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Abstract. The purpose of this paper is to study relations among equivariant
operations on three-dimensional small covers. We get three formulas for these
operations (Theorem 1). As an application, we improve the Nishimura’s the-
orem on the construction of oriented 3-dimensional small covers (Corollary 2)
and the Lü-Yu’s theorem on the construction of all 3-dimensional small covers
(Corollary 3). Moreover, for a construction of three-dimensional 2-torus man-
ifolds, we show that all operations can be obtained by using the equivariant
surgeries (Theorem 4).

1. Introduction

Small covers were introduced by Davis and Januszkiewicz as a real version of
quasitoric manifolds in 1991. In their paper [2], they showed that there are strong
links between a small cover M with the orbit projection map π : M → P and
a combinatorial structure of its orbit polytope P . For example, some topological
invariants (e.g., equivariant cohomologies or Z2-Betti numbers) of small covers π :
M → P are decided by the combinatorial invariants of their orbit polytopes P (e.g.,
Stanley-Reisner rings or h-vectors).

Not only topological invariants but also topological operations on M (e.g., equi-
variant connected sums or equivariant surgeries) correspond with combinatorial op-
erations on the orbit polytope P (see Section 3). Making use of this correspondence,
constructions of 3-dimensional small covers M3 from basic small covers have been
studied by Izmestiev, Nishimura, Lü and Yu. In [3] Izmestiev studies the class of
small covers M3 called a linear model, i.e., small covers over 3-colored polytopes.
He proves that 3-dimensional linear models are constructed from one basic small
cover (the 3-dimensional torus T 3) by using two operations ] and \ (see Section
3 and Theorem 4.2). In [11] Nishimura generalizes Izmestiev’s result to oriented
small covers M3, i.e., small covers over 3 or 4-colored polytopes. He proves that
3-dimensional oriented small covers are constructed from two basic small covers
(T 3 and the real projective space RP (3)) by using three operations ], \ and [ (see
Section 3 and Theorem 4.3). In [7] Lü and Yu prove that all 3-dimensional small
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covers are constructed from five basic small covers by using six operations ], ]e,
]eve, \, ]∆ and ]C (see Section 3 and Theorem 4.5).

The operation [ appearing in the Nishimura’s theorem (Theorem 4.3) is not
used in the Lu- Yu’s theorem (Theorem 4.5). On the other hand, the operations ]e,
]eve, ]∆ and ]C appearing in the Lu- Yu’s theorem are not used in the Nishimura’s
theorem. So we can naturally ask what relations exist between the Nishimura’s
theorem and the Lü-Yu’s theorem. Motivated by this question, in this paper, we
prove the following theorem (Theorem 4.1).

Theorem 1. The operations [, ]e, ]eve can be obtained by using ], \ as follows:
(1) [ = \ ◦ (]∆3);
(2) ]e = \ ◦ (]P 3(3));
(3) ]eve = \2 ◦ (]P 3

−(3)),
where \2 denotes two times Dehn surgery \ ◦ \.

Using the above Theorem 1 and the Nishimura’s theorem (Theorem 4.3), we
have the following corollary (Corollary 4.4).

Corollary 2. Each 3-dimensional oriented small cover can be (equivariantly)
constructed from the real projective space RP (3) and the 3-dimensional torus T 3

by using finite times following two operations: the equivariant connected sum ];
and the equivariant Dehn surgery \.

Moreover, we prove the following corollary (Corollary 4.8) by making use of
Theorem 1 and the Lü-Yu’s theorem (Theorem 4.5).

Corollary 3. Each 3-dimensional small cover can be (equivariantly) con-
structed from RP (3), M(P 3(3), λ2) and M(P 3(3), λ3) (up to weakly Z3

2-equivariant
diffeomorphism) by using finite times following four operations: the equivariant con-
nected sum ]; the equivariant Dehn surgery \; the operation ]∆ and the coloring
change ]C , where (M(P 3(3)), λi) denotes S1 × RP (2) with the Z3

2-action induced
by λi for i = 2, 3.

For 2-torus manifolds, the following theorem (Theorem 6.1) holds.

Theorem 4. The operations ]∆, ]C can be obtained by using \, \0 and ] as
follows:

(1) ]∆ = \0 ◦ \ ◦ ];
(2) ]CP 3(l) = \0 ◦ \l−2 ◦ (]P 3(l)),

where P 3(l) is the l-sided prism, l ≥ 3 and \l−2 denotes (l − 2)-times \.

The organization of this paper is as follows. In Section 2, we recall the ba-
sic facts for small covers. In Section 3, we introduce the seven operations on
3-dimensional small covers. In Section 4, we prove the main theorem (Theorem
4.1). As an application of Theorem 4.1, we also prove Corollary 4.4 and 4.8 which
improve the Nishimura’s theorem (Theorem 4.3) and the Lü-Yu’s theorem (Theo-
rem 4.5). In Section 5, we remark a relation between the Nishimura’s theorem and
Lü-Yu’s theorem. In Section 6, we introduce a new operation and prove Theorem
6.1 for 2-torus manifolds.

2. Basics of small covers

In this section, we recall some basic facts for small covers (see [2] for detail).
We describe the quotient additive group Z/2Z as Z2 throughout this paper.
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2.1. Definition of a small cover. First we shall recall the terminology: 2-
torus manifolds in [5, 6]. A 2-torus manifold Mn is an n-dimensional, closed smooth
manifold with a non-free effective smooth Zn

2 -action.
Let Pn be a simple convex n-polytope, i.e., precisely n facets of Pn meet at

each vertex. A small cover is a 2-torus manifold Mn which satisfies the following
two conditions:

(a): the Zn
2 -action is locally standard, i.e., locally same as the Zn

2 -action on
Rn; and

(b): there is the orbit projection map π : Mn → Pn constant on Zn
2 -orbits

which maps every rank k orbit (i.e., orbits which isomorphic to Zk
2) to a

point in the interior of k-dimensional face of Pn, k = 0, · · · , n.

We can easily show that π sends Zn
2 -fixed points in Mn to vertices of Pn by using

the above condition (b). We often call Pn an orbit polytope of M .

2.2. Characteristic function and constructions of small covers. On the
other hand, for given Pn, small covers Mn with orbit projection π : Mn → Pn can
be reconstructed by using a characteristic function λ : F → Zn

2 , where F is the set
of facets in P . In this subsection, we shall recall the characteristic function λ and
the construction of small covers by using P and λ.

Due to the definition of a small cover π : M → P , we have that π−1(int Fn−1)
consists of (n − 1)-rank orbits, in other words, the isotropy subgroup at x ∈
π−1(int Fn−1) is K ⊂ Zn

2 such that K ' Z2, where int Fn−1 is an interior of
a facet Fn−1. Hence, the isotropy subgroup at x is determined by a primitive
vector v ∈ Zn

2 generating a subgroup K. In this way we obtain a function λ from
the set of facets of P , denoted by F , to primitive vectors in Zn

2 . We call such
λ : F → Zn

2 a characteristic function or coloring on P. By the locally standard
property, a characteristic function satisfies the following property (called the prop-
erty (?)):

(?): if F1∩· · ·∩Fn 6= ∅ for Fi ∈ F (i = 1, · · · , n), then {λ(F1), · · · , λ(Fn)}
spans Zn

2 .

Next we mention the construction of small covers by using Pn and λ. Let Pn

be a simple convex polytope. Suppose that the characteristic function λ : F →
Zn

2 which satisfies the above property (?) is defined on Pn. Small covers can be
constructed from P and λ as follows:

Zn
2 × P/ ∼,

where (t, x) ∼ (t′, y) is defined as x = y ∈ P and

t = t′ if x ∈ intP ;
t−1t′ ∈ 〈λ(F1), · · · , λ(Fl)〉 ' Zl

2 if x ∈ int(F1 ∩ · · · ∩ Fl),

where 〈λ(F1), · · · , λ(Fl)〉 ⊂ Zn
2 denotes the subgroup generated by λ(Fi) for

i = 1, · · · , l. We describe such small cover as M(P, λ).
Before we show examples of small covers, we define the equivalence relation

on small covers. Let (M1, Zn
2 ) and (M2, Zn

2 ) be small covers. We denote their
Zn

2 -actions as ϕ1 and ϕ2, respectively. We call (M1, Zn
2 ) and (M2, Zn

2 ) are weakly
equivariantly homeomorphic, if there is a homeomorphism f : M1 → M2 such
that f(ϕ1(t, x)) = ϕ2(g(t), f(x)), where t ∈ Zn

2 , x ∈ M1 and g : Zn
2 → Zn

2 is
3



an isomorphism. If g is the identity map, we call (M1, Zn
2 ) and (M2, Zn

2 ) are
equivariantly homeomorphic.

2.3. Examples. Let {e1, · · · , en} be the standard basis in Zn
2 . We call a pair

of a polytope and its characteristic funcation (Pn, λ) a polytope with m-coloring
or an m-coloring polytope if the image of λ is a set of m-independent vectors in
Zn

2 , i.e., λ(F) = {f1, · · · , fm} where fj (j = 1, · · · , m) is a linear combination
of e1, · · · , en. Now Figure 1 shows two examples of characteristic functions on
polytopes. The polytope of the left example is the 3-simplex ∆3 with 4-coloring,
i.e., λ0(F) = {e1, e2, e3, e1 + e2 + e3}. The polytope of the right example is the
3-cube I3 with 3-coloring, i.e., λI

0(F) = {e1, e2, e3}.

Figure 1. The left figure is (∆3, λ0) and the right figure is
(I3, λI

0), where the bottom e1 + e2 + e3 and e1 are the colors
of facets on the back. We see that M(∆3, λ0) = RP (3) and
M(I3, λI

0) = T 3, where RP (3) and T 3 have the standard Z3
2-

actions.

We can easily show that ∆3 has the unique characteristic function λ0 up to
GL(3, Z2), i.e., for all characteristic function λ on ∆3, there is an element σ ∈
GL(3, Z2) such that σ ◦ λ = λ0. In other words, small covers over ∆3 are unique
up to weakly equivariant diffeomorphisms. We can assume that there is at least
one vertex v = F1 ∩ · · · ∩ Fn in P such that λ(Fi) = ei for all i = 1, · · · , n up to
GL(3, Z2) because of the property (?).

A small cover over Pn with n-coloring, i.e., λ(F) = {e1, · · · , en} (up to
GL(n, Z2)) is called a linear model. So the right example in Figure 1 is a lin-
ear model. Nakayama and Nishimura show that a 3-dimensional small cover is
orientable if and only if the characteristic function on the orbit polytope P 3 is 3
or 4 colored in [10]. Therefore, small covers which are constructed from the two
examples in Figure 1 are orientable.

2.4. Z3
2-invariant normal bundle over an invariant S1. Let π : M → P

be a 3-dimensional small cover. In this subsection, we study the equivariant normal
bundle of the inverse of edges in P .

Fix {e1, e2, e3} as a basis (not necessary standard) of Z3
2. We can easily show,

by using the property (?), that the characteristic functions on neighboring facets
around one edge in a 3-dimensional polytope have only the four cases in Figure 2
(in the next page).

The small cover over a 1-simplex ∆1(= I1) is identified with RP (1)(= S1).
Hence, for the small cover π : M → P , the inverse π−1(I1) of any edge I1 in P is an
invariant submanifold diffeomorphic to S1. Moreover, we know an equivariant nor-
mal bundle of π−1(I1) from a characteristic function around I1. Let (t1, t2, t3) ∈ Z3

2

act on ((x1, x2), (y1, y2)) ∈ S1×D2 by ((x1, x2), (y1, y2)) 7→ ((t1x1, x2), (t2y1, t3y2)).
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Figure 2. The characteristic functions around edges.

We can easily show the following proposition by computing a characteristic function
of S1 ×Z2 D2’s and using Figure 2 and the construction of small covers in Section
2.2.

Proposition 2.1. Let I be an edge in P and N a small neighborhood of I. For
an invariant submanifold S1 = π−1(I) in the 3-dimensional small cover, the normal
bundles π−1(N) are weakly Z3

2-equivariantly isomorphic to one of the following four
disk bundles:

(1) if N satisfies (1) in Figure 2, then π−1(N) ' S1 ×Z2 D(R⊕ R);
(2) if N satisfies (2) in Figure 2, then π−1(N) ' S1 ×Z2 D(R⊕ R);
(3) if N satisfies (3) in Figure 2, then π−1(N) ' S1 ×Z2 D(R⊕ R);
(4) if N satisfies (4) in Figure 2, then π−1(N) ' S1 ×Z2 D(R⊕ R),

where the non-trivial element in Z2 acts on S1 by the antipodal involution, and
D(V ⊕ V ′) = D2 denotes a closed disk in V ⊕ V ′ (V, V ′ are 1-dimensional real
vector spaces), Z2 acts on R canonically and on R trivially.

Remark 2.2. In the above Proposition 2.1, we have that S1 ×Z2 (R ⊕ R) ∼=
ε1⊕ε1, S1×Z2 (R⊕R) ∼= γ1

1⊕γ1
1 , S1×Z2 (R⊕R) ∼= γ1

1⊕ε1 and S1×Z2 (R⊕R) ∼= ε1⊕γ1
1 ,

where ε1 is the trivial bundle and γ1
1 is the canonical bundle over RP (1)(= S1).

Hence, we have that the bundle (1) (resp. (3)) is isomorphic to the bundle (2) (resp.
(4)) in Proposition 2.1, by making use of the basic facts of the vector bundle over
RP (1) (see [9]). However, these four bundles are different as the Z3

2-equivariant
bundle because their characteristic functions are different (see Figure 2). We also
remark that, up to weakly Z3

2-equivariant diffeomorphism, (3) and (4) are same.

3. Operations for 3-dimensional small covers

Henceforth, we assume that M(P, λ) is a 3-dimensional small cover over a
3-dimensional simple convex polytope with coloring (P, λ), and {e1, e2, e3} is a
basis (not necessary standard) of Z3

2. In this section, we introduce operations on
small covers and orbit polytopes (also see [3, 7, 11]). From this section, we often
call the set of colorings included in {f1, f2, f1+f2} a 2-independent coloring, where
fi (i = 1, 2) is a linear combination of {e1, e2, e3}.

3.1. The equivariant connected sum ]. The operation in Figure 3 is called
the equivariant connected sum ] (from left to right) and its inverse ]−1 (from right
to left). The left figure shows two neighborhoods of two same colored vertices in
(P1, λ1) and (P2, λ2). We can do the connected sum of the two polytopes at these
vertices (see [3, Definition 3]), then we get a new polytope with coloring (P1]P2, λ),
vice versa. Remark that P1]P2 is a combinatorial simple convex polytope by using
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the Steinitz’ theorem: the graph Γ is a graph of the 3-dimensional polytope P if
and only if Γ is 3-connected and planer (see [13, Chapter 4]).

Figure 3. The equivariant connected sum ] (from left to right)
and its inverse ]−1 (from right to left). Here, e3 is the coloring of
the facet on the back.

From the geometric point of view, this operation ] corresponds with the equi-
variant connected sum M(P1, λ1)]M(P2, λ2) for two fixed points in M(P1, λ1) and
M(P2, λ2). We can easily check M(P1, λ1)]M(P2, λ2) is a small cover and its orbit
polytope with coloring is (P1]P2, λ), i.e., M(P1, λ1)]M(P2, λ2) = M(P1]P2, λ)
(also see [3, Lemma 2]).

3.2. The cutting edge operation ]e. Before we mention the cutting edge
operation, we introduce the connected sum along edges. Let P1 and P2 be 3-
dimensional, simple, convex polytopes. Suppose that the edges I1 ⊂ P1 and I2 ⊂ P2

are chosen, and a one-to-one correspondence Fi 7→ F ′i (i = 1, · · · , 4) is established,
where this correspondence is from the facets {F1, F2, F3, F4} containing I1 as
I1 = F2 ∩ F3 to the facets {F ′1, F ′2, F ′3, F ′4} containing I2 as I2 = F ′2 ∩ F ′3. The
connected sum along edges with respect to these data is a polytope combinatorially
equivalent to the result of the gluing P1 and P2 with small neighborhoods of I1 and
I2 removed. The corresponding facets must be glued together. The operation in
Figure 4 is the special case of this operation.

The operation in Figure 4 is called the cutting edge operation ]e (from left to
right) and its inverse (]e)−1 (from right to left). The left figure shows two neighbor-
hoods of two edges whose neighboring facets have a same coloring in (P1, λ1) and
(P2, λ2), where P2 is the 3-sided prism, i.e., P2 = P 3(3) = I1×∆2. We can do the
connected sum along these edges, then we get a new polytope (remark that this is
combinatorially equivalent to a simple polytope because of the Steinitz’ theorem)
with coloring (P1]

eP2, λ), vice versa (also see [7, Section 2]).

Figure 4. The cutting edge operation ]e (from left to right) and
its inverse (]e)−1 (from right to left). Here, e3 is the coloring of
the facet on the back, and w is an element in Z3

2 such that the
property (?) holds around vertices (see Figure 2).
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From the geometric point of view, the operation ]e corresponds with the fol-
lowing operation. Let πi : Mi → Pi be a small cover and Ii an edge in Pi for
i = 1, 2. Suppose that P2 = P 3(3) and colorings of facets around I1 and I2 are
same as in Figure 4. Then we see that a closed invariant tubular neighborhood N1

of π−1
1 (I1) is equivariantly isomorphic to a closed invariant tubular neighborhood

N2 of π−1
2 (I2) (see Section 2.4). Therefore, two boundaries of M(P1, λ1)\intN1

and M(P2, λ2)\intN2 are equivariantly diffeomorphic, where intNi is the inte-
rior of Ni for i = 1, 2. Hence, we can glue equivariantly these two boundaries,
and get the Z3

2-manifold M(P1, λ1)\intN1 ∪∂ M(P2, λ2)\intN2; we denote it as
M(P1, λ1)]eM(P2, λ2). We can easily show that M(P1, λ1)]eM(P2, λ2) is small
cover and its orbit polytope with coloring is (P1]

eP2, λ) (also see [7, Section 5.2]).

3.3. The cutting edge-vertex-edge operation ]eve. In this paper, the op-
eration in Figure 5 is called the cutting e-v-e operation ]eve (from left to right) and
its inverse (]eve)−1 (from right to left), where e-v-e means edge-vertex-edge. Let
2-edges in a simple polytope P be an union of two different edges with the common
vertex. The left figure shows two neighborhoods of two same colored 2-edges in
(P1, λ1) and (P2, λ2), where P2 is the truncated prism, i.e., P2 is the polytope
constructed by the connected sum of the 3-simplex ∆3 and the 3-sided prism P 3

3 :
P2 = P 3

−(3) = P 3(3)]∆3. We denote the 2-edges in (P1, λ1) as I1 ∨ I2 and that in
(P2, λ2) as I ′1 ∨ I ′2. Then we can establish a one-to-one correspondence Fi 7→ F ′i
(i = 1, · · · , 5), from the facets {F1, · · · , F5} containing I1 ∨ I2 as I1 = F2 ∩ F5

and I2 = F3∩F5 to the facets {F ′1, · · · , F ′5} containing I ′1∨ I ′2 as I ′1 = F ′2∩F ′5 and
I ′2 = F ′3 ∩ F ′5, such that λ1(Fi) = λ2(F ′i ). The cutting e-v-e operation with respect
to these data is a polytope combinatorially equivalent to the result of the gluing P1

and P2 with small neighborhoods of I1 ∨ I2 and I ′1 ∨ I ′2 removed. The correspond-
ing facets must be glued together. Remark that the cutting e-v-e operation of P1

and P2 is combinatorially equivalent to a simple polytope because of the Steinitz’
theorem. Therefore, we have the new polytope with coloring (P1]

eveP2, λ) (also
see [7, Section 2]).

Figure 5. The cutting e-v-e operation ]eve (from left to right) and
its inverse (]eve)−1 (from right to left). Here, e3 is the coloring of
the facet on the back, and w1, w2 are elements in Z3

2 such that the
property (?) holds around vertices.

From the geometric point of view, this operation ]eve corresponds with the
following operation. Let πi : Mi → Pi be a small cover and Ii an edge in Pi for
i = 1, 2. Assume that P2 = P 3

−(3) and colorings of facets around I1 ∨ I2 in P1 and
I ′1 ∨ I ′2 in P2 are same as in Figure 5. Now we see that π−1

1 (I1 ∨ I2) ∼= S1 ∨ S1

and π−1
2 (I ′1 ∨ I ′2) ∼= S1 ∨ S1. Here, S1 ∨ S1 is the Z3

2-invariant bouquet of two S1’s
on the fixed points, i.e., S1 ∨ S1 = (S1 q S1)/v1 ∼ v2, where S1 q S1 is a disjoint
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union of two S1’s and vi is a Z3
2 -fixed point in the i-th S1 for i = 1, 2. Moreover,

by our assumption, there are Z3
2-invariant closed neighborhoods N1 and N2 of

π−1
1 (I1∨I2) and π−1

2 (I ′1∨I ′2), respectively, and they are equivariantly diffeomorphic.
Therefore, with a method similar to that demonstrated in the previous section
(Section 3.3), we have the manifold M(P1, λ1)\intN1 ∪∂ M(P2, λ2)\intN2 with
a Z3

2-action; we denote it as M(P1, λ1)]eveM(P2, λ2). We can easily show that
M(P1, λ1)]eveM(P2, λ2) is a small cover and its orbit polytope with coloring is
(P1]

eveP2, λ) (see [7, Section 5.3] for detail).

3.4. The equivariant Dehn surgery \. The operation described in Figure 6
is called the equivariant Dehn surgery \ (from left to right) and its inverse \−1 (from
right to left). If a coloring around an edge is 3-coloring (i.e., from geometric point
of view, an equivariant normal bundle which is weakly equivariantly isomorphic to
S1 ×Z2 D(R ⊕ R) by Proposition 2.1), then we can do this operation \ for (P, λ).
Remark that the obtained object by \ might not be a convex polytope (also see
[3]); however, we get the coloring on this object which satisfies the property (?)
around a vertex. We denote the object obtained by the operation \ as \(P, λ).

Figure 6. The equivariant Dehn surgery \ (from left to right) and
its inverse \−1 (from right to left).

From the geometric point of view, this operation \ corresponds with the follow-
ing operation. Let Z3

2 act on the last three coordinate in S3 ⊂ R ⊕ R3, naturally.
Then there is the Z3

2-invariant submanifold S1 ⊂ R2⊕{0}⊕{0} (remark that there
are two fixed points in this submanifold), and we can take its tubular neighborhood
S1 × D2 ∼= S1 ×Z2 D(R ⊕ R). We next consider S3 = S1 × D2 ∪ D2 × S1, and
prepare the Z3

2-invariant part S3\S1×D2 = D2×S1 (remark that there is no fixed
points in this manifold). Then we remove the invariant neighborhood S1 ×D2('
S1 ×Z2 D(R ⊕ R)) around S1 from M(P, λ), i.e., we take M(P, λ)\S1 ×D2. Fi-
nally we glue these two invariant manifold M(P, λ)\S1×D2 ∪∂ S3\S1×D2. This
operation is identically the equivariant Dehn surgery of three dimensional manifold
(also see [3, Definition 5] or [7, Section 5.4]). We denote the manifold obtained
by this equivariant surgery as \(M(P, λ)). If \(P, λ) is a convex polytope, then
\(M(P, λ)) = M(\(P, λ)).

3.5. The equivariant Dehn surgery [. The operation described in Figure
7 is called the equivariant Dehn surgery [ (from left to right) and its inverse [−1

(from right to left). This move is also called the bistellar 1-move (see [1, Chapter
2]: remark that the operation in Figure 7 corresponds with the dual of the bistellar
1-move in [1]). If a coloring around an edge is 4-coloring as that in Figure 7
(i.e., from geometric point of view, an equivariant normal bundle which is weakly
equivariantly isomorphic to S1 ×Z2 D(R⊕R) by Proposition 2.1) , then we can do
this operation [. We describe the object with coloring obtained by this operation
as [(P, λ). Remark that if the polytope P is prime, i.e, P is not decomposed into
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connected sum of two different polytopes, then this operation [ does not destroy
the convex property (see [11]). We also remark that this move is the same as the
connected sum along edges between (P, λ) and (∆3, σ◦λ0) for some σ ∈ GL(3;Z2).

Figure 7. The equivariant surgery [ (from left to right) and its
inverse [−1 (from right to left).

Now we may explain what happens from the geometric point of view. We can
regard RP (3) as S3/Z2 by the antipodal involution Z2. Then we can consider
RP (3) = S1 ×Z2 D2 ∪D2 ×Z2 S1, where S1 ×Z2 D2 ' S1 ×Z2 D(R ⊕ R). We first
prepare the Z3

2-invariant part RP (3)\S1 ×Z2 D2 = D2 ×Z2 S1 (remark that there
are two fixed points in this manifold). Next, we remove the invariant neighborhood
S1 ×Z2 D2 around S1 from M(P, λ), i.e., we take M(P, λ)\S1 ×Z2 D2. Finally,
we glue these two invariant manifold M(P, λ)\S1 ×Z2 D2 ∪∂ RP (3)\S1 ×Z2 D2.
We denote the manifold obtained by this operation as [(M(P, λ)). If [(P, λ) is a
convex polytope, then [(M(P, λ)) = M([(P, λ)).

3.6. The operation ]∆. The operation described in Figure 8 is called the
operation ]∆ (from left to right) and its inverse (]∆)−1 (from right to left). If a
coloring around a triangle facet is 2-independent coloring (i.e., their colorings can
be choose from one of {e1, e2, e1 + e2}), then we can do this operation ]∆. Using
the Steinitz’ theorem, P1]

∆P2 is a convex, simple polytope (also see [7, Section
2.2]).

Figure 8. The operation ]∆ (from left to right) and its inverse
(]∆)−1 (from right to left).

From the geometric point of view, a neighborhood of a triangle facet whose
neighboring facets are 2-independent coloring corresponds with an invariant normal
bundle which is weakly equivariantly isomorphic to RP (2)×I1 with the standard Z3

2-
action (i.e., the first Z2

2 acts on RP (2) and the last Z2 acts on I1 = [−1, 1] ⊂ R natu-
rally), by computing its characteristic function. Therefore, we have that the opera-
tion ]∆ corresponds with the following operation. We first remove an open invariant
neighborhood RP (2)× intI1 from M(Pi, λi), i.e., M(Pi, λi)\RP (2)× intI1 for i =
1, 2. Next we glue these two manifolds along boundaries, i.e., M(P1, λ1)\RP (2)×
intI1 ∪∂ M(P2, λ2)\RP (2) × intI1; we denote it as M(P1, λ1)]∆M(P2, λ2). We
can easily show M(P1, λ1)]∆M(P2, λ2) is a small cover and its orbit polytope with
coloring is (P1]

∆P2, λ) (also see [7, Section 5.5]).
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3.7. The coloring change ]C . We explain the operation in Figure 9. Let
F be an l-gon facet whose neighboring facets are 2-independent coloring in (P, λ)
(see the left bottom polytope in Figure 9). Then we can construct a l-sided prism
P 3(l) = F × I1 (see the left above polytope in Figure 9), which naturally admits a
coloring such that the coloring of the neighboring facets around the bottom facet
(or top facet) is the same as that of F in (P, λ). Next we glue these two polytopes
along the facet F , and we have the new polytope; we denote this new polytope
as P]CP 3(l). Remark that two polytopes P and P]CP 3(l) are combinatorially
equivalent; however, the colorings of the l-gon facet F in P and P]CP 3(l) are
different (also see [7, Section 2.3]).

Figure 9. The coloring change ]C (from left to right) and its
inverse (]C)−1 (from right to left), where w = e1 or e1 + e2 and
the left e3 means the coloring of the bottom of prism and the top
of polytope. We also have x = e1 + e3, e2 + e3 or e1 + e2 + e3.

From the geometric point of view, this operation corresponds with a (geometric)
operation similar to that described in Section 3.6 (see [7, Section 5.6] for detail).

4. Main theorem and corollaries

In this section, we shall prove the main theorem of this paper.

4.1. Main theorem. First we prove the following main theorem.

Theorem 4.1. The operations [, ]e, ]eve can be obtained by using ], \ as follows:

(1) [ = \ ◦ (]∆3), i.e., [(P, λ) = \((P, λ)](∆3, λ′));
(2) ]e = \ ◦ (]P 3(3)), i.e., (P, λ)]e(P 3(3), λ′) = \((P, λ)](P 3(3), λ′));
(3) ]eve = \2 ◦ (]P 3

−(3)), i.e., (P, λ)]eve(P 3
−(3), λ′) = \2((P, λ)](P 3

−(3), λ′)),

where \2 denotes \ ◦ \.

Proof. These relations (1), (2) and (3) are shown by the Figures 10, 11 and
12, respectively.

In these Figures 10, 11 and 12, the upper map from left to right means the
connected sum ] on two black vertices with ∆, P 3(3) and P 3

−(3) respectively, and
the right map from top to bottom means the equivariant Dehn surgery \ along the
black edge. Remark that in Figure 12, we do the operation \ two times along two
black edges. As the result, we get the formulas (1), (2), (3) in the statement. ¤
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Figure 10. [ = \ ◦ (]∆).

Figure 11. ]e = \ ◦ (]P 3(3)).

Figure 12. ]eve = \2 ◦ (]P 3
−(3)).

4.2. Constructions of oriented small covers. In this and next subsection,
we apply our main theorem (Theorem 4.1) to constructions of the three-dimensional
small covers. First, we recall the following Izmestiev’s theorem ([3, Theorem 3]).

Theorem 4.2 (Izmestiev). Suppose that the characteristic function λ of a 3-
dimensional small cover M(P, λ) satisfies that λ(F) = {e1, e2, e3}, i.e., M(P, λ)
is a 3-dimensional linear model. Then M(P, λ) can be (equivariantly) constructed

11



from the 3-dimensional torus T 3 by using finite times following two operations: the
equivariant connected sum ]; and the equivariant Dehn surgery \.

Nishimura generalizes the above theorem to the following theorem ([11, Theo-
rem 1.10]).

Theorem 4.3 (Nishimura). Suppose that the characteristic function λ of a 3-
dimensional small cover M(P, λ) satisfies that λ(F) ⊂ {e1, e2, e3, e1 + e2 + e3},
i.e., M(P, λ) is an oriented small cover. Then M(P, λ) can be (equivariantly)
constructed from T 3 and the 3-dimensional real projective space RP (3) by using
finite times following three operations: the equivariant connected sum ]; and the
equivariant Dehn surgeries \ and [.

By Section 2.3, we see that the small cover over ∆3 is RP (3). Therefore we can
prove the following corollary by applying Theorem 4.1 (1) to the above Nishimura’s
theorem.

Corollary 4.4. Each 3-dimensional oriented small cover can be (equivari-
antly) constructed from T 3 and RP (3) by using finite times following two opera-
tions: the equivariant connected sum ]; and the equivariant Dehn surgery \.

4.3. Constructions of all small covers. For all 3-dimensional small covers,
the following Lü-Yu’s theorem are known ([7, Theorem 1.1, 1.2]).

Theorem 4.5 (Lü-Yu). Each 3-dimensional small cover can be (equivariantly)
constructed from RP (3) and S1 × RP (2) with certain four type Z3

2-actions (up to
weakly equivariant diffeomorphism) by using the following six operations: ]; ]e; ]eve;
\; ]∆ and ]C .

Remark 4.6. In this paper, we abuse the notations of the operations on small
covers and on polytopes.

We shall explain the four types Z3
2-actions on S1×RP (2) in Theorem 4.5. The

manifold S1×RP (2) is the small cover over the three sided prism P 3(3) = I1×∆2.
The four types Z3

2-actions are defined by using the coloring in Figure 13. We
call them (from left) M(P 3(3), λ1), M(P 3(3), λ2), M(P 3(3), λ3), M(P 3(3), λ4),
respectively.

Figure 13. Basic four Z3
2-actions on S1 × RP (2) in Theorem

4.5; M(P 3(3), λ1), M(P 3(3), λ2), M(P 3(3), λ3), M(P 3(3), λ4).
Here, e2 + e3 is the coloring of facets on the back.

Remark that colorings of neighboring facets of triangle facets in Figure 13 are
2-independent. Therefore, we can do ]∆ (see Section 3.6) for these manifolds as
Figure 14.

In Figure 14, we remark that the middle two P 3(3)’s are equivariantly dif-
feomorphic to M(P, λ2) because there is the combinatorially equivalent to the
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Figure 14. M(P, λ1) and M(P, σ ◦λ4) can be constructed from
M(P, λ2) and M(P, λ3) by using ]∆. This figure shows that we
do ]∆ along black facets.

left-second figure (i.e., M(P 3(3), λ2)) in Figure 13 which preserves the colorings
(from the geometric point of view, this equivalence on polytopes corresponds with
the equivariant diffeomorphisms on small covers). We can easily show that the
coloring of the right bottom figure in Figure 14 is same as the right figure (i.e.,
M(P 3(3), λ4)) in Figure 13 up to GL(3, Z2)-equivariant isomorphism, by using
the following σ ∈ GL(3, Z2):

σ =




1 0 0
1 1 0
0 0 1


 .

By the above argument, we have the following lemma.

Lemma 4.7. For the basic small covers in Theorem 4.5 (Figure 13), the follow-
ing relations hold:

(P 3(3), λ1) = (P 3(3), λ2)]∆(P 3(3), λ2);

(P 3(3), σ ◦ λ4) = (P 3(3), λ2)]∆(P 3(3), λ3).

Next we remark that the operation ]e (resp. ]eve) itself decompsed as the
connected sum of P 3(3) (resp. P 3

−(3)) with Dehn surgery. However, the 3-sided
prism with coloring (P 3(3), λ) which is not included in Figure 13 can be constructed
as (∆, λ0)](∆, λ0) using the argument in [7, Section 3]. Moreover, all truncated
prisms with colorings (P 3

−(3), λ) can be constructed as (∆, λ0)](P 3(3), λ) using the
argument in [7, Section 3 (a)]. Hence, we have the following corollary (Corollary
4.8) by applying Theorem 4.1 (2), (3) and Lemma 4.7 to the Lü-Yu’s theorem
(Theorem 4.5).

Corollary 4.8. Each 3-dimensional small cover can be (equivariantly) con-
structed from RP (3), M(P 3(3), λ2) and M(P 3(3), λ3) (up to weakly equivariant
diffeomorphism) by using the following four operations: ]; \; ]∆ and ]C .
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5. Relation between the Nishimura’s theorem and the Lü-Yu’s theorem

In this section, we give the relations among the Izmestiev’s, Nishimura’s and
Lü-Yu’s theorem.

5.1. Relation of Corollary 4.4 and the operation ]C . In this subsection,
we apply the operation ]C to Corollary 4.4 for oriented small covers.

The torus with standard Z3
2-action T 3 = M(I3, λI

0) can be constructed from
(∆3, λ0) by using ], \ and ]C as Figure 15.

Figure 15. (I3, λI
0) can be constructed from (∆3, λ0) by using

], \ and ]C , where w = e1 + e2 + e3.

In the Figure 15, the first figure shows that the connected sum on the black
vertices; then, we get ((∆3, λ0))](∆3, λ0) = (P 3(3), λ). The second figure shows
that the connected sum along the black edges: this operation is identical with
]e = \ ◦ (]P 3(3)), and we get (P 3(3), λ)]e(P 3(3), λ) = (I3, λ′). In (I3, λ′) (the
second right figure I3), the colorings around the square facets with coloring w are
2-independent; therefore, we can do ]C along this facets. The third figure shows
this coloring change, i.e., the coloring change along the black square facets and we
get (I3, λ′)]C(I3, λ′) = (I3, λI

0).
Therefore, we have the following proposition by applying the above argument

to Corollary 4.4.

Proposition 5.1. Each 3-dimensional oriented small cover can be (equivari-
antly) constructed from RP (3) by using finite times following three operations:
the equivariant connected sum ]; the equivariant Dehn surgery \; and the coloring
change ]C .

5.2. Problem. The above Proposition 5.1 shows that Corollary 4.8 is not the
(direct) generalization of Corollary 4.4. Now we may give the relations among
Theorem 4.2, Corollary 4.4, 4.8 and Proposition 5.1 as the following list:
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linear model oriented 3-dimensional small covers
Izmestiev (Theorem 4.2) Nishimura (Corollary 4.4) ??

Proposition 5.1 Lü-Yu (Corollary 4.8)

Here, the column in the list means the category of 3-dimensional small covers, and
this list means that Corollary 4.4 is the generalization of Theorem 4.2 and Corollary
4.8 is the generalization of Proposition 5.1. So we can ask the following problem:

Problem 5.2. What is the generalization of Corollary 4.4 for 3-dimensional
small covers? In other wards, what are basic small covers which construct all 3-
dimensional small covers using operations ], \ (or ]∆)?

6. On 2-torus manifolds

In this final section, we shall give some remark for 2-torus manifolds. A 2-torus
manifold Mn is an n-dimensional, closed smooth manifold with a non-free effective
smooth Zn

2 -action (see Section 2.1). In this paper, we are interested in the n = 3
case. First we give some basic facts for 2-torus manifolds (see [5, 6] for detail).

6.1. Basics of 2-torus manifolds. Let π : M3 → M3/Z3
2 be the orbit pro-

jection of the 2-torus manifold M . We see that the orbit space M3/Z3
2 is a three

dimensional closed space. If Z3
2-action is locally standard then the orbit space is a

3-dimensional manifold with corner. Moreover, we can define the cell decomposition
on ∂M3/Z3

2 (we call it the orbit cell decomposition) induced from the information
of Z3

2-orbits as follows: the information of fixed points as 0-cells (vertices); the
information of rank one-orbits (i.e., orbits Z3

2/K ' Z2) as 1-cells (edges); the in-
formation of rank two-orbits (i.e., orbits Z3

2/K ' Z2
2) as 2-cells (facets); we remark

that the free orbits correspond with the interior of M3/Z3
2. With a method similar

to that defines the characteristic function on the small cover, we can define the
characteristic function from facets in ∂M3/Z3

2 to Z3
2. For example, Z3

2 acts canoni-
cally on the last three coordinates of S3 ⊂ R⊕ R3. Then S3 is a 2-torus manifold
(not a small cover), and its orbit space with characteristic function is as that in
Figure 16 by computing isotropy subgroups on rank two-orbits.

Figure 16. The orbit cell decomposition on S3/Z3
2. We describe

this orbit cell decomposition with coloring as (D3, ρ)

Figure 16 shows that S3/Z3
2 becomes the 3-disk D3, and its orbit cell decom-

position is as follows: two vertices; three edges; and three facets. We remark that,
in Figure 16, e3 is the coloring of the facet on the back.

We denote the orbit cell decomposition with coloring in Figure 16 as (D3, ρ)
15



6.2. The equivariant surgery \0. For the 2-torus manifold, we can define
the new operation \0 introduced from the (geometric) equivariant surgery. First,
we explain this operation \0.

The equivariant surgery \0 is the operation described in Figure 17. As we see
in Figure 16, generally in the orbit cell decomposition of 2-torus manifolds, there
is the multi-edge (i.e., two vertices connected by more than two edges, also see
the left figures in Figure 17). The left figures in Figure 17 show the neighborhood
around the multi-edge with coloring in the orbit cell decomposition (Q, λ) and
(D3, ρ). First we take two facets D1 ⊂ Q and D2 ⊂ D3 as the facets surrounded
by black edges in Figure 17. The equivariant surgery \0 is the gluing Q and D3

with small neighborhoods of D1 and D2 removed. As a result, we get the new orbit
cell decomposition with coloring (Q′, λ′) as in the right figure in Figure 17, vice
versa. (Q′, λ′) is denoted by \0(Q, λ).

Figure 17. The equivariant surgery \0 (from left to right) and its
inverse (\0)−1 (from right to left).

Let D be a facet in the orbit cell decomposition Q whose boundary consists
of 2 vertices and 2 edges, and π : M → Q be an orbit projection. We can easily
show that this facet D corresponds with the invariant submanifold diffeomorphic
to S2 in M , that is, π−1(D) = S2. So we can understand the geometric meaning
of the operation \0 as follows. Because Z3

2 acts on the last three coordinates of
S3 ⊂ R ⊕ R3, there is the Z3

2-invariant submanifold S2 ⊂ R3 ⊕ {0} (remark that
there are two fixed points in this submanifold). Then its invariant, closed, tubular
neighborhood is equivariantly isomorphic to S2 ×D1 with the standard Z3

2-action,
where D1 = I1. We next consider S3 = S2 × D1 ∪ D3 × S0, and prepare the
Z3

2-invariant part S3\S2 ×D1 = D3 × S0 (remark that there is no fixed points in
this disconnected manifold). Next we remove the invariant neighborhood S2 ×D1

around S2 = π−1(D) from the 2-torus manifold M , i.e., we take M\S2×D1. Finally
we glue these two invariant manifold M\S2×D1 ∪∂ S3\S2×D1. This operation is
identically the equivariant surgery of three dimensional manifold which is different
form the equivariant surgery explained in Section 3.4.

6.3. Remark on the operations ]∆ and ]C . Because we can easily regard
the equivariant connected sum as the equivariant surgery, the three type different
operations ], \ and \0 in this paper are introduced by the (geometric) equivariant
surgeries. Finally in this paper, we prove that ]∆ and ]C can be constructed by
these equivariant surgeries, i.e., we prove the following theorem.

Theorem 6.1. The operations ]∆, ]C can be obtained by using \, \0 and ] as
follows:
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(1) ]∆ = \0 ◦ \ ◦ ], i.e., (P1, λ)]∆(P2, λ′) = \0 ◦ \((P1, λ)](P2, λ′));
(2) ]CP 3(l) = \0◦\l−2◦], i.e., (P, λ)]C(P 3(l), λ′) = \0◦\◦· · ·◦\((P, λ)](P 3(l), λ′)),

where P 3(l) is the l-sided prism, l ≥ 3 and \l−2 denotes (l − 2)-times \ ◦ · · · ◦ \.

Proof. These relations (1) and (2) are shown by the Figures 18 and 19, re-
spectively.

Figure 18. ]∆ = \0 ◦ \ ◦ ].

Figure 19. ]CP 3(l) = \0 ◦ \l−2 ◦ ].
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In Figures 18, the picture on the top from left to right means the connected
sum ] on two black vertices. Next we can do \ along the black edge; then we have
the 2-gon facet as in the left bottom figure. Finally we can do \0 for this 2-gon
facet. As the result, we have the operation ]∆ = \0 ◦ \ ◦ ].

In Figure 19, we explain the l = 5 case only. However, we can easily apply the
same argument for all l ≥ 3. In Figure 19, the first map means the connected sum ]
on two black vertices. Then we have the (2l− 2)-gon facet (in Figure 19, this facet
is the 8-gon). Next we can do \ along the black edge as in the second figure; then,
this facet becomes the (2l − 4)-gon facet. Iterating this argument ((l − 2)-times),
finally we have the 2-gon facet. Then we can do \0 along this 2-gon facet. As the
result, we have the operation ]CP 3(l) = \0 ◦ \l−2 ◦ ]. ¤
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[5] Lü, Z., 2-torus manifolds, cobordism and small covers, Pacific J. Math., 241, 2009, 285–308.
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