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Abstract. The goal of this paper is to classify torus manifolds (M2n, T n)
with codimension one extended G-actions (M2n, G) up to essential isomor-
phism, where G is a compact, connected Lie group whose maximal torus is T n.
For technical reasons, in this paper, we do not assume that torus manifolds

are omnioriented. As a result, we have the following two results: (1) if there is
no exceptional orbit in extended G-actions, there are five kinds of (M2n, G)’s
(Theorem 1.1, 1.2); (2) otherwise, there are two kinds of (M2n, G)’s (Theorem
1.3). As a corollary of these results, we also have that if M2n is a non-singular

toric variety or a quasitoric manifold with codimension one extended G-actions,
then M2n is a complex projective bundle over a product of complex projective
spaces.

1. Introduction

This paper is a continuation of [12] and [13] devoted to the study of the ex-
tended G-actions on torus manifolds (M2n, Tn), where a torus manifold is an even
dimensional oriented manifold M2n acted on by a half-dimensional torus Tn with
non-empty fixed point set, and G is a compact, connected Lie group whose maxi-
mal torus is Tn. In the first paper [12], we classified the homogeneous (unoriented)
torus manifolds and their transformation groups up to essential isomorphism, where
here an unoriented torus manifold means a torus manifold which is not assumed
omniorientations. By using classical Lie theory, we proved such torus manifolds are
only products of even dimensional spheres and complex projective spaces divided
by finite groups. In the second paper [13], we classified quasitoric manifolds with
codimension 1 extended G-actions up to essential isomorphism and studied rela-
tions with moment-angle manifolds. In order to classify such quasitoric manifolds,
we classified more general class which involve them, i.e., simply connected torus
manifolds with codimension 1 extended G-actions whose two singular orbits are
also simply connected torus manifolds. To classify such torus manifolds, we used
the part of the Uchida’s method in [17]. The Uchida’s method is the strong method
to classify codimension 1 compact Lie group actions up to essential isomorphism.
In the case that we apply the Uchida’s method to classify codimension 1 actions,
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we usually need to divide our proof into two cases (compare the method of [11,
Section 7, 8] and that of [11, Section 10, 11]). In particular, for torus manifolds
with codimension 1 extended G-actions, (as we mentioned in [13]) we divide our
proof into the following two cases: the case that two singular orbits of G-actions
are torus manifolds; and the case that one of two singular orbits of G-actions is not
a torus manifold. Remark that if a singular orbit is a torus manifold then this is
a homogeneous torus manifold (see Lemma 2.1); therefore, we know such singular
orbit type by using [12] (see Lemma 2.2). In the previous paper [13], we only
studied the former case because of its purpose. However, in general, the latter case
also occurs (see [13, Example 3.5]). The goal of this paper is to classify all un-
oriented torus manifolds with codimension one extended G-actions up to essential
isomorphism. In particular, in this paper, we put a special emphasis on the proof
of the latter case, because the proof of the former case is almost similar to that of
[13] even if in the case of the classification of such unoriented torus manifolds.

Now we state the main result of this paper. Put mj , li ∈ N ∪ {0} for j =
1, · · · , b and i = 1, · · · , a, and A ⊂

∏b
j=1 Z2. We get the following three

theorems (see Section 3.1, 5.1 and 8.1 for detail).

Theorem 1.1 (Theorem 3.1). Suppose a torus manifold M has a codimension
one extended G-action. If there are two singular orbits and both of them are torus
manifolds, then (M, G) is essentially isomorphic to b∏

j=1

S2mj ×A N,
b∏

j=1

SO(2mj + 1) × H

 ,

such that (N, H) is one of the following three types:

N H(∏a
i=1 S2li+1

)
×T a S(Ck

a ⊕ R)
∏a

i=1 SU(li + 1) × U(k)(∏a−1
i=1 S2li+1

)
×T a−1 P (Ck1

b ⊕ Ck2)
∏a−1

i=1 SU(li + 1) × S(U(k1) × U(k2))∏a
i=1 CP (li) × S(R2k ⊕ R)

∏a
i=1 SU(li + 1) × SO(2k)

where k, k1, k2 ∈ N.

Theorem 1.2 (Theorem 8.1). Suppose a torus manifold M has a codimension
one extended G-action. If there are two singular orbits and one of them is not a
torus manifold, then (M, G) is essentially isomorphic tob−1∏

j=1

S2mj ×A N,
b−1∏
j=1

SO(2mj + 1) × H

 ,

such that (N, H) is one of the following two types:

N H∏a
i=1 S2li+1 ×T a S(Ck1

c ⊕ R2k2−1)
∏a

i=1 SU(li + 1) × U(k1) × SO(2k2 − 1)∏a
i=1 CP (li) × S(R2k1 ⊕ R2k2−1)

∏a
i=1 SU(li + 1) × SO(2k1) × SO(2k2 − 1)

where k1 ∈ N, k2 ≥ 2.

Theorem 1.3 (Theorem 5.1). Suppose a torus manifold M has a codimension
one extended G-action. If there is an exceptional orbit, then (M, G) is essentially
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isomorphic to  b∏
j=1

S2mj ×A×Z2 N,
b∏

j=1

SO(2mj + 1) × H

 ,

such that (N, H) is one of the following two types:
N H(∏a

i=1 S2li+1
)
×T a S(Ck1

c ⊕ R)
∏a

i=1 SU(li + 1) × U(k1)∏a
i=1 CP (li) × S(R2k1 ⊕ R)

∏a
i=1 SU(li + 1) × SO(2k1)

where k1 ∈ N.

From the above theorems (see Section 3.1, 5.1 and 8.1 for detail), the finite
group A or A×Z2 acts only on

∏b
j=1 S2mj and on the fibre of N (not on

∏a
i=1 S2li+1

and
∏a

i=1 CP (li)). Therefore, we also have that if an unoriented torus manifold has
a codimension one extended G-action, then this manifold is a fibre bundle over
the homogeneous torus manifold

∏b
j=1 S2mj /A′ ×

∏a
i=1 CP (li) (see [12]) whose

fibre is a complex projective space CP (l), an even dimensional sphere S2m, or an
even dimensional real projective space RP (2m). Therefore, we can easily show the
following corollary:

Corollary 1.4. If a non-singular toric variety or a quasitoric manifold M has
a codimension one extended G-action, then (M, G) is essentially isomorphic to(

a−1∏
i=1

S2li+1 ×T a−1 P (Ck1
b ⊕ Ck2),

a−1∏
i=1

SU(li + 1) × S(U(k1) × U(k2))

)
.

Remark that the manifold in Corollary 1.4 is equivariantly diffeomorphic to
a−1∏
i=1

Cli+1
o ×(C∗)a−1 P (Ck1

b ⊕ Ck2),

where Cli+1
o = Cli+1 − {o} and C∗ = C − {0} (removed the origin).

The organization of this paper is as follows. In Section 2, we first set up some
notation and basic facts from [12, 13]. Then we know that, in order to classify
codimension one extended actions, we need to consider the three cases: the cases
(1), (2) and (3). In Section 3, we classify the case (1), i.e., two singular orbits are
torus manifolds. The proof of this case is similar to the previous classification in
[13]. Hence, we can apply the arguments of the proofs in [13], and show Theorem
1.1. In Section 4, we give a preparation for the cases (2) and (3). In particular, we
know the following key fact in this section: in order to classify the cases (2) and
(3), we may only study the isotropy subgroup K2 ⊂ G and its slice representation
σ2 by Remark 4.2, where G/K1 is the singular orbit of the codimension 1 extended
action which is a torus manifold and G/K2 is the other non-principal orbit. In
Section 5, we state the main theorem and give the remark for the case (2), i.e., one
of non-principal orbits is an exceptional orbit. In particular, we divide this case
into (2)-(a) and (2)-(b). In Section 6 and 7, we study the cases (2)-(a) and (2)-(b)
respectively, and prove Theorem 1.3. In Section 8, we state the main theorem of the
case (3), i.e., one of the non-principal orbits is not a torus manifold but a singular
orbit, and we divide this case into the cases (3)-(a) and (3)-(b). In Section 9 and
10, we classify the case (3)-(a) and the case (3)-(b) respectively, and prove Theorem
1.2.
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2. Review of the previous papers

In order to classify codimension 1 extended actions, in this section, we recall
the basic facts (see [1, 8, 12, 13, 17] for detail).

2.1. Definition of torus manifold. We start with recalling the definition of
the torus manifold. Let (M2n, Tn) be a pair 2n-dimensional, compact, connected
manifold M2n and a half dimensional torus Tn. We call (M2n, Tn) a torus manifold
if it satisfies that

(1) Tn-action on M2n is amost effective, i.e., the intersection of all isotropy
subgroups is a finite subgroup in Tn;

(2) its fixed point set is non-empty, i.e., MT ̸= ∅.
A torus manifold (M2n, Tn) is often denoted by (M, T ) or M simply.

In the paper [8], the definition of torus manifolds involves the choice of orienta-
tions of manifold M and its characteristic submanifolds called omniorientation on
M . Because we will classify extended actions up to essential isomorphism in this
paper, we do not need to choice an omniorientation on M . Moreover, the T -action
on M does not need to be effective (also see [12, Remark 2.1]). We also call such
torus manifold an unoriented torus manifold in this paper.

Note that MT is finite for unoriented torus manifolds (M, T ) as well as the
torus manifolds in the sense of [8].

2.2. Codimension 1 extended G-actions and their singular orbits. Let
(M, T ) be a torus manifold, and let G be a compact, connected Lie group whose
maximal torus is T . We next recall the basic facts for extended G-actions of (M, T ).

Suppose a Tn-action on M2n extends to a G-action on M with codimension
1 principal orbits, i.e., (2n − 1)-dimensional orbit. Then we call (M, T ) has a
codimension 1 extended G-action, and such extended G-action on M is denoted by
(M, G). We will classify such (M, G) up to essential isomorphism, where here
we say that (M, G) is essentially isomorphic to (M ′, G′) if these induced effective
actions are weak equivariantly diffeomorphic (see [12, 13] for detail)

For codimension 1 extended actions of (M, T ), the following lemma holds (see
[13, Lemma 3.1, 3.2]).

Lemma 2.1. Suppose that an (unoriented) torus manifold (M2n, Tn) has a
codimension 1 extended G-action. Then a G-orbit G/K1 of T -fixed points is a
singular orbit in (M, G), i.e., dim G/K1 < 2n − 1.

Furthermore, there is some subtorus T ′ ⊂ T such that (G/K1, T ′) is an (un-
oriented) torus manifold.

Proof. In the previous paper [13], we assume the orientation of the torus
manifold. However, we can also apply the proofs of [13, Lemma 3.1, 3.2] to the
case of unoriented torus manifolds. Hence, we can prove this lemma with a method
similar to the proofs of [13, Lemma 3.1, 3.2]. ¤

In this paper, we do not need to consider the orientation on the singular orbit
G/K1. Hence, we can directly apply the main result in [12] to a homogeneous torus
manifold G/K1. Moreover, we get the following lemma using the argument in [13,
Section 3.3].
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Lemma 2.2. Suppose that a torus manifold (M2n, Tn) extends to a codi-
mension 1 extended action. Then this codimension 1 extended action is essen-
tially isomorphic to (M, G) which satisfies that, for its singular orbit G/K1 with
MT ∩ G/K1 ̸= ∅, the pair (G, K1) is as follows: a∏

i=1

SU(li + 1) ×
b∏

j=1

SO(2mj + 1) × G′′
1 ,

a∏
i=1

S(U(li) × U(1)) × S1 × G′′
1

 ,

where
∏b

j=1 SO(2mj) ⊂ S1 ⊂
∏b

j=1 S(O(2mj) × O(1)) and G′′
1 is a product of

connected, simple Lie groups and tori.

2.3. Slice representations of G/K1. In this subsection, we study the slice
representation of G/K1 for the case of unoriented torus manifolds.

Due to Lemma 2.1, G/K1 is a torus manifold. Therefore, we can put dimG/K1 =
2n− 2k1 for k1 ≥ 1. Let K ′

1 =
∏a

i=1 S(U(li)×U(1))×S1 (see Lemma 2.2), and let
Z(X) be the centralizer of a subgroup X in O(2k1), i.e., Z(X) = {g ∈ O(2k1) | gx =
xg for all x ∈ X}.

Using a method similar to the proof of [13, Lemma 5.6], we have the following
lemma for K1 = K ′

1 × G′′
1 and the slice representation σ1 : K1 → O(2k1).

Lemma 2.3. For G′′
1 in K1 = K ′

1 × G′′
1 , there are the following two cases:

G′′
1 = SU(k1) × T 1, and G′′

1 = SO(2k1).

For these two cases, the slice representation σ1 : K1 = K ′
1 × G′′

1 → O(2k1)
satisfies the following list:

G′′
1 σ1(G′′

1) σ1(K ′
1)

(1) SU(k1) × T 1 U(k1) ⊂ O(2k1) Z(U(k1)) ≃ T 1 ⊂ U(k1) ⊂ O(2k1)
(2) SO(2k1) SO(2k1) Z(SO(2k1)) = {±I2k1} ⊂ O(2k1)

where the right list means σ1(K ′
1) ⊂ Z(U(k1)) for (1) and σ1(K ′

1) ⊂ Z(SO(2k1))
for (2).

Furthermore, the image of σ1 is in SO(2k1), i.e., σ1 : K1 → SO(2k1).

Remark 2.4. We give the following four remarks.
(1) If G′′

1 = SO(2k1) then we can regard k1 ≥ 2, because SO(2) ≃ T 1 =
SU(1) × T 1 for k1 = 1.

(2) In the previous paper [13], σ1(K ′
1) is always connected, because K1 is

connected. However, in this paper, K1 is not always connected (because
G′′

1 is connected but K ′
1 might not be connected for K1 = K ′

1 × G′′
1).

(3) Moreover, in [13], we can assume mj ≥ 2 (where mj is defined in Lemma
2.2). However, in this paper, we assume mj ≥ 1.

(4) K1/K ∼= Ko
1/Ko ∼= S2k1−1 because dim G/K1 = 2n−2k1 and the tubular

neighborhood of G/K1 is G ×K1 D2k1 such that K1 acts transitively on
∂D2k1(∼= K1/K) through σ1.

In order to apply the same arguments in [13] to the case mj ≥ 1, we need to
study the case mj = 1. Let rj :

∏b
j=1 SO(2mj + 1) → SO(2mj + 1) be the natural

projection to the j-th factor. Note that we have for S1 in Lemma 2.2

rj(S1) = SO(2mj) or S(O(2mj) × O(1)) ⊂ SO(2mj + 1).

The following lemma holds.
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Lemma 2.5. Assume mj = 1. Then there are the following two cases:

(1) if rj(S1) = SO(2mj)(= SO(2)), then we can regard SO(2mj +1) = SO(3)
as SU(2) = SU(la+1 + 1) up to essential isomorphism;

(2) if rj(S1) = S(O(2mj) × O(1))(= S(O(2) × O(1))), then there is some
inclusion ι : S(O(2)×O(1)) → S1 such that Im ι∩SO(2mj) = SO(2mj),
and for the slice representation σ1 we have

σ1 ◦ ι(S(O(2) × O(1))) ⊂ {±I2k1} ⊂ SO(2k1).

Proof. The first statement can be easily proved using the fact that SO(3) ≈
SU(2), i.e., these Lie algebras are same (also see [13, Section 2.2]). We may only
prove the second statement.

Suppose rj(S1) = S(O(2mj)×O(1))(= S(O(2)×O(1))). Because
∏b

j=1 SO(2mj) ⊂
S1 ⊂

∏b
j=1 S(O(2mj) × O(1)), we can easily see that there is some inclusion

ι : S(O(2) × O(1)) → S1 such that Im ι ∩ SO(2mj) = SO(2mj). We may only
prove that this inclusion ι satisfies σ1 ◦ ι(S(O(2) × O(1))) ⊂ {±I2k1} ⊂ SO(2k1).
Let

J =
(

0 1
1 0

)
∈ O(2).

Then J2 = I2. Therefore, by the right list in Lemma 2.3, we have that

σ1 ◦ ι

((
J 0
0 −1

))
∈ {±I2k1} ⊂ U(2k1) ⊂ SO(2k1).(2.1)

If G′′
1 = SO(2k1), then the statement σ1 ◦ ι(S(O(2)×O(1))) ⊂ {±I2k1} is straight-

forward because of Lemma 2.3. Assume G′′
1 = SU(k1) × T 1. Now we can put

σ1 ◦ ι

((
A 0
0 1

))
= Aγ ∈ SO(2) ⊂ SO(2k1)

for A ∈ SO(2), where γ ∈ Z and Aγ ∈ SO(2) ≃ T 1 ⊂ U(k1) ⊂ SO(2k1) for the
diagonal subgroup T 1 ⊂ U(k1), because SO(2) is the abelian group. Hence, by Eq.
(2.1), we have that

Aγ = σ1 ◦ ι

((
A 0
0 1

))
= σ1 ◦ ι

((
J 0
0 −1

)(
A 0
0 1

)(
J 0
0 −1

))
= σ1 ◦ ι

((
A−1 0
0 1

))
= A−γ .

It follows that γ = 0; hence, we have the second statement. ¤

If mj ≥ 2, then we can easily show that σ1 ◦ ι ◦ rj(S1) ⊂ {±I2k1}. Hence, by
the above Lemma 2.5, we can regard σ1(S1) ⊂ {±I2k1}. This corresponds with the
previous fact that σs(

∏b
j=1 SO(2mj)) = {e} in [13, Lemma 7.1, 7.2, 7.3]. Because

{±I2k1} is the center of SO(2k1), we can use the same argument in the previous
paper [13, Section 7] for analyzing the slice representation σ1.
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2.4. Global structures of codimension 1 extended actions. We next
study the global structure of (M, G). Even if M is non-oriented, the following
structure theorem holds (see [1, 8.2 Theorem in Chapter IV]):

Theorem 2.6. Let (M, G) be a G-manifold M with codimension 1 orbits.
If every orbit is principal, then M is a G/K-bundle over S1. Otherwise, there
are two non-principal orbits G/K1 and G/K2 such that K1 ∩ K2 ⊃ K (K is the
principal isotropy subgroup). Furthermore, there exists a closed, invariant tubular
neighborhood Xs of G/Ks for s = 1, 2 such that

M = X1 ∪ X2 and X1 ∩ X2 = ∂X1 = ∂X2 = G/K,

where ∂Xs means the boundary of Xs.

Because of Lemma 2.1, we can assume G/K1 is a singular orbit and a torus
manifold throughout this paper; moreover, because of Theorem 2.6, there are the
following three cases:

(1) G/K2 is a torus manifold (automatically G/K2 is a singular orbit);
(2) G/K2 is an exceptional orbit, namely, dimG/K2 = dim G/K = 2n − 1;
(3) G/K2 is not a torus manifold but a singular orbit.

We call the above cases the case (1), (2) and (3), respectively. Remark that if M is
simply connected, then we do not need to consider the case (2) (see [13, Theorem
2.6] or [17, Lemma 1.2.1]). From the next section, we start to classify for each
above case.

Before we go to the next section, we introduce the following Lemma 2.7 for
the attaching map of f : ∂X1 → ∂X2. In the final part of the classification,
we compute the attaching maps f from ∂X1 to ∂X2, and construct the manifold
M(f) = X1 ∪f X2 by using f . For two attaching maps f and f ′, we know whether
M(f) and M(f ′) are diffeomorphic or not, by making use of the following Uchida’s
criterion (see [17, Lemma 5.3.1]).

Lemma 2.7 (Uchida’s criterion). Let f, f ′ : ∂X1 → ∂X2 be G-equivariant dif-
feomorphisms. Then M(f) is equivariantly diffeomorphic to M(f ′) as G-manifolds,
if one of the following conditions are satisfied:

(1) f is G-diffeotopic to f ′;
(2) f−1f ′ is extendable to a G-equivariant diffeomorphism on X1;
(3) f ′f−1 is extendable to a G-equivariant diffeomorphism on X2.

We remark that this criterion also holds for non-orientable cases.
Using the above criterion (1), we can take the attaching map f from the group

N(K; G)/N(K; G)o, where N(K; G) is the normalizer of K in G and N(K; G)o is
its identity component (also see [13, Section 8.1])).

3. The case (1): two singular orbits are torus manifolds

The goal of this section is to classify the case (1). So, in this section, we
assume that the other singular orbit G/K2 is also a torus manifold. Then we can
put dimG/Ks = 2n− 2ks for ks ≥ 1 and s = 1, 2. Note that the proof of this case
is similarly to that of the previous classification [13].
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3.1. Notations and main theorem. First, we state the main theorem of
this section. In order to state it, we prepare some notations. A manifold X ×H Y
denotes a quotient manifold of X × Y divided by a free H-action. The manifold(∏a

i=1 S2li+1
)
×T a S(Ck

a ⊕R) is the quotient manifold of
(∏a

i=1 S2li+1
)
×S(Ck

a ⊕R)
divided by the following T a-action: T a acts on

∏a
i=1 S2li+1 by the a-times product

of the scaler S1-action on S2li+1 ⊂ Cli+1 for i = 1, · · · , a (in other words, T a

acts on
∏a

i=1 S2li+1 naturally); and T a acts on the 2k-dimensional sphere S(Ck
a ⊕

R) ⊂ Ck
a ⊕ R through the representation a : T a → S1 such that a(t1, · · · , ta) 7→

tα1
1 · · · tαa

a for some α1, · · · , αa ∈ Z, that is, Ck
a ≃ Ck (as a vector space) is the

representation space of the representation a (S1 acts on this space by the scaler
multiplication). The manifold

(∏a−1
i=1 S2li+1

)
×T a−1 P (Ck1

b ⊕Ck2) is the projectify

of the complex vector bundle
(∏a−1

i=1 S2li+1
)
×T a−1 (Ck1

b ⊕ Ck2), where T a−1 acts

on
∏a−1

i=1 S2li+1 naturally; and T a−1 acts on the representation space Ck1
b ≃ Ck1

through the representation b : T a−1 → S1, and on Ck2 trivially. A group A is a
subgroup of

∏b
j=1 Z2, where Z2 is generated by the antipodal involution on S2mj

for j = 1, · · · , b.
Now we may state the main theorem in this section.

Theorem 3.1. Suppose a torus manifold M has a codimension one extended
G-action. If there are two singular orbits and both of them are torus manifolds,
then (M, G) is essentially isomorphic to b∏

j=1

S2mj ×A N,
b∏

j=1

SO(2mj + 1) × H

 ,

such that (N, H) is one of the followings:

N H

(a)
(∏a

i=1 S2li+1
)
×T a S(Ck

a ⊕ R)
∏a

i=1 SU(li + 1) × U(k)

(b)
(∏a−1

i=1 S2li+1
)
×T a−1 P (Ck1

b ⊕ Ck2)
∏a−1

i=1 SU(li + 1) × S(U(k1) × U(k2))

(c)
∏a

i=1 CP (li) × S(R2k ⊕ R)
∏a

i=1 SU(li + 1) × SO(2k)

where A acts on
∏b

j=1 S2mj as the subgroup
∏b

j=1 Z2 and on the fibre of N through
the following representations:

(a): σC : A → {±1} ⊂ S1 on S(Ck
a ⊕ R) ∩ Ck

a;
(b): σC : A → {±1} ⊂ S1 on Ck1

b -factor in P (Ck1
b ⊕ Ck2);

(c): σR : A → {±I2k} ⊂ SO(2k) on S(R2k ⊕ R) ∩ R2k;

respectively.
Here, G-actions on M are as follows:

∏
SO(2mj + 1) and

∏
SU(li + 1) act

naturally on
∏

S2mj and
∏

S2li+1, respectively; and U(k), S(U(k1) × U(k2)) and
SO(2k) act naturally on Ck

a, Ck1
b ⊕ Ck2 and R2k, respectively.

From the next subsection, we start to prove the above theorem.

3.2. Singular isotropy subgroups and images of their slice represen-
tations. Because G/K2 is a torus manifold, the pair (G, K2) as well as (G, K1)
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which is described in Lemma 2.2 satisfies the following property:

(G, K2) =

 c∏
i=1

SU(l′i + 1) ×
d∏

j=1

SO(2m′
j + 1) × G′′

2 ,
c∏

i=1

S(U(l′i) × U(1)) × S2 × G′′
2

 ,

where
∏d

j=1 SO(2m′
j) ⊂ S2 ⊂

∏d
j=1 S(O(1) × O(2m′

j)) and G′′
2 is a product of

connected, simple Lie groups and tori.
By the same argument of [13, Section 6, 7] for G/Ko

1 and G/Ko
2 (where Ko

s is
the identity component of Ks), we have

(G, K1, K2) = (
b∏

j=1

SO(2mj + 1) × Ĝ, S1 × K̂1, S2 × K̂2)

such that (Ĝ, K̂1, K̂2) is as follows:

(a): Ĝ =
∏a

i=1 SU(li + 1) × SU(k) × T 1,
K̂1 = K̂2 =

∏a
i=1 S(U(li) × U(1)) × SU(k) × T 1,

where dimG/Ks = 2n − 2k and k ≥ 1 (k1 = k2 = k);
(b): Ĝ =

∏a−1
i=1 SU(li + 1) × SU(k1) × SU(k2) × T 1,

K̂1 =
∏a−1

i=1 S(U(li) × U(1)) × SU(k1) × S(U(k2 − 1) × U(1)) × T 1,
K̂2 =

∏a−1
i=1 S(U(li) × U(1)) × S(U(k1 − 1) × U(1)) × SU(k2) × T 1,

where dimG/Ks = 2n − 2ks and ks ≥ 1;
(c): Ĝ =

∏a
i=1 SU(li + 1) × SO(2k),

K̂1 = K̂2 =
∏a

i=1 S(U(li) × U(1)) × SO(2k),
where dimG/Ks = 2n − 2k and k ≥ 2 (k1 = k2 = k).

We call the above cases the case (1)-(a), (1)-(b) and (1)-(c), respectively.
Next, we consider the slice representation σs for s = 1, 2. Because of Lemma

2.3 and 2.5, we have σs : Ks = K ′
s × G′′

s → SO(2ks). Moreover, there are the
following two cases:

G′′
s σs(G′′

s ) σs(K ′
s)

SU(ks) × T 1 U(ks) ⊂ O(2ks) Z(U(ks)) ≃ T 1 ⊂ U(ks) ⊂ SO(2ks)
SO(2ks) SO(2ks) Z(SO(2ks)) = {±I2ks} ⊂ SO(2ks)

where the right list means σs(K ′
s) ⊂ Z(U(ks)) or Z(SO(2ks)).

In order to classify the above each case, we analyze the followings: principal
isotropy subgroups K = σ−1

1 (SO(2k1 − 1)) = σ−1
2 (SO(2k2 − 1)); attaching maps

f : G/K = ∂X1 → ∂X2 = G/K ∈ N(K; G)/N(K; G)o (see Section 2.4); and
constructions of G-manifolds as M(f) = X1∪f X2, where Xs denotes a G-invariant
tubular neighborhood of G/Ks for s = 1, 2.

3.3. The case (1)-(a). In this subsection, we study the case (1)-(a), that is,

• G =
∏b

j=1 SO(2mj + 1) ×
∏a

i=1 SU(li + 1) × SU(k) × T 1,
• K1 = S1 ×

∏a
i=1 S(U(li) × U(1)) × SU(k) × T 1,

• K2 = S2 ×
∏a

i=1 S(U(li) × U(1)) × SU(k) × T 1

where
∏b

j=1 SO(2mj) ⊂ Ss ⊂
∏b

j=1 S(O(2mj) × O(1)), dimG/Ks = 2n − 2k, and
k ≥ 1 for s = 1, 2.

In order to know the precise structure of K, we analyze slice representations
σs : Ks → SO(2k). By Section 3.2, the slice representation σs : Ks → U(k) ⊂

9



SO(2k) satisfies the followings:

σs(S(U(li) × U(1))) = {I2k} or Z(U(k)) = T 1 ⊂ U(k) for all i = 1, · · · , a;
σs(SU(k) × T 1) = U(k),

where Z(U(k)) = T 1 ⊂ U(k) is the center of U(k), i.e., the diagonal subgroup.
Because σs(So

s ) = σs(
∏b

j=1 SO(2mj)) = {1} ⊂ T 1 ⊂ U(k) (by making use of

Lemma 2.5) and Ss/
∏b

j=1 SO(2mj) ≃ As ⊂
∏b

j=1 Z2 (i.e., As is a subgroup of∏b
j=1 Z2 generated by antipodal involutions), we have that

σs(Ss) = σC(As) ⊂ {±1} ⊂ T 1 ⊂ U(k),

where σC : As → {±1}. If σs(Ss) = {1} then we can apply the same argument in
[13]. So we assume σs(Ss) = {±1}.

Now, the principal isotropy subgroup K is as follows (X ≡ Y means that two
groups X and Y are conjugate in G):

K ≡ σ−1
1 (U(k − 1)) =

{(
A, (t1, · · · , ta),

(
X 0
0 x

)
, t

) ∣∣∣∣∣ σ1(A)xtα1
1 · · · tαa

a tα = 1

}

≡ σ−1
2 (U(k − 1)) =

{(
B, (t1, · · · , ta),

(
Y 0
0 y

)
, t

) ∣∣∣∣∣ σ2(B)ytβ1
1 · · · tβa

a tβ = 1

}
,

where A ∈ S1, B ∈ S2; X, Y ∈ U(k−1), x, y ∈ T 1 such that xdet X = y det Y = 1;
and

(t1, · · · , ta) =
((

U1 0
0 t1

)
, · · · ,

(
Ua 0
0 ta

))
∈

a∏
i=1

S(U(li) × U(1)).

First we take A = B = e ∈ S1 ∩ S2 (the identity elements in
∏b

j=1 SO(2mj + 1)).
Then σ1(A) = 1 = σ2(B). Hence, by using the the same argument of [13, Section
7.1] for A = B = e, we have that

αi = βi ∈ Z for i = 1, · · · , a, and α = β ∈ N.

Moreover, if k = 1 then we can take α = β = 1 (up to essential isomorphism).
Next, we consider the following part in K (if k ≥ 2):

R1 =

{(
A, e,

(
J 0
0 σ1(A)

)
, 1

) ∣∣∣∣∣ A ∈ S1

}

≡

{(
B, e,

(
J 0
0 σ2(B)

)
, 1

) ∣∣∣∣∣ B ∈ S2

}
= R2,

where e ∈
∏a

i=1 S(U(li) × U(1)) is the identity element and J ∈ U(k − 1) such
that J = Ik−1 (if σs(Cs) = 1) or det J = −1 with J2 = Ik−1 (if σs(Cs) = −1) for
s = 1, 2 and C1 = A, C2 = B. For R1 and R2, we can easily show the following
isomorphisms (not identity in G):

S1 ≃ R1, S2 ≃ R2.

Because R1 ≡ R2, we see that

S1 = S2 ⊂ K1 ∩ K2

10



by the definition of Ss, i.e., we can regard K1 = K2 in G. If k = 1, then we can apply
the same above argument by taking the set {(A, e, σ1(A))} ≡ {(B, e, σ2(B))},
and we can regard K1 = K2. Therefore, by using the above argument, we have
σ1 = σ2. Moreover, K is as follows:

K =

{(
A, (t1, · · · , ta),

(
X 0
0 x

)
, t

) ∣∣∣∣∣ σ1(A)xtα1
1 · · · tαa

a tα = 1

}

As the result of the above argument, the tubular neighborhood Xs = G×Ks D2k

(s = 1, 2) is equivariantly diffeomorphic to the following manifold:

b∏
j=1

S2mj ×A

(
a∏

i=1

S2li+1 ×T a D(Ck
a)

)
,(3.1)

where T a acts on
∏a

i=1 S2li+1 naturally, and on D(Ck
a) by a : (t1, · · · , ta) 7→

tα1
1 · · · tαa

a ; and A = A1 = A2(≃ S1/So
1 = S2/So

2 ) acts on
∏b

j=1 S2mj as the sub-

group of
∏b

j=1 Z2, and on D(Ck
a) by σC : A → {±1} (induced by σ1). Here,

G =
∏b

j=1 SO(2mj + 1) ×
∏a

i=1 SU(li + 1) × SU(k) × T 1 acts on this manifold as

follows:
∏b

j=1 SO(2mj + 1) acts on
∏b

j=1 S2mj naturally;
∏a

i=1 SU(li + 1) acts on∏a
i=1 S2li+1 naturally; and SU(k) × T 1 acts on D(Ck

a) by (A, t) 7→ Atα ∈ U(k).
Next, we analyze attaching maps f : ∂X1 → ∂X2. Because of α ∈ N, we have

N(K; G)/N(K; G)o ≃
b∏

j=1

Z2 ×
a∏

i=1

Wli+1,

where
∏b

j=1 S(O(2mj) × O(1))/SO(2mj) ≃
∏b

j=1 Z2 and

Wli+1 =
{

{Ili+1} if li ≥ 2 or αi ̸= 0
S2 if li = 1 and αi = 0.

Here, the above S2(≃ Z2) is the Weyl group of SU(2). Therefore, by the same
argument as [13, Section 8.2], we can show that I ◦ f : ∂X1 → ∂X1 is extendable
to the equivariant map X1 → X1, where I : G/K = ∂X2 → ∂X1 = G/K is the
identity attaching map. Hence, M(f) ∼= M(I) for all attaching maps f by the
Uchida’s criterion (2). As the result, we have that if the case (1) holds for (M, G),
then such (M, G) is only determined by the representations a : T a → T 1 and
σC : A → {±1} (up to essential isomorphism), i.e., if we fix the representations a
and σC, then (M, G) is unique up to essential isomorphism. Thus, we have that
such manifold M and G are as follows (up to essential isomorphism):

M =
b∏

j=1

S2mj ×A

(
a∏

i=1

S2li+1 ×T a S(Ck
a ⊕ R)

)
,

G =
b∏

j=1

SO(2mj + 1) ×
a∏

i=1

SU(li + 1) × U(k),

by computing the orbits G/K, G/K1 and G/K2. This corresponds with the first
case of Theorem 3.1.
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3.4. The case (1)-(b). In this subsection, we study the case (1)-(b), that is,

• G =
∏b

j=1 SO(2mj + 1) ×
∏a−1

i=1 SU(li + 1) × SU(k1) × SU(k2) × T 1,
• K1 = S1 ×

∏a−1
i=1 S(U(li) × U(1)) × SU(k1) × S(U(k2 − 1) × U(1)) × T 1,

• K2 = S2 ×
∏a−1

i=1 S(U(li) × U(1)) × S(U(k1 − 1) × U(1)) × SU(k2) × T 1,

where
∏b

j=1 SO(2mj) ⊂ Ss ⊂
∏b

j=1 S(O(2mj) × O(1)), dimG/Ks = 2n − 2ks and
ks ≥ 1 for s = 1, 2.

In order to know the precise structure of K, we analyze the slice representation
σs : Ks → SO(2ks). The following property can be proved similarly to that of the
case (1)-(a) (see Section 3.2, 3.3):

σs(S(U(li) × U(1))) = {I2ks} or Z(U(ks)) ⊂ U(ks) for all i = 1, · · · , a − 1;
σs(S(U(kr − 1) × U(1))) = {I2ks} or Z(U(ks)) ⊂ U(ks);
σs(SU(ks) × T 1) = U(ks);
σs(Ss) = σC(As) ⊂ {±1},

where s + r = 3 and s, r ≥ 1. Therefore, K satisfies that

K ≡ σ−1
1 (U(k1 − 1))

=

{(
A, (t1, · · · , ta−1),

(
C 0
0 c

)
,

(
X 0
0 x

)
, t

) ∣∣∣∣∣ σ1(A) = tα1
1 · · · tαa−1

a−1 xαatαc

}
≡ σ−1

2 (U(k2 − 1))

=

{(
B, (t1, · · · , ta−1),

(
Y 0
0 y

)
,

(
D 0
0 d

)
, t

) ∣∣∣∣∣ σ2(B) = tβ1
1 · · · tβa−1

a−1 yβatβd

}
,

where A ∈ S1, B ∈ S2, (t1, · · · , ta−1) ∈
∏a−1

i=1 S(U(li) × U(1)), and C, Y ∈
U(k1 − 1), D, X ∈ U(k2 − 1), x, y, c, d ∈ T 1 such that xdet X = y det Y =
c detC = d det D = 1.

By the same argument as [13, Section 7.2] for σ1(A) = 1 = σ2(B), we see that

αi = βi ∈ Z for i = 1, · · · , a − 1, and αa = βa = 1 and α = β ∈ N.

Moreover, if k1 = 1 or k2 = 1, then we have that α = 1 or β = 1, respectively.
Using the method similar to that demonstrated in Section 3.3, we can also prove

S1 = S2 ⊂ K1 ∩ K2,

and σ1|S1 = σ2|S2 (i.e., the restricted representations are the same representations).
Hence, K is as follows:

K =

{(
A, (t1, · · · , ta−1),

(
Y 0
0 y

)
,

(
X 0
0 x

)
, t

) ∣∣∣∣∣ σ1(A)tα1
1 · · · tαa−1

a−1 xytα = 1

}
.

As the result of the above argument, the tubular neighborhood Xs = G ×Ks

D2ks (s = 1, 2) is equivariantly diffeomorphic to the following manifold:
b∏

j=1

S2mj ×A

(
a−1∏
i=1

S2li+1 ×T a−1 D(Cks

b )

)
× CP (kr − 1),

where T a−1 acts on
∏a−1

i=1 S2li+1 naturally and on D(Cks

b ) by b : (t1, · · · , ta−1) 7→
tα1
1 · · · tαa−1

a−1 , A(= As ≃ Ss/So
s ) acts on

∏b
j=1 S2mj as the subgroup of

∏b
j=1 Z2

and on D(Cks

b ) by σC : A → {±1}, and s + r = 3 for s, r ≥ 1. Here, G =
12



∏b
j=1 SO(2mj +1)×

∏a−1
i=1 SU(li +1)×SU(ks)×T 1×SU(kr) acts on this manifold

as follows:
∏b

j=1 SO(2mj +1) acts on
∏b

j=1 S2mj naturally;
∏a−1

i=1 SU(li+1) acts on∏a−1
i=1 S2li+1 naturally; SU(ks)× T 1 acts on D(Cks

b ) by (A, t) 7→ Atα; and SU(kr)
acts on CP (kr − 1) naturally.

Next, we analyze attaching maps f : ∂X1 → ∂X2. In this case, we have

N(K; G)/N(K; G)o ≃
b∏

j=1

Z2 ×
a−1∏
i=1

Wli+1

where
∏b

j=1 S(O(2mj) × O(1))/SO(2mj) ≃
∏b

j=1 Z2 and

Wli+1 =
{

{Ili+1} if li ≥ 2 or αi ̸= 0
S2 if li = 1 and αi = 0.

This is the same as the case (1)-(a). Therefore, we can show the Uchida’s criterion
(2) for I ◦f . Hence, by using the similar argument to that demonstrated in Section
3.3, we have that (M, G) which satisfies the case (1)-(b) is unique up to essential
isomorphism if we fix the representations b and σC. Thus, we have that M and G
in the case (1)-(b) are as follows (up to essential isomorphism):

M =
b∏

j=1

S2mj ×A

(
a−1∏
i=1

S2li+1 ×T a−1 P (Ck1
b ⊕ Ck2)

)
,

G =
b∏

j=1

SO(2mj + 1) ×
a−1∏
i=1

SU(li + 1) × S(U(k1) × U(k2)).

This corresponds with the second case of Theorem 3.1.

3.5. The case (1)-(c). In this subsection, we study the case (1)-(c), that is,

• G =
∏b

j=1 SO(2mj + 1) ×
∏a

i=1 SU(li + 1) × SO(2k),
• K1 = S1 ×

∏a
i=1 S(U(li) × U(1)) × SO(2k),

• K2 = S2 ×
∏a

i=1 S(U(li) × U(1)) × SO(2k),

where
∏b

j=1 SO(2mj) ⊂ Ss ⊂
∏b

j=1 S(O(2mj) × O(1)), dimG/Ks = 2n − 2k and
k ≥ 2 for s = 1, 2.

In order to know the precise structure of K, we analyze the slice representation
σs : Ks → SO(2k) as well as the cases (1) and (2). By Section 3.2, we have the
followings for the slice representation σs : Ks → SO(2k):

σs(S(U(li) × U(1))) = {I2k} ⊂ SO(2k) for all i = 1, · · · , a;
σs(SO(2k)) = SO(2k);
σs(Ss) = σR(As) ⊂ {±I2k}.

Therefore, we have that K is the following subgroup:

K ≡ σ−1
1 (SO(2k − 1)) =

{(
A, (t1, · · · , ta),

(
E 0
0 e

)) ∣∣∣∣∣ σ1(A)e = 1

}

≡ σ−1
2 (SO(2k − 1)) =

{(
B, (t1, · · · , ta),

(
F 0
0 f

)) ∣∣∣∣∣ σ2(B)f = 1

}
,
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where A ∈ S1, B ∈ S2, (t1, · · · , ta) ∈
∏a

i=1 S(U(li)×U(1)), and E, F ∈ O(2k−1),
e, f ∈ O(1) such that edet E = f det F = 1.

Next, we consider the following part in K:

R1 =

{(
A, (1, · · · , 1),

(
σ1(A)I2k−1 0

0 σ1(A)

)) ∣∣∣∣∣ σ1(A) = ±1

}

≡

{(
B, (1, · · · , 1),

(
σ2(B)I2k−1 0

0 σ2(B)

)) ∣∣∣∣∣ σ2(B) = ±1

}
= R2.

By using R1, R2 and the method similar to that demonstrated in Section 3.3 (the
case (1)-(a)), we can regard K1 = K2 in G and σ1 = σ2. Hence, K is as follows:

K =
a∏

i=1

S(U(li) × U(1)) ×

{(
A,

(
X 0
0 x

))
∈ S1 × S(O(2k − 1) × O(1))

∣∣∣∣∣ σ1(A)x = 1

}
As the result of the above argument, the tubular neighborhood Xs = G×Ks D2k

(s = 1, 2) is equivariantly diffeomorphic to the following manifold:

a∏
i=1

CP (li) ×

 b∏
j=1

S2mj ×A D(R2k)

 ,(3.2)

where A(= As ≃ Ss/So
s ) acts on

∏b
j=1 S2mj as the subgroup of

∏b
j=1 Z2 and on

D(R2k) by σR : A → {±I2k}. Here, G =
∏b

j=1 SO(2mj + 1) ×
∏a

i=1 SU(li +
1)×SO(2k) acts on this manifold as follows:

∏a
i=1 SU(li + 1) acts on

∏a
i=1 CP (li)

naturally;
∏b

j=1 SO(2mj + 1) acts on
∏b

j=1 S2mj naturally; and SO(2k) acts on
D(R2k) naturally.

Next, we analyze attaching maps f : ∂X1 → ∂X2. In this case, we have

N(K; G)/N(K; G)o ≃
b∏

j=1

Z2 ×
a∏

i=1

Wli × W,

where W = S(O(2k − 1) × O(1))/SO(2k − 1) = {I2k, −I2k} ≃ Z2, and

Wli+1 =
{

{Ili+1} if li ≥ 2 or αi ̸= 0
S2 if li = 1 and αi = 0.

Therefore, by the same argument of [13, Section 8.4], we can show the Uchida’s
criterion (2) for I ◦ f . Hence, by using the similar argument to that demonstrated
in Section 3.3, we have that (M, G) which satisfies the case (1)-(c) is unique up to
essential isomorphism if we fix the representation σR. Thus, we have that M and
G in the case (1)-(c) are as follows (up to essential isomorphism):

M =
b∏

j=1

S2mj ×A

(
a∏

i=1

CP (li) × S(R2k ⊕ R)

)
,

G =
b∏

j=1

SO(2mj + 1) ×
a∏

i=1

SU(li + 1) × SO(2k).

This corresponds with the third case of Theorem 3.1.
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4. Preliminary for the cases (2) and (3)

In this section, we prepare to classify the other cases, i.e., G/K1 is a torus
manifold but G/K2 is not a torus manifold (the cases (2) and (3)). Henceforth,
we assume that G/K2 is not a torus manifold. In this case, G/K2 ∩ MT = ∅,
by using Lemma 2.1. It follows that T ⊂ G (a maximal torus) but T ̸⊂ Ko

2 , i.e.,
rank G > rank Ko

2 .
We first prove that dimG/Ko

2 = dimG/K2 is odd. Because G/K1 is a torus
manifold, we can apply the same argument which is demonstrated in Section 3 to
get K (also see Section 4.1). By using K’s in Section 3, we can easily show the
following formula:

rank G = rank Ko
1 = rank Ko + 1.

Let T ′ ⊂ Ko be a maximal torus such that T ′ ⊂ T . If T ′ is not a maximal torus
in Ko

2 , then we have rank Ko
2 = rank Ko + 1 by using T ′ ⊂ Ko ⊂ Ko

2 ⊂ G and
the above formula. However, this gives a contradiction to rank G > rank Ko

2 .
Therefore, we have rank Ko

2 = rank Ko. Due to [7, Theorem 1.1], we also have
dim Ko

2/Ko is even. Thus, by considering the fibration: Ko
2/Ko → G/Ko → G/Ko

2

and dimG/Ko = 2n − 1, we have that dimG/Ko
2 = dim G/K2 is odd. Hence, we

can put

dim G/K2 = 2n − 2k2 + 1

for k2 ≥ 1. Remark that if k2 = 1 then this is in the case (2): G/K2 is an
exceptional orbit, otherwise this is in the case (3): G/K2 is a singular orbit.

Since our G-action on M has codimension 1 orbits, we have that

K2/K ∼= S2k2−2

in each case.
In summary, we have the following lemma.

Lemma 4.1. Suppose a torus manifold (M, T ) has codimension 1 extended
G-actions. If G/K2 is not a torus manifold, then

dim G/K2 = 2n − 2k2 + 1, K2/K ∼= S2k2−2,

for k2 ≥ 1.

4.1. Structures of G/K1 and their tubular neighborhoods of the cases
(2) and (3). The main part to classify the cases (2) and (3) is to determine the
group K2 and its inclusion K2 ⊂ G. From the next section, We will determine
K2 ⊂ G by making use of the relation K ⊂ K2 ⊂ G and the classification result of
the transitive action on S2k2−2. In this subsection, we recall G, K1 and K; and in
the next subsection, we give an important remark for the attaching map.

Let dim G/K1 = 2n − 2k1 for k1 ≥ 1. By Lemma 2.2, 2.3 and Remark 2.4, we
have (G, K1) as the following two cases:

(a): G =
∏b

j=1 SO(2mj + 1) ×
∏a

i=1 SU(li + 1) × SU(k1) × T 1, and K1 =
S1 ×

∏a
i=1 S(U(li) × U(1)) × SU(k1) × T 1 for k1 ≥ 1;

(b): G =
∏b

j=1 SO(2mj + 1) ×
∏a

i=1 SU(li + 1) × SO(2k1), and K1 = S1 ×∏a
i=1 S(U(li) × U(1)) × SO(2k1) for k1 ≥ 2.

We call them the case (a) and (b) respectively.
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4.1.1. The case (a). For the principal isotropy subgroup K of the case (a), we
can easily show the following by using the same argument in Section 3.3:

K =

{(
A, (t1, · · · , ta),

(
X 0
0 x

)
, t

) ∣∣∣∣∣ σ1(A)xtα1
1 · · · tαa

a tα = 1

}
,

where A ∈ S1, (t1, · · · , ta) ∈
∏a

i=1 S(U(li)×U(1)), t ∈ T 1 and X ∈ U(k1−1) such
that x detX = 1. Here, σ1(A) ⊂ {±1} ⊂ S1 and (α1, · · · , αa, α) ∈ Za×N. If k1 =
1, then we can take α = 1. Therefore, a tubular neighborhood X1 = G ×K1 D2k1

of the case (a) is equivariantly diffeomorphic to the following manifold defined in
(3.1):

b∏
j=1

S2mj ×A1

(
a∏

i=1

S2li+1 ×T a D(Ck1
c )

)
.(4.1)

Remark that from this section we write the representation a : T a → S1 as c.
4.1.2. The case (b). For the principal isotropy subgroup K of the case (b), we

can easily show the following by using the same argument in Section 3.5:

K =
a∏

i=1

S(U(li) × U(1))

×

{(
A,

(
X 0
0 x

))
∈ S1 × S(O(2k1 − 1) × O(1))

∣∣∣∣∣ σ1(A)x = 1

}
.

Hence, a tubular neighborhood X1 = G ×K1 D2k1 of the case (b) is equivariantly
diffeomorphic to the following manifold defined in (3.2):

a∏
i=1

CP (li) ×

 b∏
j=1

S2mj ×A1 D(R2k1)

 .(4.2)

4.2. Important remark for the attaching maps of the cases (2) and
(3). Before we go to the next section, we give the following important remark for
the attaching maps f : G/K = ∂X1 → ∂X2 = G/K.

Remark 4.2. In each above case (a) and (b), we see that N(K; G)/N(K;G)o is
the same as one of the cases (1)-(a), (1)-(b) and (1)-(c). Therefore, we have already
proved the Uchida’s criterion (2) for I ◦ f in Section 3, that is, I ◦ f : ∂X1 → ∂X1

is extendable to the equivariant map X1 → X1. Hence, once we know X1 and X2

for the cases (2) and (3), then a G-diffeomorphism M(f) ∼= M(I) always holds, i.e.,
the constructing manifold X1 ∪ X2 is unique. It follows that, for the cases (2) and
(3), we may only analyse the structure of X2 = G ×K2 D2k2−1.

In the next six sections (the case (2) in Section 5, 6, 7; the case (3) in Section
8, 9, 10), we will analyze K2 and its slice representation σ2 : K2 → O(2k2 − 1) of
the cases (2) and (3).

5. Main theorem and remarks of the case (2)

The goal of this section is to state the main theorem and give some remarks of
the case (2). In this section and the next two sections, we assume that the other
singular orbit G/K2 is an exceptional orbit, i.e., dimG/K2 = dim G/K = 2n − 1.
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Then we have k2 = 1 and K2/K ∼= S0 by Lemma 4.1. Due to [1, 3.2 Theorem (ii)
in Chapter IV], we have that K is a normal subgroup of K2, i.e.,

K ⊂ K2 ⊂ N(K; G),(5.1)

where N(K; G) is the normalizer of K in G.

5.1. Main theorem of the case (2). Before we state the main theorem, we
prepare some notations (also see Section 3.1). Let A be a subgroup of

∏b
j=1 Z2,

where
∏b

j=1 Z2 is generated by the antipodal involutions on S2mj for j = 1, · · · , b.
The subgroup ∆ in S1 × O(1) (resp. in SO(2k1) × O(1)) denotes the diagonal
subgroup {(1, 1), (−1, −1)} (resp. {(I2k1 , 1), (−I2k1 , −1)}), and the subgroup
O(1) in S1×O(1) (resp. in SO(2k1)×O(1)) denotes the subgroup {(1, 1), (1, −1)}
(resp. {(I2k1 , 1), (I2k1 , −1)}). Now we may state the main theorem of this case.

Theorem 5.1. Suppose a torus manifold M has a codimension one extended
G-action. If there is an exceptional orbit, then (M, G) is essentially isomorphic to b∏

j=1

S2mj ×A×Z2 N,
b∏

j=1

SO(2mj + 1) × H

 ,

such that (N, H) is one of the followings:

N H

(a)
(∏a

i=1 S2li+1
)
×T a S(Ck1

c ⊕ R)
∏a

i=1 SU(li + 1) × U(k1)
(b)

∏a
i=1 CP (li) × S(R2k1 ⊕ R)

∏a
i=1 SU(li + 1) × SO(2k1)

where A acts on
∏b

j=1 S2mj as the subgroup
∏b

j=1 Z2 and on the fibre of N through
the following representations:

(a): σC : A → {±1} ⊂ S1 on S(Ck1
c ⊕ R) ∩ Ck1

c ;
(b): σR : A → {±I2k1} ⊂ SO(2k1) on S(R2k1 ⊕ R) ∩ R2k1 ;

respectively, and Z2 (i.e., the second factor of A× Z2) acts on
∏b

j=1 S2mj through

the representation ρ : Z2 →
∏b

j=1 Z2 which satisfies ρ(Z2) ∩ A = {1} and on the
fibre of N through the following representations:

(a): σC⊕R : Z2 → {±1} × O(1) ⊂ S1 × O(1) on Ck1
c ⊕ R;

(b): σR⊕R : Z2 → {±I2k1} × O(1) ⊂ SO(2k1) × O(1) on R2k1 ⊕ R;
respectively, such that σ(= σC⊕R, σR⊕R) and ρ satisfy one of the followings:

(i): ρ is non-trivial, and σ(Z2) = O(1) or σ(Z2) = ∆;
(ii): ρ is trivial, and σ(Z2) = ∆.

Here, G-actions of (a), (b) are the same as Theorem 3.1 (a), (c), respectively.

Remark 5.2. All manifolds appeared in Theorem 5.1 (a), (b) are Z2-quotient
of manifolds appeared in Theorem 3.1 (a), (c), respectively. These Z2-actions are
defined by ρ × σ in Theorem 5.1. Moreover, we remark that torus actions of
manifolds in Theorem 3.1 (a), (c) have the next property: two singular orbits
are same (diffeomorphic to G/H). By the Z2-quotient defined in Theorem 5.1,
these two same singular orbits in Theorem 3.1 (a), (c) go to just one singular orbit
G/K1. Then G/K1 can be regarded as Z2\G/H (if ρ is non-trivial) or G/H (if ρ
is trivial).
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In order to prove Theorem 5.1, we divide this case (2) into two cases which
correspond with the case (a) and (b) for the type of K1 (see Section 4). We call
them the case (2)-(a) and (2)-(b), respectively, i.e., the case (2)-(a) is that G/K2

is an exceptional orbit and G/K1 satisfies the case (a), and the case (2)-(b) is that
G/K2 is an exceptional orbit and G/K1 satisfies the case (b).

In Section 6 and 7, we study the case (2)-(a) and (2)-(b), respectively. Before
we go to Section 6, we give some technical remarks to study the case (2).

5.2. Remarks of the case (2). We have already analysed X1 and attaching
map f : ∂X1 → ∂X2 in Section 4.1.1, 4.1.2 and 4.2; therefore, in order to construct
a G-manifold M = X1 ∪f X2, we may only analyse X2 = G ×K2 D(R), where
D(R) = D1 ⊂ R (1-dimensional disk).

Because K2/K ≃ S0 and G/K2 is an exceptional orbit, we can easily show that
the slice representation σ2 : K2 −→ O(1) always satisfies the following properties:

• σ2 is surjective;
• kerσ2 = K.

Hence, a tubular neighborhood X2 = G×K2 D(R) is only determined by the inclu-
sion K2 ⊂ G. Therefore, we may only analyse the inclusion K ⊂ K2 ⊂ N(K;G),
(see (5.1)) in the case (2). So we first need to compute N(K; G). In the remainder
of this section, we compute N(K; G) in the cases (2)-(a) and (2)-(b).

First we assume that K is in the case (2)-(a) (see Section 4.1.1). Because of
the definition of K in the case (2)-(a), we have that N(K; G) is as follows:

N(K;G) =
b∏

j=1

S(O(2mj) × O(1)) ×
∏
i∈I

Wi ×
∏

i′∈I′

S(U(li′) × U(1))

×S(U(k1 − 1) × U(1)) × T 1,

where if li = 1 and αi = 0 then i ∈ I, otherwise i′ ∈ I ′ (I ∪ I ′ = {1, · · · , a}),
and Wi = N(S(U(1) × U(1));SU(2)) for i ∈ I. However, if li = 1 and αi = 0
then we can regard SU(2) as SO(3) up to essential isomorphism (SU(2) ≈ SO(3)).
Regarding {1, · · · , b}∪ I as {1, · · · , b} and I ′ as {1, · · · , a} again, we can write
N(K; G) as follows:

N(K; G) =
b∏

j=1

S(O(2mj) × O(1))(5.2)

×
a∏

i=1

S(U(li) × U(1)) × S(U(k1 − 1) × U(1)) × T 1.

Next we assume that K is in the case (2)-(b) (see Section 4.1.2). By the similar
argument of the case (2)-(a), we can regard N(K; G) in the case (2)-(b) as follows:

N(K;G) =
b∏

j=1

S(O(2mj) × O(1))(5.3)

×
a∏

i=1

S(U(li) × U(1)) × S(O(2k1 − 1) × O(1)).

In the next two sections, we will analyse K ⊂ K2 ⊂ N(K; G).
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6. The case (2)-(a)

In this section, we study the case (2)-(a). From Section 4.1.1, we have that

G =
b∏

j=1

SO(2mj + 1) ×
a∏

i=1

SU(li + 1) × SU(k1) × T 1,

K1 = S1 ×
a∏

i=1

S(U(li) × U(1)) × SU(k1) × T 1,

K =

{(
A, (t1, · · · , ta),

(
X 0
0 x

)
, t

) ∣∣∣∣∣ σ1(A)tα1
1 · · · tαa

a xtα = 1

}
.

The elements of K are often denoted by (A, (t1, · · · , ta), x, t) simply.
In order to analyse the inclusion K ⊂ K2 ⊂ N(K; G) (see (5.2) for N(K; G)),

we first define p1 and p2 as the following two natural projections:

p1 : N(K;G) −→
b∏

j=1

S(O(2mj) × O(1));

p2 : N(K; G) −→
a∏

i=1

S(U(li) × U(1)) × S(U(k1 − 1) × U(1)) × T 1.

Then we can easily prove the following lemma.

Lemma 6.1. For p1, p2 and K, the following properties hold:

(1) the image of K by p1 satisfies p1(K) = S1;
(2) if σ1(S1) = {1}, then K = S1 × p2(K) and

p2(K) = {((t1, · · · , ta), x, t) | tα1
1 · · · tαa

a xtα = 1};
(3) if σ1(S1) = {±1}, then (S1 × p2(K))/K ≃ Z2 and

p2(K) = {((t1, · · · , ta), x, t) | tα1
1 · · · tαa

a xtα = ±1}.

Proof. We define R1 ⊂ K as follows (also see Section 3.3):

R1 =

{(
A, e,

(
J 0
0 σ1(A)

)
, 1

) ∣∣∣∣∣ A ∈ S1

}
where e ∈

∏a
i=1 S(U(li) × U(1)) is the identity element and J ∈ U(k1 − 1) such

that J = Ik1−1 (if σ1(A) = 1) or det J = −1 with J2 = Ik1−1 (if σ1(A) = −1).
Then R1 ≃ S1. It follows that the first statement holds. The second and third
statements are proved by the definition of K and the first property p1(K) = S1. ¤

Let S2 be a subgroup of
∏b

j=1 S(O(2mj)×O(1)) such that S2/S1 ≃ Z2. Because
K2/K ≃ S0, for ps(K2) and ps(K) (s = 1, 2), one of the following four cases occurs:

(i): p1(K2) = S2, and p2(K2) = p2(K);
(ii): p1(K2) = p1(K) = S1, and p2(K2)/p2(K) ≃ Z2;
(iii): p1(K2) = p1(K) = S1, and p2(K2) = p2(K);
(iv): otherwise, i.e., p1(K2) = S2, and p2(K2)/p2(K) ≃ Z2.

We call the above cases the case (2)-(a)-(i), (2)-(a)-(ii), (2)-(a)-(iii) and (2)-(a)-(iv),
respectively.
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6.1. The case (2)-(a)-(i). Suppose the case (2)-(a)-(i) occurs, that is,

p1(K2)/p1(K) = S2/S1 ≃ Z2, and
p2(K2) = p2(K) = {((t1, · · · , ta), x, t) | tα1

1 · · · tαa
a xtα ∈ σ1(S1) ⊂ {±1}}.

Because K ⊂ p1(K)× p2(K) and K2 ⊂ p1(K2)× p2(K2), in this case we have that

K ⊂ S1 × p2(K), K ⊂ K2 ⊂ S2 × p2(K).(6.1)

First we assume σ1(S1) = {±1}, then (S1×p2(K))/K ≃ Z2 by Lemma 6.1 (3).
Therefore, #(S2×p2(K))/K = 4 by S2/S1 ≃ Z2 and K ⊂ S1×p2(K) ⊂ S2×p2(K)
(where #F is the number of the finite group F ). Hence, by making use of K2/K ≃
S0 and (6.1), we also have

(S2 × p2(K))/K2 ≃ Z2.(6.2)

Because p1(K2) = S2, K ⊂ K2 ∩ (S1 × p2(K)) ⊂ K2 and K2/K ≃ S0, we also have

K2 ∩ (S1 × p2(K)) = K.(6.3)

Now we define the representation ρ : S1 × p2(K) → Z2 as follows:

ρ(A, (t1, · · · , ta), x, t) = σ1(A)tα1
1 · · · tαa

a xtα.

By the definition of K, we have ker ρ = K. Let ρ̃ : S2 × p2(K) → Z2 be a lift
of this representation, i.e., the restricted representation ρ̃|S1×p2(K) coincides with
ρ. Because S2/S1 ≃ Z2 and ρ|p2(K) = ρ̃|p2(K), this lift ρ̃ is only determined by a
representation σ2 : S2 → Z2 such that σ2|S1 = σ1. Hence, we have the following
lemma.

Lemma 6.2. Let ρ̃ : S2 × p2(K) → Z2 be a lift of ρ. Then there is a represen-
tation σ2 : S2 → Z2 such that σ2|S1 = σ1 and ρ̃ is denoted as follows:

ρ̃(B, (t1, · · · , ta), x, t) = σ2(B)tα1
1 · · · tαa

a xtα.

On the other hand, by (6.2), there is the following sequence:

K2

ei−→ S2 × p2(K) er−→ Z2,

where ĩ is an inclusion and r̃ is the surjective representation induced by the pro-
jective representation S2 × p2(K) → (S2 × p2(K))/K2. Let r be the restricted
representation r̃|S1×p2(K). Using (6.3), we see that the representation r is induced
by the natural surjection S1 × p2(K) → (S1 × p2(K))/K, i.e., there is the following
restricted sequence:

K
i−→ S1 × p2(K) r−→ Z2,

where i is the natural inclusion. By the definition of K, we have that r can be
identified with ρ. Therefore, by Lemma 6.2, we have that r̃ = ρ̃ for some σ2 : S2 →
Z2. In other wards, there is the representation σ2 : S2 → Z2 such that

K2 = ker ρ̃(= ker r̃)(6.4)

=

{(
B, (t1, · · · , ta),

(
X 0
0 x

)
, t

) ∣∣∣∣∣ σ2(B)tα1
1 · · · tαa

a xtα = 1

}
.

Next we assume σ1(S1) = {1}, then K = S1×p2(K) by Lemma 6.1 (2). Hence,
by using (6.1) and the assumption of the case (2)-(a)-(i), we have

K2 = S2 × p2(K).
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We can regard this case as the case that σ2(S2) = {1} in Eq.(6.4).
Therefore, in the case (2)-(a)-(i), the inclusion K2 ⊂ N(K;G) is completely

determined by the subgroup S2 ⊂
∏b

j=1 S(O(2mj) × O(1)) and the representation
σ2 : S2 → Z2 such that σ2|S1 = σ1. Hence, using (4.1) and Remark 4.2, we can
easily check the following manifold corresponds with M = X1 ∪ X2 up to essential
isomorphism (by computing orbit types of the natural G =

∏b
j=1 SO(2mj + 1) ×∏a

i=1 SU(li + 1) × U(k1) action):

M =
b∏

j=1

S2mj ×A×Z2

(
a∏

i=1

S2li+1 ×T a S(Ck1
c ⊕ R)

)
,

where A = A1 ≃ S1/
∏b

j=1 SO(2mj) and the A-quotient is defined by the following
actions:

• on
∏b

j=1 S2mj as the subgroup of
∏b

j=1 Z2;
• on Ck1

c through the representation σ1 : A → Z2 (this representation is
induced by σ1 : S1 → Z2);

• on R trivially,
and the Z2-quotient is defined by the following actions:

• on
∏b

j=1 S2mj by a non-trivial representation ρ : Z2 →
∏b

j=1 Z2 which
satisfies ρ(Z2) ∩ A = {1} (this corresponds with p1(K2) = S2);

• on Ck1
c by a representation σ2 : Z2 → {±1}, where if σ1 is trivial then σ2 is

also trivial (this corresponds with that if σ1(S1) = {1} then σ2(S2) = {1});
• on R by the natural representation (this corresponds with the existence

of an exceptional orbit).

Remark that A×Z2 acts on
∏b

j=1 S2mj freely because ρ is non-trivial and satisfies
ρ(Z2) ∩ A = {1}; therefore, M is a manifold, more precisely a fibre bundle over∏b

j=1 S2mj /(A× Z2) with the fibre
∏a

i=1 S2li+1 ×T a S(Ck1
c ⊕ R).

6.2. The case (2)-(a)-(ii). Suppose the case (2)-(a)-(ii) occurs, that is,

p1(K2) = p1(K) = S1 and
p2(K2)/p2(K) ≃ Z2.

First we prove the following lemma.

Lemma 6.3. Suppose that p2(K2)/p2(K) ≃ Z2. Then the inclusion p2(K2) ⊂
p2(N(K; G)) is unique. Furthermore, we have

p2(K2) =

{(
(t1, · · · , ta),

(
X 0
0 x

)
, t

) ∣∣∣∣∣ tα1
1 · · · tαa

a xtα ∈ Zm

}
,

where m = 2 if σ1(S1) = {1} or m = 4 if σ1(S1) = {±1}.

Proof. We first remark that σ1(S1) ⊂ {±1}, by Section 4.1.1.
Consider the following surjective representation σ : p2(N(K; G)) =

∏a
i=1 S(U(li)×

U(1)) × S(U(k1 − 1) × U(1)) × T 1 → S1 (induced by the slice representation σ1):

σ

(
(t1, · · · , ta),

(
X 0
0 x

)
, t

)
= tα1

1 · · · tαa
a xtα (or tα1

1 · · · tαa
a t for k1 = 1).

Then we see that p2(K) = σ−1(σ1(S1)) ⊂ p2(K2) by the definition of K. Therefore,
we have that σ(p2(K)) = σ1(S1) ⊂ σ(p2(K2)).
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Because p2(K2)/p2(K) ≃ Z2, we also have that

σ(p2(K2))/σ(p2(K)) ⊂ Z2(⊂ σ(p2(N(K; G)))/σ(p2(K)) ≃ S1).

If σ(p2(K2))/σ(p2(K)) = {1} ⊂ Z2, then σ(p2(K2)) = σ(p2(K)) = σ1(S1). Hence,
we have p2(K2) ⊂ σ−1(σ1(S1)) = p2(K). However, this gives a contradiction,
because p2(K2)/p2(K) ≃ Z2. Therefore, we have

σ(p2(K2))/σ(p2(K)) = Z2 ⊂ S1.

It follows that there are the following two cases:
• if σ1(S1) = σ(p2(K)) = {1}, then σ(p2(K2)) = Z2 = {±1} ⊂ S1; hence,

p2(K2) ⊂ σ−1(Z2);
• if σ1(S1) = σ(p2(K)) = {±1}, then σ(p2(K2)) = Z4 = {±1, ±i} ⊂ S1;

hence, p2(K2) ⊂ σ−1(Z4).
Because p2(K2)/p2(K) ≃ Z2 and p2(K) = σ−1(σ1(S1)), we can easily show that
p2(K2) = σ−1(Z2) for the case σ1(S1) = {1} and p2(K2) = σ−1(Z4) for the case
σ1(S1) = {±1}. Hence, we have that the inclusion of p2(K2) ⊂ p2(N(K; G)) is
uniquely determined by σ−1(Z2) or σ−1(Z4). Thus, we have the statement of this
lemma. ¤

Assume σ1(S1) = {±1}. Then m = 4 by Lemma 6.3. Let ρ̃ : S1 ×p2(K2) → Z4

be the following representation:

ρ̃(A, (t1, · · · , ta), x, t) = σ1(A)tα1
1 · · · tαa

a xtα ∈ Z4.

We can easily show that ρ̃−1(Z2) = S1×p2(K) and ker ρ̃ = K. Because K2/K ≃ S0,
we also have ρ̃(K2) = Z2 ⊂ Z4. Hence, we have K2 ⊂ ρ̃−1(Z2) = S1 × p2(K).
However, this gives a contradiction, because p2(K2)/p2(K) ≃ Z2. Therefore, we
have σ1(S1) = {1}.

Thus, we have K = S1 × p2(K) by Lemma 6.1 (2). Because K2/K ≃ S0 ≃
Z2 ≃ p2(K2)/p2(K) and K ⊂ K2 ⊂ S1 × p2(K2), the subgroup K2 ⊂ N(K; G) in
the case (2)-(a)-(ii) is as follows:

K2 = S1 × p2(K2),

where p2(K2) is the group in Lemma 6.3 with m = 2. Hence, with a method similar
to that demonstrated in the case (2)-(a)-(i) (Section 6.1), we can easily check the
following manifold corresponds with M = X1 ∪ X2 up to essential isomorphism:

M =
b∏

j=1

S2mj ×A×Z2

(
a∏

i=1

S2li+1 ×T a S(Ck1
c ⊕ R)

)
,

where the A(= A1)-quotient is defined by the following actions:

• on
∏b

j=1 S2mj as the subgroup of
∏b

j=1 Z2;
• on Ck1

c trivially (this corresponds with that σ1(S1) = {1});
• on R trivially

and the Z2-quotient is defined by the following actions:

• on
∏b

j=1 S2mj trivially (this corresponds with p1(K2) = S1);
• on Ck1

c by a non-trivial representation σ2 : Z2 → {±1} (this corresponds
with p2(K2)/p2(K) ≃ Z2);

• on R by the natural representation.
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Remark that M is also G-equivariantly diffeomorphic to the following manifold
(where G =

∏b
j=1 SO(2mj + 1) ×

∏a
i=1 SU(li + 1) × U(k1)):

b∏
j=1

S2mj /A×

(
a∏

i=1

S2li+1 ×T a P (Ck1
c ⊕ R)

)
,

where P (Ck1
c ⊕ R) is the real projective space.

6.3. The case (2)-(a)-(iii). Suppose the case (2)-(a)-(iii) occurs, that is,

p1(K2) = p1(K) = S1 and
p2(K2) = p2(K).

For this case (iii), the following lemma holds.

Lemma 6.4. Suppose that the case (iii) occurs. Then σ1(S1) = {±1}, and
p2(K2) ⊂ p2(N(K; G)) is

p2(K2) = p2(K) =

{(
(t1, · · · , ta),

(
X 0
0 x

)
, t

) ∣∣∣∣∣ tα1
1 · · · tαa

a xtα = ±1

}
.

Furthermore, we have K2 = S1 × p2(K).

Proof. If σ1(S1) = {1}, then we have K = S1 × p2(K) by Lemma 6.1 (2). It
follows that K = p1(K2) × p2(K2) ⊃ K2 by the assumption of the case (iii). This
gives a contradiction to K2/K ≃ S0. Hence, we have σ1(S1) = {±1}. Moreover,
we have that

p2(K2) = p2(K) =

{(
(t1, · · · , ta),

(
X 0
0 x

)
, t

) ∣∣∣∣∣ tα1
1 · · · tαa

a xtα = ±1

}
by Lemma 6.1 (3).

By the definition of p1, p2 and the assumptions of the case (iii), we have the
following relation:

K ⊂ K2 ⊂ S1 × p2(K).

By the definition of K, we can easily check that (S1 × p2(K))/K ≃ Z2. Therefore,
we have K2 = S1 × p2(K). ¤

By using Lemma 6.4 and a method similar to that demonstrated in the previous
cases, we can easily check that the following manifold corresponds with M = X1∪X2

up to essential isomorphism:

M =
b∏

j=1

S2mj ×A×Z2

(
a∏

i=1

S2li+1 ×T a S(Ck1
c ⊕ R)

)
,

where the A(= A1)-quotient is defined by the following actions:

• on
∏b

j=1 S2mj as the subgroup of
∏b

j=1 Z2;
• on Ck1

c through the non-trivial representation σ1 : A → Z2 (this corre-
sponds with σ1(S1) = {±1});

• on R trivially,
and the Z2-quotient is defined by the following actions:

• on
∏b

j=1 S2mj trivially (this corresponds with p1(K2) = S1);
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• on Ck1
c by a non-trivial representation σ2 : Z2 → {±1} (this is known by

using σ1(S1) = {±1} and p2(K2) = p2(K));
• on R by the natural representation.

Remark that M is also G-equivariantly diffeomorphic to the following manifold as
well as the case (2)-(a)-(ii):

b∏
j=1

S2mj ×A

(
a∏

i=1

S2li+1 ×T a P (Ck1
c ⊕ R)

)
.

6.4. The case (2)-(a)-(iv). Suppose the case (2)-(a)-(iv) occurs, that is,

p1(K2)/p1(K) = S2/S1 ≃ Z2 and
p2(K2)/p2(K) ≃ Z2.

First, we remark that Lemma 6.3 can be used in this case because of p2(K2)/p2(K) ≃
Z2.

Assume σ1(S1) = {±1}. Then we have m = 4 for the group p2(K2) in Lemma
6.3. Let ρ̃ : S2 × p2(K2) → Z4 be the following representation:

ρ̃(B, (t1, · · · , ta), x, t) = σ2(B)tα1
1 · · · tαa

a xtα ∈ Z4,

where σ2 : S2 → Z4 is some representation such that σ2|S1 = σ1. Then we can
easily show that σ2 : S2 → Z2, i.e., the image of S2 is in Z2 ⊂ Z4, because∏b

j=1 SO(2mj) ⊂ ker σ1 ⊂ kerσ2 and S2/
∏b

j=1 SO(2mj) ⊂
∏b

j=1 Z2. Hence, we
have that

ker ρ̃ ⊂ S2 × p2(K).(6.5)

Consider the restricted representation ρ̃|K2 : K2 → Z4. Then we have the following
sequence:

K ⊂ ker ρ̃|K2 = ker ρ̃ ∩ K2 ⊂ K2

because of the definitions of K and σ2. Therefore, by K2/K ≃ S0, we have that
ker ρ̃|K2 = K2 or K. If ker ρ̃|K2 = K2, then we have p2(K2) = p2(K) by (6.5). This
gives a contradiction to p2(K2)/p2(K) = Z2. Hence, we have ker ρ̃|K2 = K. Then
we have

K2/K = K2/ ker ρ̃|K2 ≃ ρ̃(K2) = Z2 = {±1} ⊂ Z4.

It also follows that K2 ⊂ ρ̃−1(Z2) = S2 × p2(K); therefore, p2(K2) = p2(K). This
also gives a contradiction to p2(K2)/p2(K) = Z2. Thus, we have σ1(S1) = {1}.
Hence, by Lemma 6.1 (2), we have K = S1 × p2(K).

Because K2/K = K2/(S1 × p2(K)) ≃ Z2 and (S2 × p2(K2))/K ≃ Z2 ×Z2 (the
assumption of (2)-(a)-(iv)), we have that

(S2 × p2(K2))/K2 ≃ Z2.(6.6)

Again, we define ρ̃ : S2 × p2(K2) → Z2 × Z2 as follows:

ρ̃(B, (t1, · · · , ta), x, t) = (σ2(B), tα1
1 · · · tαa

a xtα) ∈ Z2 × Z2,

where σ2 : S2 → Z2 such that σ2|S1 = σ1. Then we have ker ρ̃ = K by K =
S1 × p2(K) and σ1(S1) = {1}. Because K2/K ≃ Z2, we have that ρ̃(K2) ≃ Z2, i.e.,
ρ̃(K2) = Z2 × {1}, {1} × Z2 or ∆ = {(1, 1), (−1, −1)}. If ρ̃(K2) = Z2 × {1} or
{1}×Z2, then this gives a contradiction to that p2(K2)/p2(K) = Z2 or p1(K2) = S1,
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respectively. Therefore, we have that ρ̃(K2) = ∆. Moreover, by using (6.6), the
subgroup K2 ⊂ S2 × p2(K2) can be denoted as follows:

ρ̃−1(∆) = K2 = {(B, t1, · · · , ta, x, t) | σ2(B)tαa
1 · · · tαa

a xtα = 1},
where σ2 : S2 → Z2 such that kerσ2 = S1. Hence K2 ⊂ N(K; G) is completely
determined by S2 and σ2 in the case (2)-(a)-(iv).

With a method similar to that demonstrated in the previous cases, we can
easily check the following manifold corresponds with M = X1 ∪ X2 up to essential
isomorphism:

M =
b∏

j=1

S2mj ×A×Z2

(
a∏

i=1

S2li+1 ×T a S(Ck1
c ⊕ R)

)
,

where the A(= A1)-quotient is defined by the following actions:

• on
∏b

j=1 S2mj as the subgroup of
∏b

j=1 Z2;
• on Ck1

c trivially (this corresponds with σ1(S1) = {1});
• on R trivially,

and the Z2-quotient is defined by the following actions:

• on
∏b

j=1 S2mj by a non-trivial representation ρ : Z2 →
∏b

j=1 Z2 which
satisfies ρ(Z2) ∩ A = {1} (this corresponds with p1(K2) = S2);

• on Ck1
c by a non-trivial representation σ2 : Z2 → {±1} (this corresponds

with p2(K2)/p2(K) ≃ Z2);
• on R by the natural representation.

Remark that M is also G-equivariantly diffeomorphic to the following manifold as
well as the previous cases:

b∏
j=1

S2mj /A×Z2

(
a∏

i=1

S2li+1 ×T a S(Ck1
c ⊕ R)

)
.

6.5. Summary of the results from (2)-(a)-(i) to (iv). In summary, we
can state the result of the case (2)-(a) as follows. Let (M, G) be the pair in the
case (2)-(a). Then (M, G) is essentially isomorphism to the followings:

M =
b∏

j=1

S2mj ×A×Z2

(
a∏

i=1

S2li+1 ×T a S(Ck1
a ⊕ R)

)
,

G =
b∏

j=1

SO(2mj + 1) ×
a∏

i=1

SU(li + 1) × U(k1),

where G acts on M naturally, and the A(= A1)-quotient is defined by the following
actions:

• on
∏b

j=1 S2mj as the subgroup of
∏b

j=1 Z2;
• on Ck1

c through the representation σ1(= σC) : A → Z2;
• on R trivially,

and the Z2-quotient is defined by the following actions:

• on
∏b

j=1 S2mj by a representation ρ : Z2 →
∏b

j=1 Z2 which satisfies
ρ(Z2) ∩ A = {1};

• on Ck1
c by a representation σ2 : Z2 → {±1};

25



• on R by the natural representation κ : Z2 → O(1),
where ρ or σ2 is always non-trivial, i.e., the case that both of two representations
ρ and σ2 are trivial does not occur. This corresponds with the first manifold in
Theorem 5.1, where σ2 ⊕ κ = σC⊕R.

7. The case (2)-(b)

In this section, we study the case (2)-(b). From Section 4.1.2, we have that

G =
b∏

j=1

SO(2mj + 1) ×
a∏

i=1

SU(li + 1) × SO(2k1),

K1 = S1 ×
a∏

i=1

S(U(li) × U(1)) × SO(2k1),

K =
a∏

i=1

S(U(li) × U(1))

×

{(
A,

(
X 0
0 x

))
∈ S1 × S(O(2k1 − 1) × O(1))

∣∣∣∣∣ σ1(A)x = 1

}

=
a∏

i=1

S(U(li) × U(1)) × K ′.

An element in S1×S(O(2k1−1)×O(1)) is often denoted by (A, x). In this case, by
Section 5.2, we may only analyze the inclusion of K2 such that K ⊂ K2 ⊂ N(K; G)
and N(K; G) is known as (5.3).

Because K ⊂ K2 ⊂ N(K; G) and K2/K ≃ S0, we have that

K2 =
a∏

i=1

S(U(li) × U(1)) × K ′
2,

where K ′
2 ⊂

∏b
j=1 S(O(2mj)×O(1))×S(O(2k1−1)×O(1)) such that K ′

2/K ′ ≃ Z2.
Let p1 and p2 be the following two natural projections:

p1 :
b∏

j=1

S(O(2mj) × O(1)) × S(O(2k1 − 1) × O(1)) −→
b∏

j=1

S(O(2mj) × O(1));

p2 :
b∏

j=1

S(O(2mj) × O(1)) × S(O(2k1 − 1) × O(1)) −→ S(O(2k1 − 1) × O(1)).

Similarly to Lemma 6.1, we can easily prove the following lemma.

Lemma 7.1. For p1, p2 and K ′, the following properties hold:
(1) the image of K ′ by p1 satisfies p1(K ′) = S1;
(2) if σ1(S1) = {1}, then p2(K ′) = SO(2k1 − 1) and K ′ = S1 × SO(2k1 − 1);
(3) if σ1(S1) = {±1}, then p2(K ′) = S(O(2k1−1)×O(1)) and (S1×S(O(2k1−

1) × O(1)))/K ′ ≃ Z2.

Proof. The first statement is proved by making use of the subgroup R1 in
Section 3.5. The second and third statements are proved by the definition of K ′

and the first property p1(K ′) = S1. ¤
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Because K ′
2/K ′ ≃ Z2, similarly to the case (2)-(a), one of the following four

cases occurs:
(i): p1(K ′

2) = S2, and p2(K ′
2) = p2(K ′);

(ii): p1(K ′
2) = p1(K ′) = S1, and p2(K ′

2)/p2(K ′) ≃ Z2;
(iii): p1(K ′

2) = p1(K ′) = S1, and p2(K ′
2) = p2(K ′);

(iv): otherwise, i.e., p1(K ′
2) = S2, and p2(K ′

2)/p2(K ′) ≃ Z2,

where S2 is a subgroup of
∏b

j=1 S(O(2mj) × O(1)) such that S2/S1 ≃ Z2. We
call the above cases the case (2)-(b)-(i), (2)-(b)-(ii), (2)-(b)-(iii) and (2)-(b)-(iv),
respectively.

7.1. The case (2)-(b)-(i). Suppose the case (2)-(b)-(i) occurs, that is,

p1(K ′
2) = S2 and p2(K ′

2) = p2(K ′).

If σ1(S1) = {±1}, then K ′ is defined as ker ρ, where ρ : S1 × p2(K ′) → Z2 is
the following representation:

ρ(A, x) = σ1(A)x ∈ Z2.

Consider the lift of this representation ρ̃ : S2×p2(K ′) → Z2. Similarly to the proof
of Lemma 6.2, we can easily show that this lift is only determined by σ2 : S2 → Z2

such that σ2|S1 = σ1, i.e., a representation ρ̃ : S2 × p2(K ′) → Z2 is denoted by

ρ̃(B, x) = σ2(B)x.

On the other hand, there is the following induced representation form K ′
2 ⊂ S2 ×

p2(K ′):

S2 × p2(K ′) er−→ (S2 × p2(K ′))/K ′
2 ≃ Z2.

With a method similar to that demonstrated in Section 6.1, r̃ can be identified
with ρ̃, i.e., the lift of ρ. Hence, there is a representation σ2 : S2 → Z2 such that
r̃(B, x) = σ2(B)x. Because ker r̃ = K ′

2, we have that

K ′
2(7.1)

=

{(
B,

(
X 0
0 x

))
∈ S2 × S(O(2k1 − 1) × O(1))

∣∣∣∣∣ σ2(B)x = 1

}
,

where σ2 : S2 → Z2 is a representation such that σ2|S1 = σ1.
If σ1(S1) = {1}, then we have

K =
a∏

i=1

S(U(li) × U(1)) × S1 × SO(2k1 − 1),

by Lemma 7.1 (2). Because of the assumptions of the case (2)-(b)-(i), we have that

K2 =
a∏

i=1

S(U(li) × U(1)) × S2 × SO(2k1 − 1).

Therefore, we can regard K ′
2 of this case as that with σ2(S2) = 1 in Eq.(7.1).

Hence, we have that M = X1 ∪ X2 is as follows, with the method similar to
that demonstrated in Section 6.1:

M =
a∏

i=1

CP (li) ×

 b∏
j=1

S2mj ×A×Z2 S(R2k1 ⊕ R)

 ,
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where the A × Z2-quotient is defined by the same rule as that in the case (2)-
(a)-(i) (see Section 6.1 by replacing Ck1

c as R2k1), and G =
∏a

i=1 SU(li + 1) ×∏b
j=1 SO(2mj + 1) × SO(2k1) acts naturally on this manifold.

7.2. The case (2)-(b)-(ii). Suppose the case (2)-(b)-(ii) occurs, that is,

p1(K ′
2) = p1(K ′) = S1 and p2(K ′

2)/p2(K ′) ≃ Z2.

If σ1(S1) = {±1}, then we have p2(K ′) = S(O(2k1 − 1) × O(1)) ⊃ p2(K ′
2) by

Lemma 7.1 (3). This gives a contradiction to p2(K ′
2)/p2(K ′) ≃ Z2. Therefore, we

have σ1(S1) = {1}. Hence, we have that K ′ = S1 ×SO(2k1 − 1) by Lemma 7.1 (2).
Because p2(K ′

2)/p2(K ′) ≃ Z2 and p2(K ′) = SO(2k1−1), we have the following
sequence:

K ′ = S1 × SO(2k1 − 1) ⊂ K ′
2 ⊂ S1 × p2(K ′

2) = S1 × S(O(2k1 − 1) × O(1)).

Because K ′
2/K ′ ≃ Z2, we have that K ′

2 = S1 × S(O(2k1 − 1) × O(1)) and

K2 =
a∏

i=1

S(U(li) × U(1)) × S1 × S(O(2k1 − 1) × O(1)),

K =
a∏

i=1

S(U(li) × U(1)) × S1 × SO(2k1 − 1).

Hence, similarly to Section 7.1, we have that M = X1 ∪ X2 is as follows:

M =
a∏

i=1

CP (li) ×

 b∏
j=1

S2mj ×A×Z2 S(R2k1 ⊕ R)

 ,

where the A×Z2-quotient is defined by the same rule as that in the case (2)-(a)-(ii)
(see Section 6.2 by replacing Ck1

c as R2k1). This manifold is also G-equivariantly
diffeomorphic to the following manifold:

a∏
i=1

CP (li) ×
b∏

j=1

S2mj /A× P (R2k1 ⊕ R),

where G =
∏a

i=1 SU(li + 1) ×
∏b

j=1 SO(2mj + 1) × SO(2k1).

7.3. The case (2)-(b)-(iii). Suppose the case (2)-(b)-(iii) occurs, that is,

p1(K ′
2) = p1(K ′) = S1 and p2(K ′

2) = p2(K ′).

If σ1(S1) = {1}, then we have K ′ = S1 × SO(2k1 − 1) = p1(K ′) × p2(K ′) =
p1(K ′

2) × p2(K ′
2) ⊃ K ′

2. This gives a contradiction to K ′
2/K ′ ≃ Z2. Therefore, we

have σ1(S1) = {±1}.
Hence, we have the following sequence:

K ′ ⊂ K ′
2 ⊂ p1(K ′

2) × p2(K ′
2) = S1 × S(O(2k1 − 1) × O(1)).

By Lemma 7.1 (3) and K ′
2/K ′ ≃ Z2, we also have that K ′

2 = S1 × S(O(2k1 − 1) ×
O(1)) and

K2 =
a∏

i=1

S(U(li) × U(1)) × S1 × S(O(2k1 − 1) × O(1)),

K =
a∏

i=1

S(U(li) × U(1)) × {(A, x) | σ1(A)x = 1}.
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Hence, similarly to Section 7.1, we have that M = X1 ∪ X2 is as follows:

M =
a∏

i=1

CP (li) ×

 b∏
j=1

S2mj ×A×Z2 S(R2k1 ⊕ R)

 ,

where the A×Z2-quotient is defined by the same rule as that in the case (2)-(a)-(iii)
(see Section 6.3 by replacing Ck1

c as R2k1). This manifold is also G-equivariantly
diffeomorphic to the following manifold as well as the case (2)-(b)-(ii):

a∏
i=1

CP (li) ×
b∏

j=1

S2mj ×A P (R2k1 ⊕ R).

7.4. The case (2)-(b)-(iv). Suppose the case (2)-(b)-(iv) occurs, that is,

p1(K ′
2) = S2 and p2(K ′

2)/p2(K ′) ≃ Z2.

By the same reason in the case (2)-(b)-(ii) (see Section 7.2), we have σ1(S1) =
{1}. Hence, we have that K ′ = S1 × SO(2k1 − 1) by Lemma 7.1 (2).

Because p2(K ′
2)/p2(K ′) ≃ Z2 and p2(K ′) = SO(2k1−1), we have the following

sequence:

K ′ = S1 × SO(2k1 − 1) ⊂ K ′
2 ⊂ S2 × p2(K ′

2) = S2 × S(O(2k1 − 1) × O(1)).

Because K ′
2/K ′ ≃ Z2, we also have the following inclusion map:

i : K ′
2/K ′ ≃ Z2 −→ (S2 × S(O(2k1 − 1) × O(1)))/K ′ ≃ Z2 × Z2.

Therefore, there are three types of the inclusion i, i.e., i(K ′
2/K ′) = Z2×{1}, {1}×Z2

or ∆, where ∆ is the diagonal subgroup in Z2×Z2. Assume i(K ′
2/K ′) = Z2×{1} or

{1}×Z2. This gives a contradiction to p2(K ′
2)/p2(K ′) ≃ Z2 or p1(K ′

2)/p1(K ′) ≃ Z2,
respectively. Therefore, we have that

i(K ′
2/K ′) = ∆.(7.2)

Let ρ̃ : S2 × p2(K ′
2) → Z2 ×Z2 be a representation such that ρ̃(B, x) = (σ2(B), x)

for some σ2 : S2 → Z2 with σ2|S1 = σ1. By (7.2), we have that K ′
2 = ρ̃−1(∆). It

follows that

K ′
2 =

{(
B,

(
X 0
0 x

))
∈ S2 × S(O(2k1 − 1) × O(1))

∣∣∣∣∣ σ2(B)x = 1

}
.

Because K2 =
∏a

i=1 S(U(li) × U(1)) × K ′
2 and K =

∏a
i=1 S(U(li) × U(1)) ×

S1×SO(2k1−1), (similarly to Section 7.1) we have that M = X1∪X2 is as follows:

M =
a∏

i=1

CP (li) ×

 b∏
j=1

S2mj ×A×Z2 S(R2k1 ⊕ R)

 ,

where the A×Z2-quotient is defined by the same rule as that in the case (2)-(a)-(iv)
(see Section 6.4 by replacing Ck1

c as R2k1).
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7.5. Summary of the results from (2)-(b)-(i) to (iv). In summary, we
can state the result of the case (2)-(b) as follows. Let (M, G) be the pair in the
case (2)-(b). Then (M, G) is essentially isomorphism to the followings:

M =
b∏

j=1

S2mj ×A×Z2

(
a∏

i=1

CP (li) × S(R2k1 ⊕ R)

)
,

G =
b∏

j=1

SO(2mj + 1) ×
a∏

i=1

SU(li + 1) × SO(2k1),

where G acts on M naturally, and the A(= A1)-quotient is defined by the following
actions:

• on
∏b

j=1 S2mj as the subgroup of
∏b

j=1 Z2;
• on R2k1 through the representation σ1(= σR) : A → Z2 = {±I2k1};
• on R trivially,

and the Z2-quotient is defined by the following actions:

• on
∏b

j=1 S2mj by a representation ρ : Z2 →
∏b

j=1 Z2 which satisfies
ρ(Z2) ∩ A = {1};

• on R2k1 by a representation σ2 : Z2 → {±I2k1};
• on R by the natural representation κ : Z2 → O(1),

where ρ or σ2 is always non-trivial as well as the case (2)-(a). This corresponds
with the second manifold in Theorem 5.1, where σ2 ⊕ κ = σR⊕R.

8. Main theorem of the case (3) and preparations

From this section, we start to classify the final case, i.e., the case (3): G/K2 is
not a torus manifold but a singular orbit (see Section 2.4). The goal of this section
is to state the main theorem and a preparation to classify the case (3). From this
section, we assume that the orbit G/K2 is not a torus manifold but a singular orbit.
By Lemma 4.1 and the assumption of this case, we have for k2 ≥ 2

dim G/K2 = 2n − 2k2 + 1,(8.1)

and

K2/K ∼= S2k2−2.(8.2)

By using (8.1) and (8.2), the slice representation of K2 in the case (3) is

σ2 : K2 −→ O(2k2 − 1).(8.3)

In the case (3) as well as the case (2), there are the following two cases:
(3)-(a): the case (3)-(a), i.e., G/K1 satisfies the case (a) (see Section 4.1.1);
(3)-(b): the case (3)-(b), i.e., G/K1 satisfies the case (b) (see Section 4.1.2).

8.1. Main theorem and notations. First we state the main theorem of the
case (3). Before we state it, we prepare some notations (also see Section 3.1 and
5.1). Let A be a subgroup of

∏b
j=1 Z2, where

∏b
j=1 Z2 is the following group: the

first (b − 1) factors
∏b−1

j=1 Z2 are generated by the antipodal involutions on S2mj

for j = 1, · · · , b − 1 and the b-th factor Z2 is {±I2k2−1}. The quotient manifold(∏a
i=1 S2li+1

)
×T a S(Ck1

c ⊕R2k2−1) is defined similarly as
(∏a

i=1 S2li+1
)
×T a S(Ck

a⊕
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R) (see Section 3.1), where Ck1
c (≃ Ck1) is a representation space of a representation

c : T a → S1.
Now we may state the main theorem of this section.

Theorem 8.1. Suppose a torus manifold M has a codimension one extended
G-action. If there are two singular orbits and one of them is not a torus manifold,
then (M, G) is essentially isomorphic tob−1∏

j=1

S2mj ×A N,

b−1∏
j=1

SO(2mj + 1) × H

 ,

such that (N, H) is one of the followings:

N H

(a)
(∏a

i=1 S2li+1
)
×T a S(Ck1

c ⊕ R2k2−1)
∏a

i=1 SU(li + 1) × U(k1) × SO(2k2 − 1)
(b)

∏a
i=1 CP (li) × S(R2k1 ⊕ R2k2−1)

∏a
i=1 SU(li + 1) × SO(2k1) × SO(2k2 − 1)

where A acts on
∏b−1

j=1 S2mj ×R2k2−1 as a subgroup of
∏b

j=1 Z2 and on the fibre of
N through the following representations:

(a): σC : A → {±1} ⊂ S1 on S(Ck1
c ⊕ R2k2−1) ∩ Ck1

c ;
(b): σR : A → {±I2k1} ⊂ SO(2k1) on S(R2k1 ⊕ R2k2−1) ∩ R2k1 ;

respectively, such that if (1, · · · , 1, −I2k2−1) ∈ A ⊂
∏b

j=1 Z2 then

σ(1, · · · , 1, −I2k2−1) = −1

for σ = σC and σR.
Here, G-actions on M are as follows:

∏
SO(2mj + 1) and

∏
SU(li + 1) act

naturally on
∏

S2mj and
∏

S2li+1, respectively; and U(k1), SO(2k1) and SO(2k2−
1) act naturally on Ck1

c , R2k1 and R2k2−1, respectively.

Note that the following facts: if (1, · · · , 1, −I2k2−1) ̸∈ A then A acts on∏b−1
j=1 S2mj × R2k2−1 freely; if (1, · · · , 1, −I2k2−1) ∈ A then A = A′ × {±I2k2−1}

and A′ acts on
∏b−1

j=1 S2mj freely and {±I2k2−1} acts on S(Ck1
c ⊕R2k2−1) or S(R2k1⊕

R2k2−1) freely because of the properties of σ described in Theorem 8.1. Therefore,
M in Theorem 8.1 is a manifold. Moreover, there is the case that A ⊂

∏b−1
j=1 Z2;

hence, we do not write manifolds in Theorem 8.1 as manifolds in Theorem 5.1, i.e.,
manifolds divided by A×Z2 where Z2 acts on S(Ck1

c ⊕R)∩R (or S(R2k1 ⊕R)∩R).
In order to prove the above Theorem 8.1, we will use the following notations.

• Natural projections: pi : G → SU(li + 1), p : G → SU(k1), q : G → T 1

and rj : G → SO(2mj + 1), where i = 1, · · · , a and j = 1, · · · , b.
• Inclusions: ι : K → K2 or ι : Ko → Ko

2 , and ι2 : K2 → G or ι2 : Ko
2 → G.

8.2. Structure of K2. Before we start to prove Theorem 8.1, in this subsec-
tion, we will prove the following Lemma 8.2.

Let N1 ◦ N2 be (N1 × N2)/F for some finite, normal subgroup F ⊂ N1 × N2,
where N1 and N2 are connected Lie groups. Then, the following lemma holds.

Lemma 8.2. For the cases (3)-(a) and (3)-(b), the pair (Ko
2 , Ko) is isomorphic

to

(Spin(2k2 − 1) ◦ K ′
2, Spin(2k2 − 2) ◦ K ′

2)

for some Lie group K ′
2 and k2 ≥ 2.
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Proof. Let K̃o
2 be the covering of Ko

2 such that it is a product of simply
connected, simple Lie groups and tori (see [12, Section 2.3]). Since a connected
component Ko

2 acts on S2k2−2 ∼= K2/K transitively through σ2 (see (8.3)), there is
a factor H in the product group K̃o

2 (i.e., K̃o
2 = H×K̃ ′

2 for some product group K̃ ′
2)

such that H = Spin(2k2 − 1) or H = G2 for k2 = 4 by the classification result of
transitive actions on even dimensional spheres (see [13, Theorem 5.1, 5.2]), where
here G2 is the exceptional Lie group. Therefore, there is a subgroup K ′

2 such that
(Ko

2 , Ko) can be denoted as follows:

(Spin(2k2 − 1) ◦ K ′
2, Spin(2k2 − 2) ◦ K ′

2);
(G2 ◦ K ′

2, SU(3) ◦ K ′
2).

In order to prove this lemma, we assume

(Ko
2 , Ko) = (G2 ◦ K ′

2, SU(3) ◦ K ′
2).(8.4)

We will prove that this case does not occur.
Taking some covering of Ko in (8.4), we can put

K̃o = SU(3) × K̃ ′
2,(8.5)

where K̃ ′
2 is a product of simply connected, simple Lie groups and tori. On the

other hand, taking a covering of Ko in the cases (3)-(a) and (3)-(b) (see Section
4.1.1, 4.1.2 or (9.1) in Section 9, (10.1) in Section 10), we can put

K̃o =
b∏

j=1

Spin(2mj) ×
a∏

i=1

SU(li) × L × T,(8.6)

where T is a torus and
• L = SU(k1 − 1) for the case (3)-(a),
• L = Spin(2k1 − 1) for the case (3)-(b).

Because dim Spin(x) ̸= dim SU(3) for all x ∈ N, there are the following two cases
by (8.5) and (8.6):

(1) la = 3 and K̃ ′
2 =

∏b
j=1 Spin(2mj) ×

∏a−1
i=1 SU(li) × L × T , in the case

(3)-(a) or (3)-(b);
(2) k1 = 4 and K̃ ′

2 =
∏b

j=1 Spin(2mj)×
∏a

i=1 SU(li)× T , in the case (3)-(a).

Suppose la = 3 and K̃ ′
2 =

∏b
j=1 Spin(2mj) ×

∏a−1
i=1 SU(li) × L × T . Let

pa : G → SU(la + 1) be the natural projection (see notations in Section 8.1). Then
we have that

pa(SU(3) ◦ {e}) ⊂ pa(G2 ◦ {e}) ⊂ pa(Ko
2 ) ⊂ pa(G) = SU(4)

because SU(3) ◦ {e} ⊂ G2 ◦ {e} ⊂ Ko
2 ⊂ G, where {e} ⊂ K ′

2 is the identity element
in K ′

2. Since SU(3) ◦ {e} ⊂ Ko and pa(Ko) = S(U(3) × U(1)) by Section 4.1, we
also have that

pa(SU(3) ◦ {e}) = SU(3).

Therefore, pa(G2 ◦ {e}) is a non-trivial subgroup in SU(4). Since the restricted
representation pa|G2◦{e} is a non-trivial representation and G2 is a simple Lie group,
we also have that

dim pa(G2 ◦ {e}) = dim G2 = 14.
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It follows that there is a subgroup H ⊂ SU(4) such that dimH = 14 and SU(4)/H ∼=
S1, because SU(4) is compact and dim SU(4) = 15. However, this gives a contra-
diction because SU(4)-action on S1 is trivial (see [13, Theorem 5.2, 5.3]).

Suppose k1 = 4 and K̃ ′
2 =

∏b
j=1 Spin(2mj)×

∏a
i=1 SU(li)×T . In this case, the

above argument for la = 3 can also work for the natural projection p : G → SU(k1).
It follows that the case (Ko

2 , Ko) = (G2 ◦K ′
2, SU(3) ◦K ′

2) does not occur. Hence,
we have Lemma 8.2. ¤

In the next two sections, we study the cases (3)-(a) and (3)-(b).

9. The case (3)-(a)

In this section, we study the case (3)-(a). From Section 4.1, we have

G =
b∏

j=1

SO(2mj + 1) ×
a∏

i=1

SU(li + 1) × SU(k1) × T 1,

K1 = S1 ×
a∏

i=1

S(U(li) × U(1)) × SU(k1) × T 1,

K =

{(
A, (t1, · · · , ta),

(
X 0
0 x

)
, t

) ∣∣∣∣∣ σ1(A)tα1
1 · · · tαa

a xtα = 1

}
.(9.1)

where A ∈ S1 ⊂
∏b

j=1 S(O(2mj) × O(1)), (t1, · · · , ta) ∈
∏a

i=1 S(U(li) × U(1)),
t ∈ T 1 and X ∈ U(k1 − 1) such that x detX = 1. If k1 = 1, then we can take
α = 1. Moreover, we have that the finite covering of Ko is as follows by (9.1):

K̃o =
b∏

j=1

Spin(2mj) ×
a∏

i=1

SU(li) × T a × SU(k1 − 1) × T 1 if k1 ≥ 2;

K̃o =
b∏

j=1

Spin(2mj) ×
a∏

i=1

SU(li) × T a if k1 = 1.

Because of Lemma 8.2, we also have

Ko = Spin(2k2 − 2) ◦ K ′
2 and K̃o = Spin(2k2 − 2) × K̃ ′

2,(9.2)

Ko
2 = Spin(2k2 − 1) ◦ K ′

2 and K̃o
2 = Spin(2k2 − 1) × K̃ ′

2.(9.3)

In order to classify the case (3)-(a), we will divide this case into the following
two cases:

• k2 ≥ 3 (we will discuss in Section 9.1);
• k2 = 2 (we will discuss in Section 9.2).

9.1. The case k2 ≥ 3. Assume k2 ≥ 3. Comparing coverings K̃o of the above
Ko’s in (9.1) and (9.2), and using the fact that Spin(4) ≃ SU(2) × SU(2) and
Spin(6) ≃ SU(4), there are the following five cases:

(i): Spin(2k2 − 2) = Spin(2mb), and k2 = mb + 1 ≥ 3;
(ii): Spin(2k2 − 2) = SU(la−1) × SU(la), and k2 = 3, la−1 = la = 2;
(iii): Spin(2k2 − 2) = SU(la) × SU(k1 − 1), and k2 = 3 = k1, la = 2;
(iv): Spin(2k2 − 2) = SU(la) and k2 = 4, la = 4;
(v): Spin(2k2 − 2) = SU(k1 − 1) and k2 = 4, k1 = 5,
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First we prove the following lemma.

Lemma 9.1. In the above cases, the cases from (ii) to (v) do not occur.

Proof. If the case (ii) occurs, then Spin(2k2 − 2) = SU(la−1) × SU(la) and
k2 = 3, la−1 = la = 2. Let φ : K̃o

2 → Ko
2 be the finite covering. By using (9.1),

(9.2) and (9.3), we have

K ′
2 =

b∏
j=1

SO(2mj) ×

{((
A1 0
0 t1

)
, · · · ,

(
Aa−2 0

0 ta−2

)
,

(
ra−1I2 0

0 ta−1

)
,

(
raI2 0
0 ta

)
,

(
X 0
0 x

)
, t

) ∣∣∣∣∣ tα1
1 · · · tαa

a xtα = 1

}
= φ(K̃ ′′

2 × T 2),

where r−2
a−1 = ta−1, r−2

a = ta, K̃ ′′
2 is the product of factors in K̃o except Spin(2k2−

2) and T 2(⊂ T a). By (9.2), (9.3), [12, Section 3.1] (i.e., for the factor H ⊂ K̃o

in H ′ ⊂ K̃o
2 such that H ⊂ H ′, if K̃o and K̃o

2 are same rank then H and H ′ are
same rank) and the assumption of the case (ii), we have the following commutative
diagram:

(T 2 × SU(2) × SU(2)) × K̃ ′′
2

eι−→ (T 2 × Spin(5)) × K̃ ′′
2

φ ↓ ↓ φ

Ko ι−→ Ko
2 ,

where ι̃ is an inclusion map. By using the above diagram and the definition of K
and G, we have the following sequence (also see Section 8.1 about the definitions
of notations):

S(U(2) × U(1)) × S(U(2) × U(1))
= (pa−1 × pa) ◦ ι2 ◦ ι ◦ φ(T 2 × SU(2) × SU(2))
= (pa−1 × pa) ◦ ι2 ◦ φ ◦ ι̃(T 2 × SU(2) × SU(2))
⊂ (pa−1 × pa) ◦ ι2 ◦ φ(T 2 × Spin(5))
⊂ pa−1 × pa(G)
= SU(3) × SU(3).

This sequence implies that there is a non-trivial representation from T 2 × Spin(5)
to SU(3)× SU(3). Since Spin(5) is a simple Lie group and rank (T 2 × Spin(5)) =
rank (SU(3)× SU(3)), there is some subgroup H ⊂ SU(3) such that Spin(5) ≈ H
(because of [12, Section 3.1]), where Spin(5) ≈ H means that Spin(5) and H have
the same Lie algebra. This gives a contradiction, because dim Spin(5) = dim H =
10 > 8 = dim SU(3). Hence, the case (ii) does not occur.

With an argument similar to the above for the case (ii), we can also prove that
the cases (iii) does not occur.

If the case (iv) occurs, then Spin(2k2 − 2) = SU(la) and k2 = 4, la = 4. With
a method similar to that demonstrated in the proof of the case (ii), we have the
following commutative diagram:

(T 1 × SU(4)) × K̃ ′′
2

eι−→ (T 1 × Spin(7)) × K̃ ′′
2

φ ↓ ↓ φ

Ko ι−→ Ko
2 .
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We have the following sequence by using the above diagram and the definitions of
K and G:

S(U(4) × U(1))
= pa ◦ ι2 ◦ ι ◦ φ(T 1 × SU(4))
= pa ◦ ι2 ◦ φ ◦ ι̃(T 1 × SU(4))
⊂ pa ◦ ι2 ◦ φ(T 1 × Spin(7))
= H

⊂ pa(G) = SU(5).

Because S(U(4) × U(1)), SU(5) and T 1 × Spin(7) are the same rank Lie groups
and Spin(7) is a simple Lie group, we have dim H = dim(T 1 × Spin(7)) = 22.
Then we see SU(5)/H is a 2-dimensional manifold by dimSU(5) = 24. Moreover,
H = pa ◦ ι2 ◦ φ(T 1 × Spin(7)) is connected. Therefore, we have SU(5)/H is a
simply connected, compact manifold, because of the homotopy exact sequence of
H → SU(5) → SU(5)/H. Hence, SU(5)/H ∼= S2. However, the SU(5)-action on
S2 must be trivial (see [13, Theorem 5.2]). This gives a contradiction. Hence, the
case (iv) does not occur.

With a method similar to that demonstrated in the above for the case (iv), we
can also prove that the case (v) does not occur. ¤

Because of the above Lemma 9.1, we have that

Spin(2k2 − 2) = Spin(2mb) and k2 = mb + 1 ≥ 3.(9.4)

Now we set{(
(t1, · · · , ta),

(
X 0
0 x

)
, t

) ∣∣∣∣∣ tα1
1 · · · tαa

a xtα = 1

}
= P (α1, · · · , αa, x, α).

If k1 = 1, then x = 1 and we can assume α = 1 up to essential isomorphism.
Therefore, P (α1, · · · , αa, x, α) is connected. Then, the following relation holds
by using (9.1), (9.2) and (9.4):

Ko = Spin(2k2 − 2) ◦ K ′
2 = Spin(2mb) ◦ K ′

2

=
b∏

j=1

SO(2mj) × P (α1, · · · , αa, x, α).

Therefore, we can put Ko = SO(2mb) × K ′
2 = SO(2k2 − 2) × K ′

2 and

K ′
2 =

b−1∏
j=1

SO(2mj) × P (α1, · · · , αa, x, α)

⊂
b−1∏
j=1

SO(2mj + 1) ×
a∏

i=1

SU(li + 1) × SU(k1) × T 1

= G/SO(2mb + 1) = G/SO(2k2 − 1).

By using Ko
2 = Spin(2k2 − 1) ◦ K ′

2 (by (9.3)) and the above Ko, we have the
following covering map φ:

Spin(2k2 − 2) × K ′
2 −→ Spin(2k2 − 1) × K ′

2

φ ↓ ↓ φ
SO(2k2 − 2) × K ′

2 −→ Ko
2
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where the top and bottom maps are inclusions. Because the restricted representa-
tion φ|K′

2
is the identity representation, there is the K ′

2 factor in Ko
2 . Therefore,

we have that

Ko
2 = SO(2k2 − 1) × K ′

2

=
b−1∏
j=1

SO(2mj) × SO(2k2 − 1) × P (α1, · · · , αa, x, α),

and there is some inclusion SO(2k2−1) → K2 whose image is the factor SO(2mb +
1) ⊂ G. Because Ko

2 ⊂ K2 ⊂ G, we can put K2 is as follows:

K2 = SO(2k2 − 1) × K ′′
2

⊂ G = SO(2k2 − 1) ×

b−1∏
j=1

SO(2mj + 1) ×
a∏

i=1

SU(li + 1) × SU(k1) × T 1

 ,

where 2mb+1 = 2k2−1 and K ′′
2 is a subgroup of

∏b−1
j=1 SO(2mj +1)×

∏a
i=1 SU(li+

1) × SU(k1) × T 1 whose connected component is K ′
2. By using the argument of

Section 8.2, the SO(2k2 − 1)-factor in K2 acts transitively on K2/K ∼= S2k2−2.
Therefore, for the natural projection Φ : K2 = SO(2k2 − 1) × K ′′

2 → K ′′
2 , we have

the following relation (see [11, Lemma 8.0.2]):

Φ(K2) = K ′′
2 = Φ(K).

Hence, we have

K2 = SO(2k2 − 1) × K ′′
2 = SO(2k2 − 1) × Φ(K) ⊂ G.

It follows that the inclusion K2 ⊂ G is completely determined by K (more precisely
the projection Φ(K)).

Next, we consider the slice representation σ2 : K2 → O(2k2 − 1). Since the
SO(2k2 − 1)-factor in K2 acts transitively on K2/K ∼= S2k2−2, the restricted rep-
resentation σ2|SO(2k2−1) is the natural isomorphism to SO(2k2 − 1) ⊂ O(2k2 − 1).
Hence, we have that

σ2(K ′′
2 ) ⊂ Z(SO(2k2 − 1)) = {±I2k2−1} ⊂ O(2k2 − 1).

Moreover, by (9.1), we have the following formula for K:

K = σ−1
2 (O(2k2 − 2))(9.5)

=

{(
A, (t1, · · · , ta),

(
X 0
0 x

)
, t

) ∣∣∣∣∣ σ1(A)tα1
1 · · · tαa

a xtα = 1

}

=

{((
Ab 0
0 ab

)
, Y

) ∣∣∣∣∣ ab = det A−1
b = det σ2(Y )

}
.

⊂ S(O(2k2 − 2) × O(1)) × K ′′
2 .

Therefore, we can easily show that the following lemma by using (9.5).

Lemma 9.2. The following two statements are equivalent:
(1): σ2(K ′′

2 ) = {I2k2−1} (resp. σ2(K ′′
2 ) = {±I2k2−1});

(2): K = SO(2k2 − 2) × K ′′
2 (resp. rb(K) = S(O(2mb) × O(1))).

Moreover, the following statement holds:
(3): if σ2(K ′′

2 ) = {±I2k2−1}, then we have K ̸= S(O(2mb) × O(1)) × K ′′
2 .
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It follows from (9.5) and Lemma 9.2 (1), (2) that the slice representation σ2 :
K2 → O(2k2 − 2) is also completely determined by K. Therefore, the tubular
neighborhood X2 = G ×K2 D2k2−1 of G/K2 is completely determined by K, and
equivariantly diffeomorphic to the following manifold:

a∏
i=1

S2li+1 ×T a

b−1∏
j=1

S2mj × D(R2k2−1)

 ×A S(Ck1
c )

 ,

where T a-quotient is defined similarly to that in the previous cases (e.g. the case
(2)-(a)), A ≃ S1/So

1 -quotient is defined by the following actions:

• on
∏b−1

j=1 S2mj × D(R2k2−1) as the subgroup A ⊂
∏b−1

j=1 Z2 × {±I2k2−1};
• on S(Ck1

c ) ⊂ Ck1
c by the representation σC : A → {±1} (induced by σ1).

Moreover, by using (9.5) and Lemma 9.2 (3), if (1, · · · , 1, −I2k2−1) ∈ A ⊂∏b−1
j=1 Z2 × {±I2k2−1}, then σC(1, · · · , 1, −I2k2−1) = −1 (because if not so the

principal isotropy subgroup is K = S(O(2mb) × O(1)) × K ′′
2 ). It follows that A

acts on
∏b−1

j=1 S2mj × D(R2k2−1) × S(Ck1
c ) freely; therefore, X2 is a manifold.

By using Remark 4.2, we can easily check that the pair (M, G) of the case
(3)-(a) and k2 ≥ 3 is as follows (up to essential isomorphism):

M =
a∏

i=1

S2li+1 ×T a

b−1∏
j=1

S2mj ×A S(R2k2−1 ⊕ Ck1
c )

 ;

G =
a∏

i=1

SU(li + 1) ×
b−1∏
j=1

SO(2mj + 1) × SO(2k2 − 1) × U(k1),

where A acts on
∏b−1

j=1 S2mj × S(R2k2−1 ⊕ Ck1
c ) as follows: on Ck1

c by σC : A →
{±1}; on

∏b−1
j=1 S2mj × R2k2−1 as the subgroup

∏b−1
j=1 Z2 × {±I2k2−1} such that if

(1, · · · , 1, −I2k2−1) ∈ A then σC(1, · · · , 1, −I2k2−1) = −1.
This corresponds with the first manifold in Theorem 8.1 for k2 ≥ 3.

9.2. The case k2 = 2. Assume k2 = 2. By (9.1) and (9.2), the covering of
Ko is as follows:

K̃o = Spin(2k2 − 2) × K̃ ′
2

=
b∏

j=1

Spin(2mj) ×
a∏

i=1

SU(li) × T a × SU(k1 − 1) × T 1 for k1 ≥ 2 or

=
b∏

j=1

Spin(2mj) ×
a∏

i=1

SU(li) × T a for k1 = 1,

where li ≥ 1 for all i = 1, · · · , a. Comparing the above coverings of Ko’s, there
are the following three cases:

(i): Spin(2k2 − 2) = Spin(2mb), and k2 = mb + 1 = 2;
(ii): Spin(2k2 − 2) = Ta, where Ta is the a-th factor of T a = T1 × · · · × Ta

(Ti ≃ T 1);
(iii): Spin(2k2 − 2) = T 1, and k1 ≥ 2.
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Remark 9.3. The above case (i) is the same as the case (i) in Section 9.1. By
the same argument of Section 9.1, we have that (M, G) for the above case (i) is as
follows (k2 = 2):

M =
a∏

i=1

S2li+1 ×T a

b−1∏
j=1

S2mj ×A S(R2k2−1 ⊕ Ck1
c )

 ;

G =
a∏

i=1

SU(li + 1) ×
b−1∏
j=1

SO(2mj + 1) × SO(2k2 − 1) × U(k1),

where T a and A quotients are similarly defined as that of M in Section 9.1. This
corresponds with the first manifold in Theorem 8.1 for k2 = 2. Hence, in this
section, we may only discuss with the other cases: the case (ii) and (iii).

First we prove the following lemma.

Lemma 9.4. In the above cases, the case (iii) does not occur.

Proof. By the definition of the case (iii),

K̃ ′
2 =

b∏
j=1

Spin(2mj) ×
a∏

i=1

SU(li) × T a × SU(k1 − 1).

By (9.2), (9.3), we can put K̃o
2 = Spin(2k2 − 1) × K̃ ′

2. Therefore, with a method
similar to that demonstrated in the proof of Lemma 9.1, there is the following
commutative diagram (k2 = 2):

Spin(2k2 − 2) × K̃ ′
2

eι−→ Spin(2k2 − 1) × K̃ ′
2

φ ↓ ↓ φ

Ko ι−→ Ko
2 ,

where φ is the finite covering, and ι̃ and ι are inclusion maps. Hence, the following
sequence holds by the commutativity of the above diagram and the definition of G
(also see notations in Section 8.1):

q ◦ ι2 ◦ ι ◦ φ(Spin(2)) = q ◦ ι2 ◦ φ ◦ ι̃(Spin(2))
⊂ q ◦ ι2 ◦ φ(Spin(3))
⊂ q(G) = T 1,

On the other hand, by (9.1), we have

q ◦ ι2 ◦ ι ◦ φ(Spin(2)) = T 1 = q(G) = q ◦ ι2 ◦ ι(Ko).

Consequently, we have q◦ι2◦ϕ(Spin(3)) = T 1. However, this gives a contradiction,
because there is no non-trivial representation from Spin(3) to T 1. It follows that
the case (iii) does not occur. ¤

By Remark 9.3 and Lemma 9.4, we may only study the case (ii) in this subsec-
tion.

Assume the case (ii) occurs, that is, Spin(2k2 − 2) = Ta, where Ta is the a-th
factor of T a = T1 × · · · × Ta (Ti ≃ T 1). Let πj : Spin(2mj) → SO(2mj) be the
double covering. In order to study this case, we divide this case into two parts:

• the case k1 = 1;
• the case k1 ≥ 2.
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9.2.1. The case k1 = 1. First, we assume k1 = 1. Then, we have the following
finite covering:

π :
b∏

j=1

Spin(2mj) ×
a∏

i=1

SU(li) × T a = K̃ ′
2 × Ta −→ Ko

such that

π(Aj , Bi, ti) =
(

πj(Aj),
(

Bit
−1/li
i 0
0 ti

)
, t−α1

1 · · · t−αa
a

)

∈ Ko ⊂
b∏

j=1

SO(2mj) ×
a∏

i=1

S(U(li) × U(1)) × T 1,

for the element (Aj , Bi, ti) ∈
∏b

j=1 Spin(2mj) ×
∏a

i=1 SU(li) × T a.
If αa ̸= 0, then Ko has the following subgroup:

π(Ta) = π(Spin(2k2 − 2)) =

{((
Ilat

−1/la
a 0
0 ta

)
, t−αa

a

) ∣∣∣∣∣ ta ∈ Ta

}
⊂ (S(U(la) × U(1)) × T 1) ∩ Ko,

where Ila is the identity element in U(la). Therefore, for the following commutative
diagram (by (9.2) and (9.3)):

Ta × K̃ ′
2

eι−→ Spin(3) × K̃ ′
2

π ↓ ↓ π̃

Ko ι−→ Ko
2 ,

we have the following sequence (also see notations in Section 8.1):

T 1 = q ◦ ι2 ◦ ι ◦ π(Ta) = q ◦ ι2 ◦ ι ◦ π(Spin(2k2 − 2))
= q ◦ ι2 ◦ π̃ ◦ ι̃(Spin(2k2 − 2))
⊂ q ◦ ι2 ◦ π̃(Spin(2k2 − 1))
⊂ q(G) = T 1.

This gives a contradiction with a method similar to that demonstrated in the proof
of Lemma 9.4. Hence, we have αa = 0.

Because αa = 0, we have that π(Ta × SU(la)) = S(U(la) × U(1)). Therefore,
there is the following sequence:

S(U(la) × U(1)) = pa ◦ ι2 ◦ ι ◦ π(Ta × SU(la))
= pa ◦ ι2 ◦ π̃ ◦ ι̃(Ta × SU(la))
⊂ pa ◦ ι2 ◦ π̃(Spin(3) × SU(la))
⊂ pa(G) = SU(la + 1).

Because Spin(3) and SU(la) are simple and dim(SU(la) × Spin(3)) = l2a + 2 and
dim S(U(la) × U(1)) = l2a, we have that pa ◦ ι2 ◦ π̃(SU(la) × Spin(3)) ̸= S(U(la) ×
U(1)). Since S(U(la) × U(1)) is a maximal rank, maximal subgroup in SU(la + 1)
(see [15]), we have

pa ◦ ι2 ◦ π̃(SU(la) × Spin(3)) = SU(la + 1).
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Comparing their dimension (dim(SU(la)×Spin(3)) = l2a +2 and dimSU(la +1) =
l2a + 2la), we have

la = 1

(remark Spin(3) ≃ SU(2)). Hence, in the case k1 = 1, we can regard

(SU(la + 1), S(U(la) × U(1)))
= (Spin(2k2 − 1), Spin(2k2 − 2))
= (Spin(2mb+1 + 1), Spin(2mb+1))

where mb+1 = 1. Therefore, by regarding b + 1 as b and a − 1 as a, we can regard
the case (ii) with k1 = 1 as the case (i). Hence, this case corresponds with the first
case of Theorem 8.1 which satisfies k1 = 1 and k2 = 2 by using Remark 9.3.

9.2.2. The case k1 ≥ 2. Next, we study the other case: the case k1 ≥ 2.
If k1 ≥ 2, then we have the following finite coverings:

π :
b∏

j=1

Spin(2mj) ×
a∏

i=1

SU(li) × T a × SU(k1 − 1) × T 1 → Ko

such that,

π(Aj , Bi, ti, Y, t) =
(

πj(Aj),
(

Bit
−1/li
i 0
0 ti

)
,

(
Y x−1/(k1−1) 0

0 x

)
, t

)

∈
b∏

j=1

SO(2mj) ×
a∏

i=1

S(U(li × U(1)) × S(U(k1 − 1) × U(1)) × T 1,

where x = t−α1
1 · · · t−αa

a t−α.
If αa = 0, then we can easily show that la = 1 and this case corresponds with

the first case of Theorem 8.1 which satisfies k1 ≥ 2 and k2 = 2 with the method
similar to that demonstrated in the previous section (Section 9.2.1). Therefore, we
may only discuss with the case αa ̸= 0.

Assume αa ̸= 0. We will prove this case does not occur. First, we prove the
following lemma.

Lemma 9.5. If k1 ≥ 2 and αa ̸= 0, then we can put la = 1, k1 = 2 and
αa = ±1.

Proof. If k1 ≥ 2 and αa ̸= 0, then Ko has the following subgroups (k2 = 2):

π(SU(la) × Spin(2k2 − 2))(9.6)

=
{((

Bat
−1/la
a 0
0 ta

)
,

(
Ik1−1t

αa/(k1−1)
a 0
0 t−αa

a

))}
π(Spin(2k2 − 2) × SU(k1 − 1))(9.7)

=
{((

Ilat
−1/la
a 0
0 ta

)
,

(
Y t

αa/(k1−1)
a 0

0 t−αa
a

))}
where ta ∈ Ta = Spin(2k2 − 2), Ba ∈ SU(la), Y ∈ SU(k1 − 1), and Ik1−1, Ila

are identity elements in U(k1 − 1) and U(la), respectively. Moreover, there is the
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following commutative diagram by (9.2) and (9.3):

(SU(la) × Spin(2) × SU(k1 − 1)) × K̃ ′′
2

eι−→ (SU(la) × Spin(3) × SU(k1 − 1)) × K̃ ′′
2

π ↓ ↓ π̃

Ko ι−→ Ko
2 ,

where K̃ ′′
2 =

∏b
j=1 Spin(2mj) ×

∏a−1
i=1 SU(li) × T a−1 × T 1. Then, we have the

following sequence by (9.6):

S(U(la) × U(1)) = pa ◦ ι2 ◦ ι ◦ π(SU(la) × Spin(2))
= pa ◦ ι2 ◦ π̃ ◦ ι̃(SU(la) × Spin(2))
⊂ pa ◦ ι2 ◦ π̃(SU(la) × Spin(3))
⊂ pa(G) = SU(la + 1).

With a method similar to that demonstrated in the proof of la = 1 in Section 9.2.1,
we have la = 1. Moreover, by (9.7), we have the following sequence:

S(U(k1 − 1) × U(1)) = p ◦ ι2 ◦ ι ◦ π(Spin(2) × SU(k1 − 1))
= p ◦ ι2 ◦ π̃ ◦ ι̃(Spin(2) × SU(k1 − 1))
⊂ p ◦ ι2 ◦ π̃(Spin(3) × SU(k1 − 1))
⊂ p(G) = SU(k1).

Similarly, we have k1 = 2.
Moreover, we can easily show that p ◦ ι2 ◦ π̃ : Spin(3) → SU(k1) = SU(2) is

an isomorphic map. By considering the restricted representation to Spin(2) of this
isomorphic map and using (9.7), we also have αa = ±1. ¤

By Lemma 9.5, we have la = 1, k1 = 2 and |αa| = 1; moreover, we have the
following commutative diagram (see the proof of Lemma 9.5):

Spin(2) × K̃ ′′
2

eι−→ Spin(3) × K̃ ′′
2

π ↓ ↓ π̃

Ko ι−→ Ko
2 .

Then, we have the following sequence:

H = (pa × p) ◦ ι2 ◦ ι ◦ π(Spin(2))
= (pa × p) ◦ ι2 ◦ π̃ ◦ ι̃(Spin(2))
⊂ (pa × p) ◦ ι2 ◦ π̃(Spin(3))
⊂ pa × p(G) = SU(la + 1) × SU(k1) = SU(2) × SU(2).

Here, H is one of the followings, because of (9.6) and (9.7) in the proof of Lemma
9.5 and |αa| = 1:

∆ =
{(

t−1
a 0
0 ta

)
,

(
t−1
a 0
0 ta

)}
⊂ SU(2) × SU(2) for αa = −1;

∆′ =
{(

t−1
a 0
0 ta

)
,

(
ta 0
0 t−1

a

)}
⊂ SU(2) × SU(2) for αa = 1.

Since ∆ and ∆′ are conjugate in G, we can take αa = −1 and H = ∆. Because
Spin(3) ≃ SU(2) and H = ∆, we can easily show that

(pa × p) ◦ ι2 ◦ π̃(Spin(3)) = {(X, X) | X ∈ SU(2)} ⊂ SU(2) × SU(2),
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i.e., the diagonal subgroup. By the definition of π and the above argument, we see
the followings:

ι ◦ π(Spin(2) × T 1)

=
{((

t−1
a 0
0 ta

)
,

(
t−1
a tα 0
0 tat−α

)
, t

)
∈ SU(2) × SU(2) × T 1

}
⊂ π̃(Spin(3) × T 1)
=

{
(X, X, t) ∈ SU(2) × SU(2) × T 1

}
.

It follows that α = 0. However, this gives a contradiction because α ∈ N (see
Section 4.1.1). Therefore, this case (the case k1 ≥ 2 and αa ̸= 0) does not occur.

10. The case (3)-(b)

In this section, we study the case (3)-(b). From Section 4.1, we have

G =
b∏

j=1

SO(2mj + 1) ×
a∏

i=1

SU(li + 1) × SO(2k1),

K1 = S1 ×
a∏

i=1

S(U(li) × U(1)) × SO(2k1),

K =
a∏

i=1

S(U(li) × U(1))(10.1)

×

{(
A,

(
X 0
0 x

))
∈ S1 × S(O(2k1 − 1) × O(1))

∣∣∣∣∣ σ1(A)x = 1

}
,

where k1 ≥ 2. From Lemma 8.2, we also have

Ko = Spin(2k2 − 2) ◦ K ′
2,(10.2)

Ko
2 = Spin(2k2 − 1) ◦ K ′

2(10.3)

Therefore, we have the covering of Ko as follows by (10.1) and (10.2):

K̃o = Spin(2k2 − 2) × K̃ ′
2

=
b∏

j=1

Spin(2mj) ×
a∏

i=1

SU(li) × T a × Spin(2k1 − 1).

Comparing the above covering of Ko’s and using the fact that Spin(2) ≃ T 1,
Spin(3) ≃ SU(2), Spin(4) ≃ SU(2) × SU(2) and Spin(6) ≃ SU(4), there are the
following five cases:

(i): Spin(2k2 − 2) = Spin(2mb) and k2 = mb + 1 ≥ 2;
(ii): Spin(2k2 − 2) = Ta and k2 = 2, where Ta is the a-th factor of T a =

T1 × · · · × Ta (Ti ≃ T 1);
(iii): Spin(2k2 − 2) = SU(la−1) × SU(la) and la = la−1 = 2, k2 = 3;
(iv): Spin(2k2 − 2) = SU(la) × Spin(2k1 − 1) and la = 2, k1 = 2, k2 = 3;
(v): Spin(2k2 − 2) = SU(la) and la = 4, k2 = 4.

Similarly to Lemma 9.1, we can show the following lemma.

Lemma 10.1. In the above cases, the cases from (iii) to (v) do not occur.
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Proof. For the cases (iii) and (iv), we can apply a method similar to the proof
of that the case (ii) does not occur in Lemma 9.1. For the case (v), we can apply a
method similar to the proof of that the case (iv) does not occur in Lemma 9.1. So
we may omit the detail of the proof. ¤

From the next section, we study the cases (i) and (ii): we call them (3)-(b)-(i)
and (3)-(b)-(ii), respectively.

10.1. The case (3)-(b)-(i). Suppose the case (3)-(b)-(i) occurs, that is,

Spin(2k2 − 2) = Spin(2mb) and k2 = mb + 1 ≥ 2.

It follows from (10.1) and (10.2) that the following relation holds:

Spin(2k2 − 2) ◦ K ′
2 = Spin(2mb) ◦ K ′

2

=
b∏

j=1

SO(2mj) ×
a∏

i=1

S(U(li) × U(1)) × SO(2k1 − 1) = Ko.

Therefore, we can put Ko = SO(2mb) × K ′
2 = SO(2k2 − 2) × K ′

2 and

K ′
2 =

b−1∏
j=1

SO(2mj) ×
a∏

i=1

S(U(li) × U(1)) × SO(2k1 − 1).

Because Ko
2 = Spin(2k2 − 1) ◦ K ′

2 (by (10.3)), by using the same argument in
Section 9.1, we have

Ko
2 =

a∏
i=1

S(U(li) × U(1)) ×
b−1∏
j=1

SO(2mb) × SO(2k2 − 1) × SO(2k1 − 1),

and there is the inclusion SO(2k2−1) → K2 such that its image is SO(2mb+1) ⊂ G.
Because Ko

2 ⊂ K2 ⊂ G, we can put K2 is as follows:

K2 = SO(2k2 − 1) × K ′′
2

⊂ G = SO(2k2 − 1) ×

b−1∏
j=1

SO(2mj + 1) ×
a∏

i=1

SU(li + 1) × SO(2k1)

 ,

where 2mb+1 = 2k2−1 and K ′′
2 is a subgroup of

∏b−1
j=1 SO(2mj +1)×

∏a
i=1 SU(li+

1) × SO(2k1). By using the same argument of Section 9.1, we have that

K2 = SO(2k2 − 1) × Φ(K) ⊂ G such that Φ(K) = Φ(K2) = K ′′
2 ,

where Φ : G → G/SO(2k2 − 1) = G/SO(2mb + 1) is the natural projection. It
follows that the inclusion K2 ⊂ G is completely determined by K.

Next, we consider the slice representation σ2 : K2 → O(2k2 − 1). By the same
reason demonstrated in Section 9.1, the restricted slice representation σ2|SO(2k2−1) :
SO(2k2 − 1) → O(2k2 − 1) is the natural inclusion. Hence, we have that

σ2(K ′′
2 ) ⊂ Z(SO(2k2 − 1)) = {±I2k2−1} ⊂ O(2k2 − 1).
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Moreover, by (10.1), we have the following formula for K:

K = σ−1
2 (O(2k2 − 2))

=

{((
B 0
0 b

)
, Y

)
∈ S(O(2k2 − 2) × O(1)) × K ′′

2

∣∣∣∣∣ b = det B−1 = det σ2(Y )

}

=
a∏

i=1

S(U(li) × U(1)) ×

{(
A,

(
X 0
0 x

))
∈ S1 × S(O(2k1 − 1) × O(1))

∣∣∣∣∣ σ1(A)x = 1

}
.

Therefore, we can easily show that the following lemma by using the above formula
for K.

Lemma 10.2. The following two statements are equivalent:

(1): σ2(K ′′
2 ) = {I2k2−1} (resp. σ2(K ′′

2 ) = {±I2k2−1});
(2): K = SO(2k2 − 2) × K ′′

2 (resp. rb(K) = S(O(2mb) × O(1))).

Moreover, the following statement holds:

(3): if σ2(K ′′
2 ) = {±I2k2−1} then K ̸= S(O(2mb) × O(1)) × K ′′

2 .

It follows from this Lemma 10.2 and the above formula for K that the slice
representation σ2 : K2 → O(2k2−2) is also completely determined by K. Therefore,
the tubular neighborhood of G/K2 is completely determined by K and equivariantly
diffeomorphic to the following manifold:

a∏
i=1

CP (li) ×

b−1∏
j=1

S2mj × D(R2k2−1)

 ×A S(R2k1),

where A ≃ S1/So
1 -quotient is defined by the following actions: on

∏b−1
j=1 S2mj ×

D(R2k2−1) as the subgroup A ⊂
∏b−1

j=1 Z2 × {±I2k2−1}; and on S(R2k1) ⊂ R2k1

by the representation σR : A → {±I2k1} (induced by σ1). Moreover, by us-
ing Lemma 10.2 (3), if (1, · · · , 1, −I2k2−1) ∈ A ⊂

∏b−1
j=1 Z2 × {±I2k2−1}, then

σR(1, · · · , 1, −I2k2−1) = −I2k1 . It follows that A acts on
∏b−1

j=1 S2mj×D(R2k2−1)×
S(R2k1) freely; therefore, X2 is a manifold.

From Remark 4.2, we can easily check that the pair of (M, G) of the case
(3)-(b)-(i) is as follows:

M =
a∏

i=1

CP (li) ×
b−1∏
j=1

S2mj ×A S(R2k2−1 ⊕ R2k1);

G =
a∏

i=1

SU(li + 1) ×
b−1∏
j=1

SO(2mj + 1) × SO(2k2 − 1) × SO(2k1),

where A acts on
∏b−1

j=1 S2mj × S(R2k2−1 ⊕ R2k1) as follows:

• on R2k1 by σR : A → {±I2k1};
• on

∏b−1
j=1 S2mj × R2k2−1 as a subgroup

∏b−1
j=1 Z2 × {±I2k2−1} such that if

(1, · · · , 1, −I2k2−1) ∈ A, then σR(1, · · · , 1, −I2k2−1) = −I2k1 .

This corresponds with the second manifold in Theorem 8.1.
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10.2. The case (3)-(b)-(ii). Suppose the case (3)-(b)-(ii) occurs, that is,

Spin(2k2 − 2) = Ta and k2 = 2,

where Ta is the a-th factor of T a = T1 × · · · × Ta (Ti ≃ T 1). Let ψ : K̃o → Ko be
the finite covering projection, where K̃o is a product of Lie groups. By (10.1), we
can easily show that

ψ(Spin(2k2 − 2)) =

{(
Ilat

−1/la
a 0
0 ta

) ∣∣∣∣∣ ta ∈ Ta = Spin(2k2 − 2)

}
.

Moreover, there is the following commutative diagram by (10.2) and (10.3):

(SU(la) × Spin(2k2 − 2)) × K̃ ′′
2

eι−→ (SU(la) × Spin(2k2 − 1)) × K̃ ′′
2

ψ ↓ ↓ ψ̃

Ko ι−→ Ko
2 ,

where K̃ ′′
2 =

∏b
j=1 Spin(2mj) ×

∏a−1
i=1 SU(li) × T a−1 × Spin(2k1 − 1). Because

pa(Ko) = S(U(la) × U(1)) (by (10.1)), we have the following sequence (k2 = 2):

S(U(la) × U(1))
= pa ◦ ι2 ◦ ι ◦ ψ(SU(la) × Spin(2k2 − 2))

= pa ◦ ι2 ◦ ψ̃ ◦ ι̃(SU(la) × Spin(2k2 − 2))

⊂ pa ◦ ι2 ◦ ψ̃(SU(la) × Spin(2k2 − 1))
⊂ pa(G) = SU(la + 1).

Therefore, with a method similar to the proof of la = 1 in Section 9.2.1, we also
have la = 1 (remark Spin(3) ≃ SU(2)). Hence, we have

Ko
2 =

b∏
j=1

SO(2mb) ×
a−1∏
i=1

S(U(li) × U(1)) × SU(2) × SO(2k1 − 1)

=
b∏

j=1

SO(2mb) ×
a−1∏
i=1

S(U(li) × U(1)) × Spin(3) × SO(2k1 − 1).

By the similar argument of Section 10.1 and using (10.1), we have that

K2 =
a−1∏
i=1

S(U(li) × U(1)) × Spin(3)

×

{(
A,

(
X 0
0 x

))
∈ S1 × S(O(2k1 − 1) × O(1))

∣∣∣∣∣ σ1(A)x = 1

}
.

Similarly, the slice representation σ2 : K2 → O(3) is the natural representation
from the Spin(3)-factor in K2 to SO(3) ⊂ O(3), and from the other factors K ′′

2 in
K2 to ZSO(3) = {±I3}. However, by σ−1

2 (O(2)) = K ⊃ K ′′
2 = ψ(K̃ ′′

2 ) (see (10.1))
and O(2)∩ {±I3} = {I3}, we have that σ2(K ′′

2 ) = {I3}. Therefore, K2 ⊂ G and σ2

are completely determined by K.
In this case, by constructing the G-manifold, we can regard Spin(3) as SO(3) =

SO(2mb+1 +1) in G up to essential isomorphism. By regarding b+1 as b and a−1
as a, we can easily show that this case is the same as the case (3)-(b)-(i) with k2 = 2
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and σ2(K ′′
2 ) = {I3}. Hence, this corresponds with the second manifold in Theorem

8.1 such that k2 = 2 and σ2 : K2 → SO(3) ⊂ O(3).
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