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ABSTRACT

We give some relationships of the Jones and Q polynomials between two links which
are related by a band surgery. Then we consider two applications: The first one is to
an evaluation of the ribbon-fusion number, the least fusion number of a ribbon knot.
The second one is to DNA knot theory, helping us to understand the action of the Xer
site-specific recombination at psi site.
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1. Introduction

Let L be an oriented link, and b : I × I → S3 an embedding such that b(I × I) ∩
L = b(I × ∂I), where I is a closed interval. Let L′ = (L− b(I × ∂I)) ∪ b(∂I × I),
which is another link. If L′ has the orientation compatible with the orientation of
L−b(I×I)∩L and b(∂I×I), then L′ is called the link obtained from L by the band
surgery along the band b. Then there is a relation between the signatures of L and
L′ due to Murasugi; see Eq. (2.2). In this paper, we give further relationships in
terms of the Jones polynomial (Theorem 2.2) and the Q polynomial (Theorem 3.1).
Then we apply these relations in two ways: The first application is to estimate the
ribbon-fusion number of a ribbon knot. A knot is a ribbon knot if it is a knot
obtained from a trivial (m + 1)-component link by doing band surgery along m

bands for some m. We call the least number of such m the ribbon-fusion number.
There is an estimation for this number due to Sakuma, which is given in terms of
the Nakanishi index (Proposition 4.2). Using the above-mentioned relationships we
deduce Theorems 4.3 and 4.4, which can give a sharper estimation (Examples 4.6,
4.7).

The second application is to consider a problem whether a given knot with
(2n + 1) crossings is related to a (2, 2n) torus link or not by a band surgery, which
was brought from the study of a DNA site-specific recombination. More precisely,
Bath, Sherratt, and Colloms [1] have shown that the action of the Xer site-specific

1



2 Taizo Kanenobu

recombination at psi site is the change from a (2, 2n) torus link to a (2n+1)-crossing
knot by a band surgery. So characterizing such change is an important problem.
Applying Theorems 2.2 and 3.1, we will show the 7 crossing knots 73, 76 cannot
be obtained from a (2, 6) torus link (Proposition 5.4), and the 9 crossing knots 915,
917, 931 cannot be obtained from a (2, 8) torus link (Propositions 5.6 and 5.7).

Notation. For knots with up to 10 crossings we use Rolfsen notation [23, Ap-
pendix C].

2. The Jones Polynomial

In this section, we give a relationship of the Jones polynomials of two links that are
related by a band surgery. Before that we review a classical result for the signature
of these links due to Murasugi. Let L+, L−, L0 be three links that are identical
except near one point where they are as in Fig. 1; we call (L+, L−, L0) a skein
triple. Then Murasugi [19, Lemma 7.1] has shown:

|σ(L±)− σ(L0)| ≤ 1. (2.1)

Since we may consider the link L+ or L− is obtained from L0 by a band surgery,
and vice versa, two links L and L′ which are related by a band surgery satisfy:

|σ(L)− σ(L′)| ≤ 1. (2.2)
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L+ L− L0

Fig. 1. A skein triple.

The Jones polynomial V (L; t) ∈ Z[t±1/2] [8], is an invariant of the isotopy type
of an oriented link L, which is defined by the following formulas:

V (U ; t) = 1; (2.3)

t−1V (L+; t)− tV (L−; t) =
(
t1/2 − t−1/2

)
V (L0; t), (2.4)

where U is the unknot and (L+, L−, L0) is a skein triple.
We put ω = eiπ/3. For a knot K, Lickorish and Millett [14, Theorem 3] have

shown:

V (L;ω) = ±ic(L)−1(i
√

3)d, (2.5)

where c(L) is the number of the components of L, d = dim H1(Σ(L);Z3) with Σ(L)
the double cover of S3 branched over L; cf. [15]. Note that V (L;ω) means the value
of V (L; t) at t1/2 = eiπ/6, whence t1/2 − t−1/2 = i.
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The following lemma is due to Miyazawa [17].

Lemma 2.1.

V (L+;ω)
V (L−;ω)

∈
{
±1, i

√
3
±1
}

(2.6)

Proof. For the skein triple (L+, L−, L0), we consider another oriented link L∞
which is one of the diagram of Fig. 2, the choice being (i) if c(L+) < c(L0) and (ii)
if c(L+) > c(L0).

DDD D

CCC

LLL L

L                              L                             L                              L

(i) (ii)

Fig. 2. Two choices of the oriented link L∞.

Then by [2, Theorem 2] for the case (i) we have

V (L+; t)− tV (L−; t) + t3λ(t− 1)V (L∞; t) = 0, (2.7)

where λ is the linking number of the right-hand component of L0 in Fig. 1 with the
remainder of L0, and for the case (ii) we have

V (L+; t)− tV (L−; t) + t3(µ−
1
2 )(t− 1)V (L∞; t) = 0, (2.8)

where µ is the linking number of the botttom-right and top-left component L+ in
in Fig. 1 with the remainder of L+.

We consider the case (i). Putting t = ω in (2.7), we have

x− ω + (−1)λ(ω − 1)y = 0, (2.9)

where x = V (L+;ω)/V (L−;ω) and y = V (L∞;ω)/V (L−;ω). Then by Eq. (2.5)
there are four cases:

(a) (x, y) = (α, β);
(b) (x, y) = (α, βi);
(c) (x, y) = (αi, β);
(d) (x, y) = (αi, βi),

where α, β are real numbers. For the case (a), we have α = 1, β = (−1)λ; for the
case (b), we have α = −1, β = (−1)λ+1

√
3; for the case (c), we have α =

√
3,

β = (−1)λ+1; for the case (d), we have α =
√

3
−1

, β = (−1)λ+1
√

3
−1

, obtaining
the result.
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For the case (ii) we can prove similarly.

Theorem 2.2. Let L and L′ be two links related with a band surgery such that
c(L) < c(L′). Then

V (L;ω)
V (L′;ω)

∈
{
±i, −

√
3
±1
}

(2.10)

Proof. From the condition there is a skein triple (L+, L−, L0) such that L+ and
L0 are isotopic to L and L′, respectively. Put x = V (L+;ω)/V (L−;ω) and z =
V (L0;ω)/V (L−;ω). Then by Eq. (2.4), we have

ω−1x− ω = iz, (2.11)

and so
V (L;ω)
V (L′;ω)

=
x

z
=

ix

ω−1x− ω
. (2.12)

By Lemma 2.1 we obtain (2.2).

By using Eq. (2.5), Theorem 2.2 immediately implies the following.

Corollary 2.3. Suppose that a knot K is obtained from a 2-component link L by
a band surgery. Then

V (K;ω) ∈

{{
±1, −i

√
3ε
}

if V (L;ω) = iε;{
−ε, ±i

√
3, −3ε

}
if V (L;ω) =

√
3ε,

(2.13)

where ε = ±1.

3. The Q Polynomial

In this section, we give a relationship of the Q polynomials of two links that are
related by a band surgery. The Q polynomial Q(L; z) ∈ Z[z±1] [4,6] is an invariant of
the isotopy type of an unoriented link L, which is defined by the following formulas:

Q(U ; z) = 1; (3.1)

Q(L+; z) + Q(L−; z) = z (Q(L0; z) + Q(L∞; z)) , (3.2)

where U is the unknot and L+, L−, L0, L∞ are four unoriented links that are
identical except near one point where they are as in Fig. 3. We call (L+, L−, L0, L∞)
an unoriented skein quadruple.

We put ρ(K) = Q
(
K; (

√
5− 1)/2)

)
. For a knot K, Jones [9] has shown:

ρ(K) = ±
√

5
r
, (3.3)

where r = dim H1(Σ(K);Z5) with Σ(K) the double cover of S3 branched over K.
Furthermore, Rong [24] deduced some information on the values ρ(L−)/ρ(L∞),
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Fig. 3. An unoriented skein quadruple.

ρ(L0)/ρ(L∞), ρ(L+)/ρ(L∞), where (L+, L−, L0, L∞) is an unoriented skein
quadruple. Using these values, we have the following, which is analogous to a cri-
terion on the unknotting number of a knot due to Stoimenow [25, Theorem 4.1];
cf. [10].

Theorem 3.1. If two links L and L′ are related by a band surgery, then

ρ(L)/ρ(L′) ∈
{
±1,

√
5
±1
}

. (3.4)

Proof. From the condition there is an unoriented skein quadruple (L+, L−, L0, L∞)
such that L0 and L∞ are isotopic to L and L′, respectively. Then from the proof
of Theorem 2 in [24], we have ρ(L0)/ρ(L∞) ∈ {±1,

√
5
±1}, obtaining the result.

By using (3.3), Theorem 3.1 immediately implies the following.

Corollary 3.2. Suppose that a knot K is obtained from a link L by a band surgery.
Then

ρ(K) ∈

{{
±1,

√
5ε
}

if ρ(L) = ε;{
1, ±

√
5, 5

}
if ρ(L) =

√
5,

(3.5)

where ε = ±1.

4. The Ribbon-Fusion Number of a Ribbon Knot

In this section, we apply the theorems given in the previous sections to an evaluation
of the ribbon-fusion number of a ribbon knot. A knot is said to be a ribbon knot of
m-fusions if it is a knot obtained from a trivial (m + 1)-component link by doing
band surgery along m bands. More precisely, it has the form

S1
0 ∪ S1

1 ∪ · · · ∪ S1
m ∪

m⋃
i=1

fi(∂I × I)− int

(
m⋃

i=1

fi(I × ∂I)

)
, (4.1)
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where S1
0 ∪ S1

1 ∪ · · · ∪ S1
m is a trivial link of m components and fi : I × I → S3

(i = 1, 2, . . . ,m) are disjoint embeddings such that

fi(I × ∂I) ∪ Sj =


fi(I, 0) if j = 0;

fi(I, 1) if j = i;

∅ if otherwise.

(4.2)

By a ribbon knot we mean a ribbon knot of m-fusions for some m; see [16,27]. The
least number of such m is the ribbon-fusion number of K, which we denote by rf(K).

Remark 4.1. In [3,22,26] the ribbon-fusion number is called the ribbon number.

If K and K ′ are ribbon knots, then it is easy to see

rf(K#K ′) ≤ rf(K) + rf(K ′). (4.3)

Also, for any n-bridge knot K, the connected sum of K and its mirror image K!,
K#K! is a ribbon knot (cf. [23, 8E30]), which satisfies

rf(K#K!) ≤ n− 1. (4.4)

Bleiler and Eudave-Muñoz [3] have shown a composite knot with ribbon-fusion
number one has a summand that is two-bridge. Then Tanaka [26] proved that
there exist composite ribbon-fusion number one knots with arbitrarily large bridge
numbers.

The Nakanishi index of a knot K, denoted by m(K), is the minimum size among
all square Alexander matrix of K, provided that m(K) = 0 if and only if an
Alexander matrix of K is equivalent to the 1×1 matrix with entry 1 as presentation
matrices; see [11, p. 72]. Then Makoto Sakuma has given a lower bound of the
ribbon-fusion number using the Nakanishi index of a knot [22, Proposition 2].

Proposition 4.2. For a ribbon knot K,

rf(K) ≥ m(K)/2. (4.5)

As applications of Theorems 2.2 and 3.1 we give other lower bounds for the
ribbon-fusion number.

Theorem 4.3. If rf(K) = n, then

V (K;ω) ∈
{

1, ±(i
√

3)k, 3n
∣∣∣ k = 1, 2, . . . , 2n− 1

}
. (4.6)

In particular, if K is a ribbon knot with V (K;ω) = −3n, then rf(K) > n.

Proof. We use induction on n. If rf(K) = 1, then K is obtained from the trivial 2-
component link U2 by a band surgery. Thus since V (U2;ω) = −

√
3, by Corollary 2.3

we obtain Eq. (4.6) with n = 1.
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Suppose that Eq. (4.6) holds for n = j. If rf(K) = j + 1, then K is obtained
from the split union of a knot K ′ with rf(K ′) = j and the trivial knot, K ′ t U , by
a band surgery. Then since V (K ′tU ;ω) = −

√
3V (K ′;ω), by Theorem 2.2 we have

V (K;ω)/V (K ′;ω) ∈ { 1, ±i
√

3, 3 }. Hence we obtain Eq. (4.6) with n = j + 1.

Theorem 4.4. If rf(K) = n, then

ρ(K) ∈
{

1,±
√

5
k
, 5n

∣∣∣ k = 1, 2, . . . , 2n− 1
}

. (4.7)

In particular, if K is a ribbon knot with ρ(K) = −5n, then rf(K) > n.

Proof. We use induction on n. If rf(K) = 1, then K is obtained from the trivial
2-component link U2 by a band surgery. Thus since ρ(U2) =

√
5, by Corollary 3.2

we obtain Eq. (4.7) with n = 1.
Suppose that Eq. (4.7) holds for n = j. If rf(K) = j + 1, then K is obtained

from the split union of a knot K ′ with rf(K ′) = j and the trivial knot, K ′tU , by a
band surgery. Then by Theorem 3.1 we have ρ(K)/ρ(K ′ tU) ∈ {±1,

√
5
±1}. Since

Q(U2; z) = 2z−1− 1 and ρ(U2) =
√

5, ρ(K ′ tU) = ρ(K ′)ρ(U2) =
√

5ρ(K ′), and so
we have ρ(K)/ρ(K ′) ∈ {1,±

√
5, 5}. Hence we obtain Eq. (4.7) with n = j + 1.

Theorems 4.3 and 4.4 immediately imply:

Corollary 4.5. If a knot K satisfies either V (K;ω) = −1 or ρ(K) = −1, then K

is not a ribbon knot.

We denote the connected sum of n copies of a knot K by
n

#K .

Example 4.6. Let Jr,s be the connected sum of r copies of the knot 61 and
s copies of its mirror image 61!. Suppose that r ≥ s. Then putting Jr,s =(

r−s

# 61

)
#
(

s

#(61#61!)
)

, we have rf(Jr,s) ≤ r. In fact, the knot 61 is a ribbon knot

of 1-fusion (see [11, Appendix F.5]), and also the connected sum 61#61! is a ribbon
knot of 1-fusion since 61 is a 2-bridge knot. On the other hand, by Proposition 4.2,
rf(Jr,s) ≥ (r + s)/2. Let us consider the case s = r − 2. Since V (61;ω) = i

√
3,

V (61;ω) = −i
√

3 (cf. [12, Table 3.1]), we have V (Jr,r−2;ω) = −3r−1. Thus by
Theorem 4.3 rf(Jr,r−2) ≥ r, and so rf(Jr,r−2) = r, which cannot be deduced from
Proposition 4.2.

Example 4.7. Let Kn be the connected sum of n copies of the knot 88, (n − 1)
copies of the knot 88!, and the knot 89;

Kn = 89#88#
(

n−1

# (88#88!)
)

(4.8)

Then we have rf(Kn) = n + 1. In fact, the knots 88 and 89 are ribbon knots of
1-fusion (see [11, Appendix F.5]), and the connected sum 88#88! is also a ribbon
knot of 1-fusion since 88 is a 2-bridge knot. Thus rf(Kn) ≤ n+1. On the other hand,
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ρ(88) =
√

5, ρ(89) = −
√

5 (cf. [4, Table]) and so ρ(Kn) = −5n. Thus by Theorem 4.4
rf(Kn) > n. Note that using Proposition 4.2, we only have rf(Kn) ≥ n.

5. Band Surgery from a (2, 2n) Torus Link to a (2n + 1)-Crossing
Knot

The motivation of this section is the study of Bath, Sherratt, and Colloms [1] of a
DNA site-specific recombination; they showed that the action of the Xer site-specific
recombination at psi site is the change from a (2, 2n) torus link to a (2n+1)-crossing
knot by a band surgery. So characterizing such change is an important problem. In
this section, we consider a problem whether a given knot with (2n + 1) crossings is
related to a (2, 2n) torus link or not by a band surgery. Also, DNA knots or links
are mainly of 2 bridge, so we consider this problem for 2-bridge knots with 7 or 9
crossings. Applying Corollary 2.3 or Corollary 3.2 we can conclude that some knot
cannot be related with a (2, 2n) torus link by a band surgery.

5.1. Torus links

First, we calculate some values for torus links needed to apply Eq. (2.2) and Corol-
laries 2.3 and 3.2. For a positive integer m, we denote by Tm the oriented torus
knot or link of type (2,m) with m crossings as shown in Fig. 4.

2n crossingsFig. 4. The oriented torus knot or link of type (2, m), Tm.

If m is even, then Tm is a 2-component link. We denote by T ′2n the oriented
torus link obtained from T2n by reversing the orientation of one component, and
T2n!, T ′2n! the mirror images of T2n, T ′2n, respectively. Fig. 5 shows torus links T6,
T ′6, T6!, T ′6!.

2n crossings

T6 T ′6 T6! T ′6!

Fig. 5. Oriented torus links of type (2, 6).
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Lemma 5.1. The torus links T2n, T ′2n, T2n!, T ′2n! have the linking numbers, the
signatures, and the values of the Jones polynomials at t = ω as in Table 1.

Table 1. The linking number, the signature, and the Jones polynomial at t = ω
of the torus links of type (2, 2n).

L lk(L) σ(L) V (L; ω) (mod 6)
n ≡ 0 n ≡ 1 n ≡ 2 n ≡ 3 n ≡ 4 n ≡ 5

T2n −n 2n− 1 −
√

3 i i
√

3 −i −i

T ′2n n −1 −
√

3 −i i −
√

3 −i i

T2n! n −2n + 1 −
√

3 −i −i
√

3 i i

T ′2n! −n 1 −
√

3 i −i −
√

3 i −i

Proof. The signatures of T2n and T2n! are given in [5, Theorem 5.2]; cf. [21, The-
orem 7.5.1]. We obtain the signatures of T ′2n and T ′2n! by the following formula due
to Murasugi [20, Theorem 1]:

σ(L′) = σ(L) + 2lk(L), (5.1)

where L is an oriented 2-component link with linking number lk(L) and L′ a link
obtained from L by reversing the orientation of one component

Now we consider the Jones polynomial of T ′n. Since (T ′2n, T ′2n−2, U) is a skein
triple, from Eq. (2.4) we have

t−1V (T ′2n; t)− tV (T ′2n−2; t) = t1/2 − t−1/2. (5.2)

Then

V (T ′2n; t)− µ−1 = t2
(
V (T ′2n−2; t)− µ−1

)
= t2n

(
V (T ′0; t)− µ−1

)
= t2n

(
µ− µ−1

)
, (5.3)

where µ = V (U2; t) = −t1/2 − t−1/2. Then

V (T ′2n;ω) = −
√

3
−1

+ ω2n
(
−
√

3 +
√

3
−1
)

=


−
√

3 if n ≡ 0 (mod 3);

−i if n ≡ 1 (mod 3);

i if n ≡ 2 (mod 3).

(5.4)

Since V (T ′2n!; t) = V (T ′2n; t−1) [7, Theorem 3] and ω−1 = ω, the complex con-
jugate of ω, we have V (T ′2n!;ω) = V (T ′2n;ω). Since V (T2n; t) = t−3nV (T ′2n; t)
[13,18], we have V (T2n;ω) = (−1)nV (T ′2n;ω). Similarly, we have V (T2n!;ω) =
(−1)nV (T ′2n!;ω). Then we obtain Table 1.
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Let ρm = ρ(Tm). Then we have the following.

Lemma 5.2.

ρm =


√

5 if m ≡ 0 (mod 5);

1 if m ≡ 1, 4 (mod 5);

−1 if m ≡ 2, 3 (mod 5).

(5.5)

Proof. From an unoriented skein quadruple (Tm+1, Tm−1, Tm, U2), where U2 is
the trivial 2-component link, by Eq. (3.2) we have

Q(Tm+1; z) + Q(Tm−1; z) = z
(
Q(Tm; z) + Q(U2; z)

)
. (5.6)

Since ρ(U2) =
√

5, we have

ρm+1 + ρm−1 =
√

5− 1
2

(
ρm +

√
5
)

. (5.7)

Using ρ0 =
√

5, ρ1 = 1, we obtain Eq. (5.5).

Combining Theorem 3.1 and Lemma 5.2, we obtain immediately the following.

Corollary 5.3. Suppose that a knot K is obtained from a torus link of type (2, 2n)
by a band surgery. Then

ρ(K) ∈


{

1,±
√

5, 5
}

if n ≡ 0 (mod 5);{
±1,−

√
5
}

if n ≡ 1, 4 (mod 5);{
±1,

√
5
}

if n ≡ 2, 3 (mod 5).

(5.8)

5.2. 7-crossing 2-bridge knots

We consider the problem whether a 7-crossing 2-bridge knot is related to a (2, 6)
torus link or not by a band surgery. According to Shimokawa, the knots 71, 72, 74

are obtained from a (2, 6) torus link.
First, we consider applying Corollary 2.3. The γ-values of (2, 6) torus links are

±i
√

3 from Table 1. Then we can apply Corollary 2.3 for a knot K with V (K;ω) =
±1. Note that the determinant of such a knot is 6≡ 0 (mod 3); see Eq. (2.5). Since
the determinants of the knots 73, 75, 76, 77 are 13, 17, 19, 21, respectively, we
should test this method except for the knot 77. Then for the knot 73 and 76 we can
obtain the result.

Proposition 5.4. The knots 73 and 76 cannot be obtained from a (2, 6) torus link
by a band surgery.
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Proof. Suppose that the knot 76 is related with a (2, 6) torus link by a band
surgery. Since σ(76) = 2 (cf. [12, Table 8.1]), by Eq. (2.2) T ′6! should be such a
torus link. From Table 1 V (T ′6!;ω) = −

√
3, and so by Corollary 2.3 V (76;ω) ∈

{1,±i
√

3, 3}, which is a contradiction since V (76;ω) = −1 (cf. [12, Table 3.1]).
For the knot 73, the proof is similar. Since σ(73) = −4, we have to consider the

link T6! Suppose that 73 is related with T6! by a band surgery. Since V (T6!;ω) =
√

3,
V (73;ω) ∈ {−1,±i

√
3,−3}, which is a contradiction since V (73;ω) = 1.

Remark 5.5. Kawauchi has proved that 73 and 77 cannot be obtained from a (2, 6)
torus link by a band surgery using the Alexander invariants. Also, Darcy, Ishihara,
Shimokawa have given a characterization of band surgery for the knots 72 and 74.
So the question whether the knot 75, whose signature is −4, is related by a band
surgery to a (2, 6) torus link T6! or not remains open.

For a 7 crossing knot, we cannot apply Corollary 5.3. In fact, in order to apply
Corollary 5.3 the knot should satisfy ρ(K) = −

√
5. Then the determinant of such

a knot is ≡ 0 (mod 5); see Eq. (3.3).

5.3. 9-crossing 2-bridge knots

We consider the problem whether a 9-crossing 2-bridge knot is related to a (2, 8)
torus link or not by a band surgery. Since (2, 8) torus links have signatures ±1 or
±7 (Table 1), a knot with signature ±4 is never related to (2, 8) torus links by a
band surgery by Eq. (2.2). The following knots have signature ±4: 94, 97, 910, 911,
913, 918, 920, 923; see [11, Appendix F.3]. Also, it is easy to see that the knots 91,
92 are related to a (2, 8) torus link by a band surgery.

First, we consider applying Corollary 2.3. The γ-values of (2, 8) torus links are
±1 (Table 1), and so we can apply Corollary 2.3 for a knot K with V (K;ω) = ±i

√
3.

Note that the determinant of such a knot is ≡ 0 (mod 3); see Eq. (2.5). Thus we
apply this method for the knots 96, 915, 917, whose determinants are 27, 39, 39,
respectively.

Proposition 5.6. The knots 915 and 917 cannot be obtained from a (2, 8) torus
link by a band surgery.

Proof. The proof is similar to that of Proposition 5.4. We list the necessary data:

σ(915) = −2, V (915;ω) = −i
√

3; (5.9)

σ(917) = 2, V (917;ω) = i
√

3. (5.10)

Next, we consider applying Corollary 5.3. We can apply Corollary 2.3 for a knot
K with ρ(K) = −

√
5. Note that the determinant of such a knot is ≡ 0 (mod 5).

Thus we apply this method for the knots 96, 915, 917.
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Proposition 5.7. The knot 931 cannot be obtained from a (2, 8) torus link by a
band surgery.

Proof. Suppose that the knot 931 is related with a (2, 8) torus link by a band
surgery. By Lemma 5.2 ρ(T8) = −1, and so by Corollary 3.2 ρ(931) ∈ {±1,−

√
5},

which is a contradiction since ρ(931) =
√

5. (Note that Q(931) = −7+12z +36z2−
22z3 − 58z4 − 4z5 + 28z7 + 14z8 + 2z9, which is obtained from the Kauffman F

polynomial listed in [11, Appendix F.6].)

For the following 9 crossing 2-bridge knots we cannot decide whether they are
related to a (2, 8) torus link or not by a band surgery using our method:

9k, k = 3, 5, 6, 8, 9, 12, 14, 19, 21, 26, 27. (5.11)
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