(l′i)× U(1))×
d∏

j=1

SO(2m′
j),

where
∑a

i=1 li +
∑b

j=1 mj = n− rank G′′1 , and
∑c

i=1 l′i +
∑d

j=1 m′
j = n− rank G′′2 ,

and mj , m′
j ≥ 2. Furthermore, for the maximal torus subgroup T ′s ⊂ T of G′s and

K ′
s, (G′s/K ′

s, T ′s) is a simply connected torus manifold.

From the next section, we start with classifying codimension 1 extended G-
actions of torus manifolds which satisfy the above assumptions.

5. Tubular neighborhoods of singular orbits

From the previous section, we assume that M is a simply connected torus
manifold and two singular orbits G/K1 and G/K2 are also simply connected torus
manifolds: we have already known structures of G/Ks in Proposition 4.1 (s = 1, 2).
As the next step of the classification, we will investigate tubular neighborhoods of
singular orbits by computing slice representations (see Theorem 2.7). In order to
compute slice representations, we first prepare some fact.

5.1. Preparation. Because a singular orbit G/Ks is a torus manifold, we can
define its dimension as 2ks = dim M − dim G/Ks, i.e.,

dimG/Ks = 2n− 2ks

for s = 1, 2 and ks ≥ 1.
By the slice theorem, we also know that a tubular neighborhood Xs of G/Ks

is as follows:

Xs
∼= G×Ks D2ks

such that Ks acts on D2ks by the slice representation

σs : Ks → O(2ks).

Since (M, G) has a codimension 1 principal orbits, we also have that Ks acts
transitively on a sphere S2ks−1 ⊂ D2ks through this slice representation σs : Ks →
O(2ks), and a principal isotropy subgroup of Ks-action on D2ks is isomorphic to
a principal isotropy subgroup of (M, G). Hence, the slice representation can be
computed using the classification of transitive actions on spheres.

5.2. Transitive actions on sphere. The transitive actions on spheres were
studied by Borel, Montgomery and Samelson, and Poncet, and the following results
are proved in a series of the papers [2, 23, 27].

Theorem 5.1. Let G be a compact, connected Lie group acting effectively and
transitively on a homotopy sphere Σk and H be the isotropy subgroup, namely,
G/H ∼= Σk. Then there always exists a simple normal subgroup G1 of G that is
already transitive on Σk, i.e., G1/(G1 ∩H) = Σk.

Theorem 5.2. Let G1 be a one of the simple groups in G such that G1/H1
∼=

Σk. Then we have that:
13



• if k is even, G1 = SO(k + 1) or the exceptional Lie group G2 in the case
k = 6;

• if k = 2l − 1 and l odd, G1 = SO(k + 1) or SU(l);
• if k = 2l − 1 and l even, G1 = SO(k + 1), SU(l), Sp(l/2), Spin(9) (in

the case k = 15, l = 8), or Spin(7) (in the case k = 7, l = 4).

As we may check easily in each of the above cases, we have a unique embedding
of G1 into SO(k + 1) such that G1 ∩ SO(k) = H1. Hence, Σk is diffeomorphic to
the standard sphere Sk.

Theorem 5.3. Let G1(⊂ G) be the simple subgroup in Theorem 5.2. Then
G1 ⊂ G ⊂ N(G1)o ⊂ SO(k + 1), where N(G1)o is the identity component of the
normalizer of G1 in SO(k + 1), and the following holds.

• In cases G1 = SO(k +1), G2 (k = 6), Spin(7) (k = 7, l = 4), or Spin(9)
(k = 15, l = 8), we have that N(G1)o = G1, hence G1 = G.

• In the case G1 = SU(l), we see that N(G1)o = U(l), hence we may have
either G = G1 or U(l).

• In the case G1 = Sp( l
2 ), N(G1)o is the subgroup of SO(k + 1) generated

by Sp( l
2 ), and the S3-subgroup realized as right multiplications of unit

quaternions, As a group, N(Sp( l
2 ))o is isomorphic to Sp( l

2 )×Z2 S3, where
Z2 is the subgroup generated by (−Id, −1). Hence, G is either Sp( l

2 ) or
Sp( l

2 )×Z2 S1 or Sp( l
2 )×Z2 S3.

The above results are also referred in the paper [12].
In particular, we see the following results from the above theorems.

Corollary 5.4. Assume the connected subgroup H in O(2l) acts on S2l−1

transitively and its rank is l, i.e., rank H = l. Then H ' U(l) or SO(2l) in O(2l).

In the next Section 5.3, we will discuss about slice representations.

5.3. Slice representations (rough structures). By Lemma 3.2 and the
assumptions in Section 4, two singular isotropy subgroups can be denoted as Ks =
Gp (s = 1, 2) for some fixed point p ∈ MT . From the argument in Section 3.3,
there are the following decompositions for this given p ∈ MT :

G = G′s ×G′′s ⊃ Ks = Ko
s = K ′

s ×G′′s ⊃ T = T ′s × T ′′s ,(5.1)

where G′s and G′′s are products of compact, connected, simple Lie groups and tori,
and T ′s and T ′′s are their maximal tori. Then a slice representation is as follows:

σs : Ks = K ′
s ×G′′s → SO(2ks) ⊂ O(2ks).

Remark that we can take the target of the slice representation σs as SO(2ks)
because Ks is connected.

By the decomposition (5.1), we have that T ′′s is in the kernel of the T -action on
G/Ks

∼= G′/K ′
s. It follows that T ′′s ⊂ G′′s acts almost effectively on the normal space

of p ∈ G/Ks∩MT . Moreover by Lemma 3.2 and Section 5.1, we have dimT ′′s = ks.
Therefore, we have σs(T ′′s ) = T ks ⊂ SO(2ks), i.e., a maximal torus of SO(2ks).

Because of the decomposition of Ks = K ′
s × G′′s , we know that K ′

s commutes
with G′′s in Ks. In particular, K ′

s also commutes with T ′′s (⊂ G′′s ). It follows that
the image σs(K ′

s) of K ′
s is in the group {g ∈ SO(2ks) | gt = tg for all t ∈ T ks}: we

remark that this group (the centralizer of T ks in SO(2ks)) is T ks itself. Therefore,
we have σs(K ′

s) ⊂ T ks . Hence, G′′s acts transitively on S2ks−1 through the slice
14



representation σs : K ′
s × G′′s → SO(2ks). Because rank σs(G′′s ) = ks = dim T ′′s =

rank G′′s , we have from Corollary 5.4:

G′′s ≈ σs(G′′s ) ' U(ks) or
SO(2ks),

where X ≈ Y means that they have the same Lie algebra. Now we may consider
that if ks = 1 then SO(2) = U(1); therefore, we may assume

G′′s = SU(ks)× T 1 or
SO(2ks) and ks ≥ 2.

Because σs(K ′
s) is also in the centralizer of σs(G′′s ), we see

σs(K ′
s) ⊂ Z(U(ks)) (if σs(G′′s ) ' U(ks)) or

σs(K ′
s) ' {e} (if σs(G′′s ) ' SO(2ks), ks ≥ 2),

where Z(U(ks)) ' T 1 is the center of U(ks), i.e., the diagonal subgroup of U(ks).
In summary, we have the following two lemmas by the above arguments and

Proposition 4.1.

Lemma 5.5. Two singular orbits G/Ks (s = 1, 2) satisfy the followings:

• (G, Ks) = (G′s ×G′′s , K ′
s ×G′′s );

• G′1 =
∏a

i=1 SU(li + 1)×∏b
j=1 SO(2mj + 1) and G′2 =

∏c
i=1 SU(l′i + 1)×∏d

j=1 SO(2m′
j + 1);

• K ′
1 =

∏a
i=1 S(U(li) × U(1)) ×∏b

j=1 SO(2mj) and K ′
2 =

∏c
i=1 S(U(l′i) ×

U(1))×∏d
j=1 SO(2m′

j);
• G′′s ≈ SU(ks)× T 1 or SO(2ks) and ks ≥ 2.

Furthermore, mj , m′
j ≥ 2.

Lemma 5.6. Two slice representations σs : Ks = K ′
s × G′′s → SO(2ks) (s =

1, 2) satisfy the following list:

G′′s σs(G′′s ) σs(K ′
s)

(1) SU(ks)× T 1 U(ks) ⊂ SO(2ks) Z(U(ks)) ' T 1 ⊂ U(ks) ⊂ SO(2ks)
(2) SO(2ks) SO(2ks) {e} ⊂ SO(2ks)

where the right list means σs(K ′
s) ⊂ Z(U(ks)) for (1) and σs(K ′

s) = {e} (identity)
for (2).

6. Possibility for G, K1, K2

In this section we shall give a possibility for a transformation Lie group G and
two singular isotropy subgroups K1, K2.

6.1. Decomposition of G. We first remark that the decompositions of G in
Lemma 5.5 depends on s = 1, 2, i.e., two decompositions G′1×G′′1 and G′2×G′′2 may
not be the same decomposition. However, for all compact Lie groups G, there is
an unique covering G̃ consists of the product of simply connected, simple Lie group
and tori. Therefore, the coverings of two G’s for s = 1, 2 are the same coverings.
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Using Lemma 5.5 and the relation G̃ = G̃′1 × G̃′′1 = G̃′2 × G̃′′2 , we know that G̃
satisfies
a∏

i=1

SU(li + 1)×
b∏

j=1

Spin(2mj + 1)×X =
c∏

i=1

SU(l′i + 1)×
d∏

j=1

Spin(2m′
j + 1)× Y,

where (X, Y ) is one of the followings:
(1) (X, Y ) = (SU(k1)× T 1, SU(k2)× T 1);
(2) (X, Y ) = (Spin(2k1), Spin(2k2)), and k1, k2 ≥ 2;
(3) (X, Y ) = (SU(k1)× T 1, Spin(2k2)), and k2 ≥ 2;
(4) (X, Y ) = (Spin(2k1), SU(k2)× T 1), and k1 ≥ 2.

Note that mj , m′
j ≥ 2.

Comparing left and right sides of the above equations from (1) to (4), we will
find a possibility for G.

6.2. The cases (3) and (4). In this subsection, we shall prove that the above
two cases (3) and (4) do not occur.

In the case (4), if we change the role of k1 and k2 then it is the same as the
case (3). Hence, we can regard the last two cases (3) and (4) as the same cases.

First, we remark the following well-known lemma.

Lemma 6.1. The following three statements hold:
• if Spin(2m) ' SU(m + 1), then m = 3 and Spin(6) ' SU(4);
• if Spin(2m + 1) ' SU(m + 1), then m = 1 and Spin(3) ' SU(2);
• Spin(4) ' SU(2)× SU(2).

For the other m in Lemma 6.1, there are no isomorphisms between Spin(2m)
(or Spin(2m+1)) and SU(m+1), because their dimensions are different. Therefore,
for each case from (1) to (4), we can regard

b = d and Spin(2mj + 1) = Spin(2m′
j + 1),

because mj , m′
j ≥ 2. In particular, we can regard SO(2mj + 1) = SO(2m′

j + 1)
for j = 1, · · · , b in Lemma 5.5.

Hence, for the equation (3), we have
a∏

i=1

SU(li + 1)× SU(k1)× T 1 =
c∏

i=1

SU(li + 1)× Spin(2k2).

It follows that Spin(2k2) = T 1, i.e., k2 = 1. However, we can assume ks ≥ 2 for
Spin(2ks). Hence, this case does not occur, and the equation (4) also does not
occur because we can regard (3) and (4) are the same cases.

6.3. The case (2). Suppose the equation (2). If Spin(2k1) = Spin(2k2), then
we have that k1 = k2, a = c and li = l′i for all i = 1, · · · , a (we call this case the
case (2)− (a)).

If Spin(2k1) 6= Spin(2k2), then there are the following four cases using Lemma
6.1:

(b): if Spin(2k1) = SU(l′c+1), (k1, l′c) = (3, 3) and Spin(2k2) = SU(la+1),
(k2, la) = (3, 3), then we have that a = c and li = l′i for all i = 1, · · · , a−
1 (the case (2)− (b));
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(c): if Spin(2k1) = SU(l′c +1), (k1, l′c) = (3, 3) and Spin(2k2) = SU(la−1+
1) × SU(la + 1), (k2, la−1, la) = (2, 1, 1), then we have that a = c + 1
and li = l′i for all i = 1, · · · , a− 2(= c− 1) (the case (2)− (c));

(d): if Spin(2k1) = SU(l′c−1 + 1) × SU(l′c + 1), (k1, l′c−1, l′c) = (2, 1, 1)
and Spin(2k2) = SU(la−1 + 1) × SU(la + 1), (k2, la−1, la) = (2, 1, 1),
then we have that a = c and li = l′i for all i = 1, · · · , a − 2 (the case
(2)− (d));

(e): if Spin(2k1)∩Spin(2k2) 6= {e}, that is, Spin(2k1) = SU(l′c+1)×SU(2),
(k1, l′c) = (2, 1) and Spin(2k2) = SU(la + 1)× SU(2), (k2, la) = (2, 1)
(Spin(2k1)∩Spin(2k2) = SU(2)), then we have that a = c and li = l′i for
all i = 1, · · · , a− 1 also hold (the case (2)− (e)).

In this subsection, we shall prove that these cases (from (2) − (b) to (2) − (e)) do
not occur. Before we prove this fact, we give the following remark.

Remark 6.2. Because G′′s acts transitively on the boundary of the slice, we can
take the principal isotropy subgroup as K = σ−1

s (SO(2ks − 1)) ⊂ K1 ∩K2. Hence,
we can regard the subgroups SO(2mj), S(U(li) × U(1)) ⊂ K1, K2 in Lemma 5.5
as the same subgroup in G by conjugating K1 and K2 in G, that is, they are in
K1 ∩K2.

Suppose that the case (2)− (b) occurs. Using Lemma 5.5, the above arguments
and Remark 6.2, we have that

• G =
∏b

j=1 SO(2mj + 1)×∏a−1
i=1 SU(li + 1)× SU(4)× SU(4),

• K1 =
∏b

j=1 SO(2mj)×
∏a−1

i=1 S(U(li)×U(1))× SU(4)× S(U(3)×U(1)),

• K2 =
∏b

j=1 SO(2mj)×
∏a−1

i=1 S(U(li)×U(1))× S(U(3)×U(1))× SU(4),

where ks = 3, dim G/Ks = 2n− 2ks = 2n− 6 and we identify Spin(2ks) as SU(4).
By Lemma 5.6, for the slice representation σs : Ks → SO(2ks) = SO(6), we have
that

σs(Spin(2ks)) = σs(SU(4)) = SO(6).

Because σs(Ks) = SO(6) acts transitively on the sphere S5 ∼= SO(6)/SO(5) ∼=
Ks/K, the restricted representation σs|Spin(2ks) is the double covering Spin(6) to
SO(6) by Theorem 5.2. Hence, we have that the following conjugation in G by
K ≡ σ−1

s (SO(5)):

σ−1
1 (SO(5)) =

b∏

j=1

SO(2mj)×
a−1∏

i=1

S(U(li)× U(1))× Spin(5)× S(U(3)× U(1))

≡ σ−1
2 (SO(5)) =

b∏

j=1

SO(2mj)×
a−1∏

i=1

S(U(li)× U(1))× S(U(3)× U(1))× Spin(5).

Moreover, we see that Spin(5) × S(U(3) × U(1)) ⊂ σ−1
1 (SO(5)) and S(U(3) ×

U(1))×Spin(5) ⊂ σ−1
2 (SO(5)) are conjugate in SU(4)×SU(4) ⊂ G. In particular,

Spin(5) × {I4} and S(U(3) × U(1)) × {I4} are conjugate in SU(4) × {I4}. This
gives a contradiction, because dim Spin(5) = 10 6= dim S(U(3)×U(1)) = 9. Hence,
the case (2)− (b) does not occur.

For the other cases (2)− (c) to (2)− (e), we can similarly prove that these cases
do not occur.

Hence, the case (2)− (a) only occurs for the equation (2).
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6.4. The case (1) and the summary. Suppose the equation (1). If SU(k1) =
SU(k2), then we have that k1 = k2, a = c and li = l′i for all i = 1, · · · , a (we call
this case the case (1)− (a)).

If SU(k1) 6= SU(k2), then we can put SU(la + 1) = SU(k2), SU(l′a + 1) =
SU(k1), a = c and li = l′i for all i = 1, · · · , a − 1 (we call this case the case
(1) − (b)). Therefore, there are two cases (1) − (a) and (1) − (b) for the equation
(1).

Hence, we have the following lemma by the above arguments, Lemma 5.5 and
Remark 6.2.

Lemma 6.3. If (M, G) is a codimension one extended action of a simply con-
nected torus manifold and its two singular orbits are simply connected torus mani-
folds, then the compact connected Lie group G =

∏b
j=1 SO(2mj + 1)× Ĝ, and two

singular isotropy subgroups K1 =
∏b

j=1 SO(2mj)× K̂1 and K2 =
∏b

j=1 SO(2mj)×
K̂2, where Ĝ, K̂1 and K̂2 are one of the followings:

(1) (a) Ĝ =
∏a

i=1 SU(li + 1)× SU(k)× T 1,
K̂1 = K̂2 =

∏a
i=1 S(U(li)× U(1))× SU(k)× T 1,

where dim G/Ks = 2n− 2k and k ≥ 1;
(b) Ĝ =

∏a−1
i=1 SU(li + 1)× SU(k1)× SU(k2)× T 1,

K̂1 =
∏a−1

i=1 S(U(li)× U(1))× SU(k1)× S(U(k2 − 1)× U(1))× T 1,
K̂2 =

∏a−1
i=1 S(U(li)× U(1))× S(U(k1 − 1)× U(1))× SU(k2)× T 1,

where dim G/Ks = 2n− 2ks and ks ≥ 1;
(2) (a) Ĝ =

∏a
i=1 SU(li + 1)× SO(2k),

K̂1 = K̂2 =
∏a

i=1 S(U(li)× U(1))× SO(2k),
where dim G/Ks = 2n− 2k and k ≥ 2,

where SO(2mj), S(U(li)× U(1)) ⊂ K1 ∩K2.

In order to give a complete classification of G, K1 and K2, we study precise
structures of slice representations for all cases (1) − (a), (1) − (b) and (2) − (a) in
Lemma 6.3, in the next Section 7 and 8.

7. Possibility for K and slice representations

In this section, we shall compute the slice representations for each cases in
Lemma 6.3.

First we prepare the following notation:

(t1, · · · , ta) =
((

A1 0
0 t1

)
, · · · ,

(
Aa 0
0 ta

))
∈

a∏

i=1

S(U(li)× U(1)),

where Ai ∈ U(li) and det A−1
i = ti.

7.1. Slice representations and K for the case (1)−(a). In this subsection,
we study the slice representations for the case (1)− (a) in Lemma 6.3, that is,

• G =
∏b

j=1 SO(2mj + 1)×∏a
i=1 SU(li + 1)× SU(k)× T 1,

• K1 = K2 =
∏b

j=1 SO(2mj)×
∏a

i=1 S(U(li)× U(1))× SU(k)× T 1,
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where dim G/Ks = 2n− 2k and k ≥ 1. By Lemma 5.6, for the slice representation
σs : Ks → U(k) ⊂ SO(2k), we have that

σs(S(U(li)× U(1))) = {I2k} or Z(U(k)) ⊂ U(k) for all i = 1, · · · , a,

σs(SU(k)× T 1) = U(k).

Because σs(S(U(li)× U(1))) ⊂ Z(U(k)) for all i = 1, · · · , a and the diagonal
subgroup Z(U(k)) ⊂ U(k) is the abelian group, we have that

σs

(
Ai 0
0 ti

)
= tωi Ik ∈ Z(U(k)) ⊂ U(k),

where Ai ∈ U(li), ti = det A−1
i ∈ U(1), ω ∈ Z and Ik ∈ U(k) is the identity matrix.

Hence, the image of
∏a

i=1 S(U(li)× U(1))× SU(k)× T 1 is as follows:

σ1 ((t1, · · · , ta), A, t) = tα1
1 · · · tαa

a tαA ∈ U(k),(7.1)

σ2 ((t1, · · · , ta), A, t) = tβ1
1 · · · tβa

a tβA ∈ U(k),(7.2)

where (A, t) ∈ SU(k)× T 1 and (α1, · · · , αa, α), (β1, · · · , βa, β) ∈ Za+1.
We next show a principal isotropy subgroup K. Because σs(Ks) = U(k) acts on

the sphere S2k−1 ∼= U(k)/U(k−1) ∼= Ks/K transitively, we have σ−1
s (U(k−1)) ≡ K

(conjugation in G) for s = 1, 2. Hence, the following conjugation holds:

σ−1
1 (U(k − 1)) =

{(
(t1, · · · , ta),

(
X 0
0 x

)
, t

) ∣∣∣∣∣ x−1 = det X = tα1
1 · · · tαa

a tα

}

≡ σ−1
2 (U(k − 1)) =

{(
(t1, · · · , ta),

(
Y 0
0 y

)
, t

) ∣∣∣∣∣ y−1 = det Y = tβ1
1 · · · tβa

a tβ

}
,

where X, Y ∈ U(k − 1) and we omit the subgroup
∏b

j=1 SO(2mj) ⊂ kerσs ⊂ K.
In order to analyse relations between (α1, · · · , αa, α) and (β1, · · · , βa, β),

we first consider the following subgroups:

σ−1
1 (U(k − 1)) ∩ T 1 = {(e, t) | t ∈ T 1, tα = 1} ' Zα and

σ−1
2 (U(k − 1)) ∩ T 1 = {(e, t) | t ∈ T 1, tβ = 1} ' Zβ ,

where e ∈ ∏b
j=1 SO(2mj)×

∏a
i=1 S(U(li)× U(1))× SU(k) is the identity element

and Zω = {t ∈ T 1 | tω = 1} (ω ∈ Z). Since σ−1
1 (U(k−1)) ≡ σ−1

2 (U(k−1)) in G, we
have σ−1

1 (U(k − 1)) ∩ T 1 = σ−1
2 (U(k − 1)) ∩ T 1. Therefore, we have Zα ' Zβ , i.e.,

|α| = |β|. Because the slice representation σs : Ks → U(k) ⊂ O(2k) is equivalent
up to conjugate in the target group O(2k), we can put α ≥ 0 and β ≥ 0. Hence,
we have α = β. Because σs(SU(k) × T 1) = U(k), we also have α = β 6= 0, i.e.,
α = β ∈ N (i.e., natural number).

Next we consider the following subgroups:

σ−1
1 (U(k − 1)) ∩ (S(U(la)× U(1))× T 1)

=

{(
e,

(
Aa 0
0 ta

)
, t

) ∣∣∣∣∣
(

Aa 0
0 ta

)
∈ S(U(la)× U(1)), t ∈ T 1, tαa

a tα = 1

}
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and

σ−1
2 (U(k − 1)) ∩ (S(U(la)× U(1))× T 1)

=

{(
e,

(
Aa 0
0 ta

)
, t

) ∣∣∣∣∣
(

Aa 0
0 ta

)
∈ S(U(la)× U(1)), t ∈ T 1, tβa

a tβ = 1

}
,

where e ∈ ∏b
j=1 SO(2mj)×

∏a−1
i=1 S(U(li)×U(1))×SU(k) is the identity element.

Therefore, by using α = β and the above two subgroups (they are conjugate), we
have that tαa−βa

a = 1 for all ta ∈ U(1). Hence, we have αa = βa. Similarly we
can prove the equation αi = βi for all i = 1, · · · , a. Thus, we have the following
lemma.

Lemma 7.1. Let σs : Ks → SO(2k) ⊂ O(2k) be a slice representation of the
case (1) − (a). Then σ1 = σ2, and they are defined by σs(SO(2mj)) = {e} for all
j = 1, · · · , b and

σs ((t1, · · · , ta), A, t) = tα1
1 · · · tαa

a tαA ∈ U(k) ⊂ SO(2k),

where ((t1, · · · , ta), A, t) ∈ ∏a
i=1 S(U(li)×U(1))×SU(k)×T 1, (α1, · · · , αa) ∈

Za, α ∈ N and s = 1, 2.
Furthermore, we have that the principal isotropy group is K =

∏b
j=1 SO(2mj)×

K̂ in the case (1)− (a), where K̂ ⊂ ∏a
i=1 S(U(li)×U(1))×S(U(k−1)×U(1))×T 1

is as follows:
{(

(t1, · · · , ta),
(

X 0
0 x

)
, t

) ∣∣∣∣∣ x−1 = det X = tα1
1 · · · tαa

a tα

}
.

7.2. Slice representations and K for the case (1)−(b). In this subsection,
we study the slice representations for the case (1)− (b) in Lemma 6.3, that is,

• G =
∏b

j=1 SO(2mj + 1)×∏a−1
i=1 SU(li + 1)× SU(k1)× SU(k2)× T 1,

• Ks =
∏b

j=1 SO(2mj)×
∏a−1

i=1 S(U(li)× U(1))× SU(ks)× S(U(kr − 1)×
U(1))× T 1,

where s + r = 3 (s, r ≥ 1), dim G/Ks = 2n− 2ks and ks ≥ 1. By Lemma 5.6, we
have for the slice representation σs : Ks → U(ks) ⊂ SO(2ks):

σs(S(U(li)× U(1))) = {I2ks} or Z(U(ks)) ⊂ U(ks) for all i = 1, · · · , a− 1;
σs(S(U(kr − 1)× U(1))) = {I2ks} or Z(U(ks)) ⊂ U(ks);
σs(SU(ks)× T 1) = U(ks).

Because of a similar reason for (7.1) and (7.2) in Section 7.1, the images of∏a−1
i=1 S(U(li)×U(1))×SU(ks)×S(U(kr− 1)×U(1))×T 1 of slice representations

are as follows:

σ1

(
(t1, · · · , ta−1), A,

(
X 0
0 x

)
, t

)
= tα1

1 · · · tαa−1
a−1 xαatαA ∈ U(k1);

σ2

(
(t1, · · · , ta−1),

(
Y 0
0 y

)
, B, t

)
= tβ1

1 · · · tβa−1
a−1 yβatβB ∈ U(k2),

where (A, t) ∈ SU(k1) × T 1, X ∈ U(k2 − 1), det X−1 = x ∈ U(1) and (B, t) ∈
SU(k2)× T 1, Y ∈ U(k1 − 1), det Y −1 = y ∈ U(1).
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We next show a principal isotropy subgroup K. Because σs(Ks) = U(ks) acts
on the sphere S2ks−1 ∼= U(ks)/U(ks−1) ∼= Ks/K transitively, we have σ−1

s (U(ks−
1)) ≡ K (conjugation in G) for s = 1, 2. Hence, the following conjugation holds:

σ−1
1 (U(k1 − 1))

=

{(
(t1, · · · , ta−1),

(
C 0
0 c

)
,

(
X 0
0 x

)
, t

) ∣∣∣∣∣ c−1 = det C = tα1
1 · · · tαa−1

a−1 xαatα

}

≡ σ−1
2 (U(k2 − 1))

=

{(
(t1, · · · , ta−1),

(
Y 0
0 y

)
,

(
D 0
0 d

)
, t

) ∣∣∣∣∣ d−1 = det D = tβ1
1 · · · tβa−1

a−1 yβatβ

}
,

where C ∈ U(k1 − 1), D ∈ U(k2 − 1) and we omit the subgroup
∏b

j=1 SO(2mj) ⊂
kerσs ⊂ K. Therefore, we may assume the following equations:

c = y; d = x,(7.3)

because the subgroup S(U(k1−1)×U(1))×S(U(k2−1)×U(1)) ⊂ σ−1
1 (U(k1−1))

coincides with the subgroup S(U(k1−1)×U(1))×S(U(k2−1)×U(1)) ⊂ σ−1
2 (U(k2−

1)) up to conjugate in SU(k1)× SU(k2) ⊂ G.
We can similarly prove α = β > 0 and αi = βi for all i = 1, · · · , a − 1 like

the case (1)− (a) in Section 7.1, by analysing σ−1
s (U(ks− 1))∩T 1 and σ−1

s (U(ks−
1)) ∩ (S(U(li)× U(1))× T 1).

Moreover, we have the following equation using the above σ−1
1 (U(k1 − 1)) ≡

σ−1
2 (U(k2 − 1)):

tα1
1 · · · tαa−1

a−1 xαatαc = tβ1
1 · · · tβa−1

a−1 yβatβd.

Therefore, we have the equation xαa−1 = yβa−1 by using αi = βi (i = 1, · · · , a−1),
α = β and Eq. (7.3). This equation holds for all x, y ∈ U(1); therefore, we have
αa = βa = 1. Hence, we have the following lemma.

Lemma 7.2. Let σs : Ks → SO(2ks) ⊂ O(2ks) be a slice representation of the
case (1)− (b). Then σs is defined by σs(SO(2mj)) = {e} for all j = 1, · · · , b and

σs

(
(t1, · · · , ta−1), A,

(
X 0
0 x

)
, t

)
= tα1

1 · · · tαa−1
a−1 xtαA ∈ U(ks) ⊂ SO(2ks),

where (t1, · · · , ta−1) ∈
∏a−1

i=1 S(U(li)×U(1)), A ∈ SU(ks), t ∈ T 1, X ∈ U(kr−1),
x = det X−1, (α1, · · · , αa−1) ∈ Za−1, α ∈ N and s + r = 3 (s, r ≥ 1).

Furthermore, we have that the principal isotropy group is K =
∏b

j=1 SO(2mj)×
K̂ in the case (1)− (b), where K̂ ⊂ ∏a−1

i=1 S(U(li)×U(1))×S(U(k1− 1)×U(1))×
S(U(k2 − 1)× U(1))× T 1 is as follows:
{(

(t1, · · · , ta−1),
(

Y 0
0 y

)
,

(
X 0
0 x

)
, t

) ∣∣∣∣∣ tα1
1 · · · tαa−1

a−1 xytα = 1

}
.

7.3. Slice representations and K for the case (2)−(a). In this subsection,
we study the slice representations and a principal isotropy subgroup K for the case
(2)− (a) in Lemma 6.3, that is,

• G =
∏b

j=1 SO(2mj + 1)×∏a
i=1 SU(li + 1)× SO(2k),

• K1 = K2 =
∏b

j=1 SO(2mj)×
∏a

i=1 S(U(li)× U(1))× SO(2k),
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where dim G/Ks = 2n − 2k and k ≥ 2. By Lemma 5.6, we have that the slice
representation σs : Ks → SO(2k) satisfies

σs(SO(2k)) = SO(2k)

and other factors are trivial. Therefore we have the following lemma.

Lemma 7.3. Let σs : Ks → SO(2k) ⊂ O(2k) be a slice representation of the
case (2)− (a). Then σ1 = σ2, and σs are defined by

σs(SO(2mj)) = σs(S(U(li)× U(1))) = {I2k} for all j and i,

σs|SO(2k) = idSO(2k),

where σs|SO(2k) is a restricted representation of σs to SO(2k), and idSO(2k) is the
identity representation, where k ≥ 2.

Furthermore, we have that the principal isotropy group in the case (2)− (a) is
as follows:

K =
b∏

j=1

SO(2mj)×
a∏

i=1

S(U(li)× U(1))× SO(2k − 1).

Proof. Because σs(Ks) = SO(2k) acts transitively on the sphere S2k−1 ∼=
SO(2k)/SO(2k − 1) ∼= Ks/K, we see that the restricted representation σs|SO(2k)

is the identity. Because SO(2mj) and S(U(li) × U(1)) (for all j = 1, · · · , b and
i = 1, · · · , a) commute with SO(2k) in Ks and k ≥ 2, we also have σs(SO(2mj)) =
σs(S(U(li)×U(1))) = {I2k}. Hence, the slice representation σs of (2)−(a) is unique
for s = 1, 2. It follows the first statement of this lemma.

Because K ≡ σ−1
s (SO(2k − 1)), S2k−1 ∼= SO(2k)/SO(2k − 1) ∼= Ks/K and

σs|SO(2k) is the identity, we also have the second statement of this lemma. ¤

8. Attaching maps from ∂X1 to ∂X2 and constructions of G-manifolds

In this final section for our classification, we devote to study attaching maps
from ∂X1 to ∂X2, and construct the G-manifolds for each cases (1)− (a), (1)− (b)
and (2)− (a) in Lemma 6.3.

8.1. Preparation. Because of Theorem 2.6, we see ∂X1 = ∂X2 = G/K, that
is, ∂Xs is a codimension 1 principal orbit. Hence, the attaching map f can be
taken from the G-equivariant automorphism group AutG(G/K) on G/K. As is
well known, there is the following isomorphism:

AutG(G/K) ' N(K; G)/K,(8.1)

where N(K; G) is the normalizer of K in G (see [13]).
Attaching two boundaries ∂X1 and ∂X2 by f ∈ N(K; G)/K, we can construct

a G-manifold, and such manifold is denoted by

M(f) = X1 ∪f X2.(8.2)

In order to check that M(f) and M(f ′) are equivariantly diffeomorphic or not
for two attaching maps f and f ′, the following lemma is useful (see [28, Lemma
5.3.1]).

Lemma 8.1. Let f, f ′ : ∂X1 → ∂X2 be G-equivariant diffeomorphisms, where
∂Xi means a boundary of Xi. Then M(f) is equivariantly diffeomorphic to M(f ′)
as G-manifolds, if one of the following conditions are satisfied:
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(1) f is G-diffeotopic to f ′;
(2) f−1f ′ is extendable to a G-equivariant diffeomorphism on X1;
(3) f ′f−1 is extendable to a G-equivariant diffeomorphism on X2.

As in [9], we call this lemma the Uchida’s criterion.
Because of the Uchida’s criterion (1), we do not need to compute (8.1). Instead,

for attaching maps, we may compute

N(K; G)/N(K; G)o,(8.3)

where N(K; G)o is a connected component of N(K; G).
After the criterion, we construct the G-manifolds explicitly. The following

lemma gives one of the construction methods of such G-manifolds.

Lemma 8.2. Suppose that a compact, connected Lie group H acts on a compact
manifold N with codimension one orbits H/K and two singular isotropy subgroups
K1 and K2. Then, for a compact, connected Lie group G such that G ⊃ H, a
compact, connected manifold

M = G×H N

has the natural G-action on the first factor G by the left multiplication, and this
action has codimension one orbits G/K and two singular isotropy subgroups K1

and K2.

From the next subsection 8.2, we analyse the attaching maps and construct
G-manifolds, for each cases (1)− (a), (1)− (b) and (2)− (a) in Lemma 6.3.

8.2. The case (1)−(a). First we compute the set of attaching maps N(K;G)/N(K;G)o

for the case (1) − (a) (see (8.3)), and prove this case has only one attaching map
up to G-diffeomorphism. In this case, G =

∏b
j=1 SO(2mj + 1)×∏a

i=1 SU(li + 1)×
SU(k)× T 1, and K =

∏b
j=1 SO(2mj)× K̂ where K̂ is as follows by Lemma 7.1:

{(
(t1, · · · , ta),

(
X 0
0 x

)
, t

) ∣∣∣∣∣ x−1 = det X = tα1
1 · · · tαa

a tα

}
.

Hence, we have

N(K; G)/N(K; G)o '
b∏

j=1

Z2 ×
a∏

i=1

Wli+1

because of α ∈ N, where
∏b

j=1 S(O(2mj)×O(1))/SO(2mj) '
∏b

j=1 Z2 and

Wli+1 =
{ {Ili+1} if li ≥ 2 or αi 6= 0

S2 if li = 1 and αi = 0.

Remark the above S2(' Z2) is the Weyl group of SU(2).
In order to check the Uchida’s criterion (2) or (3), we need to study a tubular

neighborhood. By the slice theorem (Theorem 2.7), the tubular neighborhood Xs
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and its boundary ∂Xs in this case is as follows:

Xs = G×Ks
D2k(8.4)

∼=
b∏

j=1

S2mj ×
(

a∏

i=1

SU(li + 1)×∏a
i=1 S(U(li)×U(1)) D(Ck)

)
;

∂Xs
∼= G×Ks (Ks/K)(8.5)

∼=
b∏

j=1

S2mj ×
(

a∏

i=1

SU(li + 1)×∏a
i=1 S(U(li)×U(1)) S(Ck)

)
,

where D(Ck)(∼= D2k) is a disk and S(Ck)(∼= S2k−1) is a sphere in Ck, and
∏a

i=1 S(U(li)×
U(1)) acts on Ck by the scalar multiplication defined by σ′s(t1, · · · , ta) = tα1

1 · · · tαa
a .

Note that the above manifold has the following G-action:

(1)
∏b

j=1 S2mj has the canonical transitive
∏b

j=1 SO(2mj + 1)-action;
(2)

∏a
i=1 SU(li + 1) has also the canonical transitive

∏a
i=1 SU(li + 1)-action

on itself;
(3) Ck has an action of SU(k) × T 1 by σ′′s (A, t) = Atα ∈ U(k) for (A, t) ∈

SU(k)× T 1.

Now we may check the Uchida’s criterion (2) or (3).
First, we take the attaching map fj(6= I2mj+1) in Z2 ' S(O(2mj)×O(1))/SO(2mj) ⊂∏b

j=1 Z2. Then this attaching map fj : ∂X1 = G/K → G/K = ∂X2 can be re-
garded as fj(gK) = gfjK, i.e., the non-trivial SO(2mj + 1)-equivariant diffeomor-
phism on the S2mj factor in ∂Xs = G/K for s = 1, 2. Let I : ∂X2 = G/K →
G/K = ∂X1 be the identity attaching map. We shall prove I ◦ fj : ∂X1 = G/K →
G/K = ∂X1 is extendable to the equivariant diffeomorphism X1 → X1. Remark
that we can identify I ◦fj : G/K → G/K as fj : G/K → G/K. Because fj = I ◦fj

induces an identity map on the S(Ck) factor in ∂X1 = G/K (see (8.5)), we have
the following commutative diagram:

∂X1 = G×K1 K1/K
π−→ G/K

Rfj × id ↓ ↓ fj

∂X1 = G×K1 K1/K
π−→ G/K

where π([g, kK]) = gkK (equivariantly diffeomorphic), id : K1/K = S(Ck) →
K1/K = S(Ck) is the identity, Rfj is the product of the map S2mj → S2mj

(involution) and identities for the other factors. Now id : K1/K ∼= S(Ck) →
S(Ck) ∼= K1/K is extendable to id : D(Ck) → D(Ck). Hence, Rfj×id is extendable
to the equivariant diffeomorphism G ×K1 D(Ck) → G ×K1 D(Ck), i.e., I ◦ fj :
∂X1 → ∂X1 is extendable to X1 → X1. Hence, we have that M(fj) ∼= M(I) for all
j = 1, · · · , b by the Uchida’s criterion (Lemma 8.1 (2)).

Next, we take the attaching map fi(6= Ili+1) in Wli+1 (when li = 1 and αi = 0).
Because αi = 0, the S(U(li)× U(1)) factor acts trivially on S(Ck) in ∂Xs. Hence,
there is a trivial product factor SU(li + 1)/S(U(li)× U(1)) ∼= CP (1) ∼= S2 in ∂Xs

(li = 1), that is, ∂Xs
∼= CP (1) × N for some manifold N , and the composition

of two attaching maps I ◦ fi : ∂Xs(∼= CP (1) × N) → ∂Xs(∼= CP (1) × N) can be
regarded as an SU(li + 1)-equivariant diffeomorphism on this CP (1) ∼= S2 factor
in ∂Xs and trivially on the other factors N . Therefore, we can similarly show
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that I ◦ fi is extendable to the G-equivariant diffeomorphism map Xs → Xs, and
M(fi) ∼= M(I) by the Uchida’s criterion (2) or (3).

Hence, the following proposition holds by the above argument and Lemma 7.1.

Lemma 8.3. For all the attaching map f : ∂X1 → ∂X2 in the case (1) − (a),
we have M(f) ∼= M(I) where I : ∂X2 → ∂X1 is the identity attaching map. In
particular, for fixed integers α1, · · · , αa and a natural number α, a G-manifold M
which satisfies the case (1)− (a) is unique up to essential isomorphism.

Hence, the case (1) − (a) is only determined by the integers α1, · · · , αa and
the natural number α which appear in the slice representation, up to essential
isomorphism. M(a) = M(α1, · · · , αa, α) denotes such manifold.

Finally we construct G-manifolds of this case (1)− (a). Using the above Xs in
(8.4) and Lemma 8.2 and 8.3, we can easily show the following manifold corresponds
with M(a) (by considering orbits of the G-action on M(a)):

b∏

j=1

S2mj ×
(

a∏

i=1

SU(li + 1)×∏a
i=1 S(U(li)×U(1)) S(Ck

a ⊕ R)

)
,

where S(Ck
a ⊕ R) ' S2k is a sphere in Ck ⊕ R, Ck

a has an
∏a

i=1 S(U(li) × U(1))-
action by the representation a(t1, · · · , ta) = tα1

1 · · · tαa
a , and the G-action on this

manifold is induced from the G-action on Xs (see the lists (1), (2) and (3) below
just (8.4)).

Because we classify (M(a), G) up to essential isomorphism, we can regard G
as G/ ker where ker is a kernel of (M(a), G). Hence, we can put α = 1. Moreover,
we can regard SU(k) × T 1 as U(k) through the finite covering SU(k) × T 1 →
SU(k) ×Zk

T 1 ' U(k), where Zk is the center of SU(k). Hence, we can put our
transformation group G as

∏b
j=1 SO(2mj + 1)×∏a

i=1 SU(li + 1)× U(k).
Now we can easily show this manifold is equivariantly diffeomorphic to

b∏

j=1

S2mj ×
(

a∏

i=1

S2li+1 ×T a S(Ck
a ⊕ R)

)
,

where T a acts on
∏a

i=1 S2li+1(⊂ ∏a
i=1 Cli+1) canonically and on S(Ck

a ⊕ R) ∩ Ck
a

through the representation a : T a → S1 such that a(t1, · · · , ta) = tα1
1 · · · tαa

a .
Hence, we have the following theorem.

Theorem 8.4. If the torus manifold (M, T ) has codimension one extended
G-action of the case (1)− (a), then (M, G) is essential isomorphic to as follows:

• M(a) =
∏b

j=1 S2mj × (∏a
i=1 S2li+1 ×T a S(Ck

a ⊕ R)
)
;

• G =
∏b

j=1 SO(2mj + 1)×∏a
i=1 SU(li + 1)× U(k),

where (t1, · · · , ta) ∈ T a acts on Ck
a by the following scalar multiplication:

a(t1, · · · , ta) = tα1
1 · · · tαa

a ,

and G acts on M(a) canonically as follows:

(1)
∏b

j=1 SO(2mj + 1) acts on the
∏b

j=1 S2mj factor in M(a);
(2)

∏a
i=1 SU(li + 1) acts on the

∏a
i=1 S2li factor in M(a);

(3) U(k) acts on the S(Ck
a ⊕ R) ∩ Ck factor in M(a).
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8.3. The case (1)−(b). First we compute the set of attaching maps N(K;G)/N(K;G)o

for the case (1)−(b) (see (8.3)). In this case, G =
∏b

j=1 SO(2mj+1)×∏a−1
i=1 SU(li+

1)× SU(k1)× SU(k2)× T 1 and K =
∏b

j=1 SO(2mj)× K̂ where K̂ is as follows by
Lemma 7.2:{(

(t1, · · · , ta−1),
(

Y 0
0 y

)
,

(
X 0
0 x

)
, t

) ∣∣∣∣∣ tα1
1 · · · tαa−1

a−1 xytα = 1

}
.

Because α ∈ N, we also have

N(K; G)/N(K; G)o '
b∏

j=1

Z2 ×
a−1∏

i=1

Wli+1,

where

Wli+1 =
{ {Ili+1} if li ≥ 2 or αi 6= 0

S2 if li = 1 and αi = 0

By a similar arguments in Section 8.2 for the case (1)− (a), we have the following
lemma by Lemma 7.2.

Lemma 8.5. For all the attaching map f : ∂Xs → ∂Xs in the case (1) − (b),
we have M(f) ∼= M(I) where I : ∂Xs → ∂Xs is the identity attaching map. In
particular, for fixed integers α1, · · · , αa−1 and a natural number α, a G-manifold
M which satisfies the case (1)− (b) is unique up to essential isomorphism.

Hence, the case (1) − (b) is also determined by the integers α1, · · · , αa−1

and the natural number α which appear in the slice representation, up to essential
isomorphism. Let M(b) denote such manifold.

Finally, we construct the G-manifolds M(b) of this case (1)− (b). Remark, in
this case, tubular neighborhoods Xs are G-diffeomorphic to the following:

b∏

j=1

S2mj ×
{(

a−1∏

i=1

SU(li + 1)× SU(kr)

)
×∏a−1

i=1 S(U(li)×U(1))×S(U(kr−1)×U(1)) D(Cks

bs
)

}
,

where s + r = 3 (s, r ≥ 1),
∏a−1

i=1 S(U(li) × U(1)) × S(U(kr − 1) × U(1)) acts on
D(Cks

bs
) by the representation σ′s(t1, · · · ta−1, x) = tαa

1 · · · tαa−1
a−1 x. The G-action on

Xs is as follows:
∏b

j=1 SO(2mj)×
∏a−1

i=1 SU(li + 1)×SU(kr) acts canonically; and
SU(ks)×T 1 acts on D(Cks

bs
) by σ′′s (A, t) = Atα. By using Lemma 8.2, 8.5 and the

above Xs, the following manifold corresponds with M(b):
b∏

j=1

S2mj ×
(

a−1∏

i=1

SU(li + 1)×∏a−1
i=1 S(U(li)×U(1)) P (Ck1

b ⊕ Ck2))

)
,

where P (Ck1
b ⊕Ck2)) ∼= CP (k1 + k2 − 1) is a complex projective space, Ck1

b has an∏a−1
i=1 S(U(li)×U(1))-action by the representation b(t1, · · · , ta−1) = tα1

1 · · · tαa−1
a−1 ,

and the G-action on this manifold is induced from the G-action on the above Xs.
By the same reasons in the case (1) − (a), we can put α = 1. Moreover, we

can regard SU(k1)×SU(k2)×T 1 as S(U(k1)×U(k2)) through the following finite
covering SU(k1)× SU(k2)× T 1 → S(U(k1)× U(k2)):

(A, B, t) 7→
(

Atk2 0
0 Bt−k1

)
.
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By this covering, we also have (SU(k1)× SU(k2))×Zk1k2
T 1 ' S(U(k1) × U(k2)).

Hence, we can regard G as
∏b

j=1 SO(2mj +1)×∏a−1
i=1 SU(li+1)×S(U(k1)×U(k2)).

Now we can easily show this manifold is equivariantly diffeomorphic to
b∏

j=1

S2mj ×
(

a−1∏

i=1

S2li+1 ×T a−1 P (Ck1
b ⊕ Ck2)

)
,

where T a−1 acts on
∏a−1

i=1 S2li+1 canonically and P (Ck1
b ⊕Ck2) through the repre-

sentation b. Hence, we have the following theorem.

Theorem 8.6. If the torus manifold (M, T ) has codimension one extended
G-action of the case (1)− (b), then (M, G) is essential isomorphic to as follows:

• M(b) =
∏b

j=1 S2mj ×
(∏a−1

i=1 S2li+1 ×T a−1 P (Ck1
b ⊕ Ck2))

)
;

• G =
∏b

j=1 SO(2mj + 1)×∏a−1
i=1 SU(li + 1)× S(U(k1)× U(k2)),

where (t1, · · · , ta−1) ∈ T a−1 acts on Ck1
b by

b(t1, · · · , ta−1) = tα1
1 · · · tαa−1

a−1 ,

and G-action on M(b) is as follows:

(1)
∏b

j=1 SO(2mj + 1) acts on the
∏b

j=1 S2mj factor in M(b);
(2)

∏a−1
i=1 SU(li + 1) acts on the

∏a−1
i=1 S2li+1 factor in M(b);

(3) S(U(k1)× U(k2)) acts on the P (Ck1
b ⊕ Ck2) factor in M(b).

8.4. The case (2)−(a). First we compute the set of attaching maps N(K;G)/N(K;G)o

for the case (2)− (a) (see (8.3)). Because G =
∏b

j=1 SO(2mj + 1)×∏a
i=1 SU(li +

1) × SO(2k) and K =
∏b

j=1 SO(2mj) ×
∏a

i=1 S(U(li) × U(1)) × SO(2k − 1) by
Lemma 7.3, we have

N(K; G)/N(K; G)o '
b∏

j=1

Z2 ×
a∏

i=1

Wli ×W,

where W = S(O(2k − 1)×O(1))/SO(2k − 1) = {I2k, −I2k} ' Z2. Because of the
similar reason of the case (1)− (a) and (1)− (b), we have that M(f) ∼= M(I) for all
attaching maps f ∈ ∏b

j=1 Z2×
∏a

i=1 Wli . Hence, we need to consider the attaching
map f = −I2k in W . Remark this attaching map can be taken from the center of
SO(2k) ⊂ Ks. Therefore, the following map is well-defined and commute:

∂Xs = G×Ks Ks/K
π−→ G/K

Rf × id ↓ ↓ f

∂Xs = G×Ks Ks/K
π−→ G/K

where π([g, kK]) = gkK, f(kK) = kfK and (Rf × id)([g, k1K]) = [gf, ksK].
Here, id : Ks/K ∼= S2k−1 → S2k−1 ∼= Ks/K is extendable to id : D2k → D2k.
Therefore, Rf × id is extendable to the equivariant diffeomorphism G ×Ks D2k =
Xs → Xs = G×Ks D2k. Hence, M(f) ∼= M(I) by the Uchida’s criterion. Thus, we
have the following lemma by Lemma 7.3.

Lemma 8.7. For all the attaching map f : ∂Xs → ∂Xs in the case (2) − (a),
we have M(f) ∼= M(I) where I is the identity attaching map. In particular, a G-
manifold M which satisfies the case (2)−(a) is unique up to essential isomorphism.
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By Lemma 7.3, the tubular neighborhood Xs is as follows:
b∏

j=1

S2mj ×
a∏

i=1

CP (li)×D(R2k).

Therefore, we have the following theorem by Lemma 8.2 and 8.7.

Theorem 8.8. If the torus manifold (M, T ) has codimension one extended
G-action of the case (2)− (a), then (M, G) is essential isomorphic to as follows:

• M(c) =
∏b

j=1 S2mj ×∏a
i=1 CP (li)× S(R2k ⊕ R);

• G =
∏b

j=1 SO(2mj + 1)×∏a
i=1 SU(li + 1)× SO(2k),

where G acts on M(c) canonically.

As the result, we get the main result Theorem 1.
Because cohomology rings of quasitoric manifolds are generated by the degree

2 elements (see [5, 6]), we can easily show the following corollary:

Corollary 8.9. If a quasitoric manifold M has a codimension one extended
G-action, then (M, G) is essentially isomorphic to

(
a−1∏

i=1

S2li+1 ×T a−1 P (Ck1
b ⊕ Ck2),

a−1∏

i=1

SU(li + 1)× S(U(k1)× U(k2))

)
.

9. On moment-angle manifolds

Finally, we observe some relation between a moment-angle manifold and our
classification results in Corollary 8.9. A moment-angle manifold is defined as follows
(see [3, 5, 6]). Let P be a simple convex polytope with the set of facets F =
{F1, · · · , Fm}. For each facet Fi ∈ F , the 1-dimensional coordinate subgroup of
the m-torus TF ' Tm corresponding to Fi is denoted by TFi . Then assign to every
face L the coordinate subtorus

TL =
∏

Fi⊃L

TFi ⊂ TF .

For every point q ∈ P , L(q) denotes the unique face containing q in its relative
interior.

Then the moment-angle manifold ZP is the identification space

ZP = (TF × P )/ ∼,

where (t1, p) ∼ (t2, q) if and only if p = q and t−1
1 t2 ∈ TL(p).

We remark that moment-angle manifolds ZP have natural Tm-actions on their
TF factors. Moreover, there is the following relations between quasitoric manifolds
M over P and the moment-angle manifold ZP over P (see [5, Proposition 6.5]):

Proposition 9.1. There is the subtorus H ⊂ TF such that H ' Tm−n and
H acts freely on ZP , where m is a number of facets in P and 2n is a dimension of
M . Furthermore, this freely action defies a principal Tm−n-bundle ZP → M .

In our case, the orbit space of the quasitoric manifold M(b) =
∏a−1

i=1 S2li+1×T a−1

P (Ck1
b ⊕Ck2) becomes a product of simplices

∏a−1
i=1 ∆li×∆k1+k2−1. For the moment-

angle manifold ZP1×P2 satisfies the following relation (see [5, Proposition 6.4]):

ZP1×P2 = ZP1 ×ZP2 .
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Moreover, the moment-angle manifold over the simplex ∆n becomes an odd dimen-
sional sphere S2n+1 (see [5, Example 6.7]). Therefore, the moment angle manifold
over

∏a−1
i=1 ∆li ×∆k1+k2−1 is as follows:

Z(b) =
a−1∏

i=1

S2li+1 × S(Ck1
b ⊕ Ck2),

where S(Ck1
b ⊕ Ck2) ∼= S2k1+2k2−1.

Remark that the number of facets in
∏a−1

i=1 ∆li × ∆k1+k2−1 and the half of
dimension of M(b) are

m =
a−1∑

i=1

(li + 1) + k1 + k2 and n =
a−1∑

i=1

li + k1 + k2 − 1.

Therefore, in our case, H = T a−1 × S1 (see Proposition 9.1). By the definition of
M(b) and Z(b), this group H acts on Z(b) as follows:

(1) T a−1 ⊂ H acts naturally on the
∏a−1

i=1 S2li+1 factor, and acts on the
S(Ck1

b ⊕ Ck2) ∩ Ck1
b factor through the representation b;

(2) S1 ⊂ H acts only on the S(Ck1
b ⊕ Ck2) = S2k1+2k2−1 ⊂ Ck1

b ⊕ Ck2 factor
naturally.

Moreover, Z(b) has the natural action of G =
∏a−1

i=1 SU(li + 1) × S(U(k1) ×
U(k2)), with codimension one principal orbits

∏a−1
i=1 S2li+1 × S2k1−1 × S2k2−1, and

two singular orbits
∏a−1

i=1 S2li+1×S2k1−1 and
∏a−1

i=1 S2li+1 ×S2k2−1. Furthermore,
we see that this G-action on Z(b) is commute with the H = T a−1 × S1-action and
it induces the codimension one action on M(b). We can also show the above fact
for quasitoric manifolds with codimension 0 extended G-actions (such quasitoric
manifolds are only products of complex projective spaces, see Corollary 2.4). Hence,
we have the following theorem from our classification results.

Theorem 9.2. If a quasitoric manifold M2n has a codimension 0 or 1 extended
G-actions, then its orbit space of Tn-action becomes a product of simplices

∏a
i=1 ∆li ,

where
∑a

i=1 li = n, and there is the following principal T a-bundle for such quasitoric
manifolds:

Z =
a∏

i=1

S2li+1 → M2n.

Furthermore, a codimension 0 and 1 extended G-actions on M can be lifted to
G-actions on Z with codimension 0 and 1 principal orbits respectively. In other
wards, all of codimension 0 and 1 extended G-actions on M can be induced from
G-actions on Z with codimension 0 and 1 principal orbits respectively.

Remark 9.3. We can easily see that two singular orbits of (Z(b), G) are
moment-angle manifolds of two singular orbits of (M, G) respectively.
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Remark 9.4. According to our classification results in Theorem 1, for torus
manifolds with some assumptions, we can easily show that there is a similar prin-
cipal T a-bundle like the above moment-angle manifold:

T (a) =
b∏

j=1

S2mj ×
a∏

i=1

S2li+1 × S(Ck
a ⊕ R) −→ M(a);

T (b) =
b∏

j=1

S2mj ×
a−1∏

i=1

S2li+1 × S(Ck1
b ⊕ Ck2) −→ M(b);

T (c) =
b∏

j=1

S2mj ×
a∏

i=1

S2li+1 × S(R2k ⊕ R) −→ M(c),

where S(Ck
a ⊕ R) ∼= S(R2k ⊕ R) ∼= S2k. Moreover, all codimension 1 extended

G-actions on M(a), M(b) and M(c) can be lifted to G-actions on T (a), T (b) and
T (c) (they are denoted by T ) with codimension 1 principal orbits respectively. In
other wards, all of codimension 1 extended G-actions on M in Theorem 1 can be
induced from G-actions on T with codimension 1 principal orbits.
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