BAND SURGERY ON KNOTS AND LINKS

TAIZO KANENOBU

Department of Mathematics, Osaka City University Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan kanenobu@sci.osaka-cu.ac.jp

ABSTRACT

We give some relationships of the Jones and Q polynomials between two links which are related by a band surgery. Then we consider two applications: The first one is to an evaluation of the ribbon-fusion number, the least fusion number of a ribbon knot. The second one is to DNA knot theory, helping us to understand the action of the Xer site-specific recombination at psi site.

Keywords: Knot; Link; Band surgery; Jones polynomial; Q polynomial; ribbon-fusion number; DNA knot; Xer recombination.

Mathematics Subject Classification 2000: 57M25, 57M27

1. Introduction

Let L be an oriented link, and $b: I \times I \to S^3$ an embedding such that $b(I \times I) \cap L = b(I \times \partial I)$, where I is a closed interval. Let $L' = (L - b(I \times \partial I)) \cup b(\partial I \times I)$, which is another link. If L' has the orientation compatible with the orientation of $L - b(I \times I) \cap L$ and $b(\partial I \times I)$, then L' is called the link obtained from L by the band surgery along the band b. Then there is a relation between the signatures of L and L' due to Murasugi; see Eq. (2.2). In this paper, we give further relationships in terms of the Jones polynomial (Theorem 2.2) and the Q polynomial (Theorem 3.1). Then we apply these relations in two ways: The first application is to estimate the ribbon-fusion number of a ribbon knot. A knot is a ribbon knot if it is a knot obtained from a trivial (m + 1)-component link by doing band surgery along m bands for some m. We call the least number of such m the ribbon-fusion number. There is an estimation for this number due to Sakuma, which is given in terms of the Nakanishi index (Proposition 4.2). Using the above-mentioned relationships we deduce Theorems 4.3 and 4.4, which can give a sharper estimation (Examples 4.6, 4.7).

The second application is to consider a problem whether a given knot with (2n + 1) crossings is related to a (2, 2n) torus link or not by a band surgery, which was brought from the study of a DNA site-specific recombination. More precisely, Bath, Sherratt, and Colloms [1] have shown that the action of the Xer site-specific

recombination at *psi* site is the change from a (2, 2n) torus link to a (2n+1)-crossing knot by a band surgery. So characterizing such change is an important problem. Applying Theorems 2.2 and 3.1, we will show the 7 crossing knots 7_3 , 7_6 cannot be obtained from a (2, 6) torus link (Proposition 5.4), and the 9 crossing knots 9_{15} , 9_{17} , 9_{31} cannot be obtained from a (2, 8) torus link (Propositions 5.6 and 5.7).

Notation. For knots with up to 10 crossings we use Rolfsen notation [23, Appendix C].

2. The Jones Polynomial

In this section, we give a relationship of the Jones polynomials of two links that are related by a band surgery. Before that we review a classical result for the signature of these links due to Murasugi. Let L_+ , L_- , L_0 be three links that are identical except near one point where they are as in Fig. 1; we call (L_+, L_-, L_0) a *skein triple*. Then Murasugi [19, Lemma 7.1] has shown:

$$|\sigma(L_{\pm}) - \sigma(L_0)| \le 1.$$
 (2.1)

Since we may consider the link L_+ or L_- is obtained from L_0 by a band surgery, and vice versa, two links L and L' which are related by a band surgery satisfy:

$$|\sigma(L) - \sigma(L')| \le 1. \tag{2.2}$$

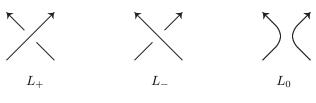


Fig. 1. A skein triple.

The Jones polynomial $V(L;t) \in \mathbb{Z}[t^{\pm 1/2}]$ [8], is an invariant of the isotopy type of an oriented link L, which is defined by the following formulas:

$$V(U;t) = 1;$$
 (2.3)

$$t^{-1}V(L_+;t) - tV(L_-;t) = \left(t^{1/2} - t^{-1/2}\right)V(L_0;t), \qquad (2.4)$$

where U is the unknot and (L_+, L_-, L_0) is a skein triple.

We put $\omega = e^{i\pi/3}$. For a knot K, Lickorish and Millett [14, Theorem 3] have shown:

$$V(L;\omega) = \pm i^{c(L)-1} (i\sqrt{3})^d, \qquad (2.5)$$

where c(L) is the number of the components of L, $d = \dim H_1(\Sigma(L); \mathbb{Z}_3)$ with $\Sigma(L)$ the double cover of S^3 branched over L; cf. [15]. Note that $V(L; \omega)$ means the value of V(L; t) at $t^{1/2} = e^{i\pi/6}$, whence $t^{1/2} - t^{-1/2} = i$.

Band Surgery on Knots and Links 3

The following lemma is due to Miyazawa [17].

Lemma 2.1.

$$\frac{V(L_+;\omega)}{V(L_-;\omega)} \in \left\{\pm 1, \ i\sqrt{3}^{\pm 1}\right\}$$

$$(2.6)$$

Proof. For the skein triple (L_+, L_-, L_0) , we consider another oriented link L_{∞} which is one of the diagram of Fig. 2, the choice being (i) if $c(L_+) < c(L_0)$ and (ii) if $c(L_+) > c(L_0)$.

Fig. 2. Two choices of the oriented link L_{∞} .

Then by [2, Theorem 2] for the case (i) we have

$$V(L_{+};t) - tV(L_{-};t) + t^{3\lambda}(t-1)V(L_{\infty};t) = 0, \qquad (2.7)$$

where λ is the linking number of the right-hand component of L_0 in Fig. 1 with the remainder of L_0 , and for the case (ii) we have

$$V(L_{+};t) - tV(L_{-};t) + t^{3(\mu - \frac{1}{2})}(t-1)V(L_{\infty};t) = 0, \qquad (2.8)$$

where μ is the linking number of the bottom-right and top-left component L_+ in in Fig. 1 with the remainder of L_+ .

We consider the case (i). Putting $t = \omega$ in (2.7), we have

$$x - \omega + (-1)^{\lambda} (\omega - 1)y = 0, \qquad (2.9)$$

where $x = V(L_+; \omega)/V(L_-; \omega)$ and $y = V(L_\infty; \omega)/V(L_-; \omega)$. Then by Eq. (2.5) there are four cases:

(a) $(x, y) = (\alpha, \beta);$

(b)
$$(x, y) = (\alpha, \beta i);$$

(c)
$$(x, y) = (\alpha i, \beta)$$

(d) $(x,y) = (\alpha i, \beta i),$

where α , β are real numbers. For the case (a), we have $\alpha = 1$, $\beta = (-1)^{\lambda}$; for the case (b), we have $\alpha = -1$, $\beta = (-1)^{\lambda+1}\sqrt{3}$; for the case (c), we have $\alpha = \sqrt{3}$, $\beta = (-1)^{\lambda+1}$; for the case (d), we have $\alpha = \sqrt{3}^{-1}$, $\beta = (-1)^{\lambda+1}\sqrt{3}^{-1}$, obtaining the result.

For the case (ii) we can prove similarly.

Theorem 2.2. Let L and L' be two links related with a band surgery such that c(L) < c(L'). Then

$$\frac{V(L;\omega)}{V(L';\omega)} \in \left\{\pm i, \ -\sqrt{3}^{\pm 1}\right\}$$
(2.10)

Proof. From the condition there is a skein triple (L_+, L_-, L_0) such that L_+ and L_0 are isotopic to L and L', respectively. Put $x = V(L_+; \omega)/V(L_-; \omega)$ and $z = V(L_0; \omega)/V(L_-; \omega)$. Then by Eq. (2.4), we have

$$\omega^{-1}x - \omega = iz, \tag{2.11}$$

and so

$$\frac{V(L;\omega)}{V(L';\omega)} = \frac{x}{z} = \frac{ix}{\omega^{-1}x - \omega}.$$
(2.12)

By Lemma 2.1 we obtain (2.2).

By using Eq. (2.5), Theorem 2.2 immediately implies the following.

Corollary 2.3. Suppose that a knot K is obtained from a 2-component link L by a band surgery. Then

$$V(K;\omega) \in \begin{cases} \{\pm 1, -i\sqrt{3}\epsilon\} & \text{if } V(L;\omega) = i\epsilon; \\ \{-\epsilon, \pm i\sqrt{3}, -3\epsilon\} & \text{if } V(L;\omega) = \sqrt{3}\epsilon, \end{cases}$$
(2.13)

where $\epsilon = \pm 1$.

3. The Q Polynomial

In this section, we give a relationship of the Q polynomials of two links that are related by a band surgery. The *Q* polynomial $Q(L; z) \in \mathbb{Z}[z^{\pm 1}]$ [4,6] is an invariant of the isotopy type of an unoriented link *L*, which is defined by the following formulas:

$$Q(U;z) = 1;$$
 (3.1)

$$Q(L_{+};z) + Q(L_{-};z) = z \left(Q(L_{0};z) + Q(L_{\infty};z) \right),$$
(3.2)

where U is the unknot and L_+ , L_- , L_0 , L_∞ are four unoriented links that are identical except near one point where they are as in Fig. 3. We call $(L_+, L_-, L_0, L_\infty)$ an unoriented skein quadruple.

We put $\rho(K) = Q(K; (\sqrt{5}-1)/2))$. For a knot K, Jones [9] has shown:

$$\rho(K) = \pm \sqrt{5}', \qquad (3.3)$$

where $r = \dim H_1(\Sigma(K); \mathbb{Z}_5)$ with $\Sigma(K)$ the double cover of S^3 branched over K. Furthermore, Rong [24] deduced some information on the values $\rho(L_-)/\rho(L_\infty)$,

Band Surgery on Knots and Links 5

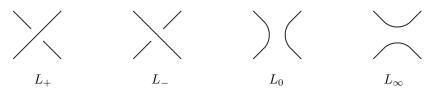


Fig. 3. An unoriented skein quadruple.

 $\rho(L_0)/\rho(L_\infty)$, $\rho(L_+)/\rho(L_\infty)$, where $(L_+, L_-, L_0, L_\infty)$ is an unoriented skein quadruple. Using these values, we have the following, which is analogous to a criterion on the unknotting number of a knot due to Stoimenow [25, Theorem 4.1]; cf. [10].

Theorem 3.1. If two links L and L' are related by a band surgery, then

$$\rho(L)/\rho(L') \in \left\{ \pm 1, \sqrt{5}^{\pm 1} \right\}.$$
(3.4)

Proof. From the condition there is an unoriented skein quadruple $(L_+, L_-, L_0, L_\infty)$ such that L_0 and L_∞ are isotopic to L and L', respectively. Then from the proof of Theorem 2 in [24], we have $\rho(L_0)/\rho(L_\infty) \in \{\pm 1, \sqrt{5}^{\pm 1}\}$, obtaining the result. \Box

By using (3.3), Theorem 3.1 immediately implies the following.

Corollary 3.2. Suppose that a knot K is obtained from a link L by a band surgery. Then

$$\rho(K) \in \begin{cases} \{\pm 1, \sqrt{5}\epsilon\} & \text{if } \rho(L) = \epsilon; \\ \{1, \pm\sqrt{5}, 5\} & \text{if } \rho(L) = \sqrt{5}, \end{cases}$$
(3.5)

where $\epsilon = \pm 1$.

4. The Ribbon-Fusion Number of a Ribbon Knot

In this section, we apply the theorems given in the previous sections to an evaluation of the ribbon-fusion number of a ribbon knot. A knot is said to be a *ribbon knot of* m-fusions if it is a knot obtained from a trivial (m + 1)-component link by doing band surgery along m bands. More precisely, it has the form

$$S_0^1 \cup S_1^1 \cup \dots \cup S_m^1 \cup \bigcup_{i=1}^m f_i(\partial I \times I) - \operatorname{int}\left(\bigcup_{i=1}^m f_i(I \times \partial I)\right), \quad (4.1)$$

where $S_0^1 \cup S_1^1 \cup \cdots \cup S_m^1$ is a trivial link of *m* components and $f_i : I \times I \to S^3$ (i = 1, 2, ..., m) are disjoint embeddings such that

$$f_i(I \times \partial I) \cup S_j = \begin{cases} f_i(I,0) & \text{if } j = 0; \\ f_i(I,1) & \text{if } j = i; \\ \emptyset & \text{if otherwise.} \end{cases}$$
(4.2)

By a *ribbon knot* we mean a ribbon knot of *m*-fusions for some *m*; see [16,27]. The least number of such *m* is the *ribbon-fusion number* of *K*, which we denote by rf(K).

Remark 4.1. In [3,22,26] the ribbon-fusion number is called the ribbon number.

If K and K' are ribbon knots, then it is easy to see

$$\operatorname{rf}(K \# K') \le \operatorname{rf}(K) + \operatorname{rf}(K'). \tag{4.3}$$

Also, for any *n*-bridge knot K, the connected sum of K and its mirror image K!, K # K! is a ribbon knot (cf. [23, 8E30]), which satisfies

$$rf(K \# K!) \le n - 1.$$
 (4.4)

Bleiler and Eudave-Muñoz [3] have shown a composite knot with ribbon-fusion number one has a summand that is two-bridge. Then Tanaka [26] proved that there exist composite ribbon-fusion number one knots with arbitrarily large bridge numbers.

The Nakanishi index of a knot K, denoted by m(K), is the minimum size among all square Alexander matrix of K, provided that m(K) = 0 if and only if an Alexander matrix of K is equivalent to the 1×1 matrix with entry 1 as presentation matrices; see [11, p. 72]. Then Makoto Sakuma has given a lower bound of the ribbon-fusion number using the Nakanishi index of a knot [22, Proposition 2].

Proposition 4.2. For a ribbon knot K,

$$\mathrm{rf}(K) \ge m(K)/2. \tag{4.5}$$

As applications of Theorems 2.2 and 3.1 we give other lower bounds for the ribbon-fusion number.

Theorem 4.3. If rf(K) = n, then

$$V(K;\omega) \in \left\{ 1, \pm (i\sqrt{3})^k, 3^n \mid k = 1, 2, \dots, 2n-1 \right\}.$$
 (4.6)

In particular, if K is a ribbon knot with $V(K; \omega) = -3^n$, then rf(K) > n.

Proof. We use induction on *n*. If rf(K) = 1, then *K* is obtained from the trivial 2-component link U^2 by a band surgery. Thus since $V(U^2; \omega) = -\sqrt{3}$, by Corollary 2.3 we obtain Eq. (4.6) with n = 1.

Suppose that Eq. (4.6) holds for n = j. If rf(K) = j + 1, then K is obtained from the split union of a knot K' with rf(K') = j and the trivial knot, $K' \sqcup U$, by a band surgery. Then since $V(K' \sqcup U; \omega) = -\sqrt{3}V(K'; \omega)$, by Theorem 2.2 we have $V(K; \omega)/V(K'; \omega) \in \{1, \pm i\sqrt{3}, 3\}$. Hence we obtain Eq. (4.6) with n = j + 1. \Box

Theorem 4.4. If rf(K) = n, then

$$\rho(K) \in \left\{ 1, \pm \sqrt{5}^k, 5^n \mid k = 1, 2, \dots, 2n - 1 \right\}.$$
(4.7)

In particular, if K is a ribbon knot with $\rho(K) = -5^n$, then rf(K) > n.

Proof. We use induction on *n*. If rf(K) = 1, then *K* is obtained from the trivial 2-component link U^2 by a band surgery. Thus since $\rho(U^2) = \sqrt{5}$, by Corollary 3.2 we obtain Eq. (4.7) with n = 1.

Suppose that Eq. (4.7) holds for n = j. If rf(K) = j + 1, then K is obtained from the split union of a knot K' with rf(K') = j and the trivial knot, $K' \sqcup U$, by a band surgery. Then by Theorem 3.1 we have $\rho(K)/\rho(K' \sqcup U) \in \{\pm 1, \sqrt{5}^{\pm 1}\}$. Since $Q(U^2; z) = 2z^{-1} - 1$ and $\rho(U^2) = \sqrt{5}$, $\rho(K' \sqcup U) = \rho(K')\rho(U^2) = \sqrt{5}\rho(K')$, and so we have $\rho(K)/\rho(K') \in \{1, \pm\sqrt{5}, 5\}$. Hence we obtain Eq. (4.7) with n = j + 1. \Box

Theorems 4.3 and 4.4 immediately imply:

Corollary 4.5. If a knot K satisfies either $V(K; \omega) = -1$ or $\rho(K) = -1$, then K is not a ribbon knot.

We denote the connected sum of n copies of a knot K by $\overset{n}{\#}K$.

Example 4.6. Let $J_{r,s}$ be the connected sum of r copies of the knot 6_1 and s copies of its mirror image 6_1 !. Suppose that $r \ge s$. Then putting $J_{r,s} = \binom{r-s}{\#} 6_1 \# \binom{s}{\#} (6_1 \# 6_1 !)$, we have $rf(J_{r,s}) \le r$. In fact, the knot 6_1 is a ribbon knot of 1-fusion (see [11, Appendix F.5]), and also the connected sum $6_1 \# 6_1 !$ is a ribbon knot of 1-fusion since 6_1 is a 2-bridge knot. On the other hand, by Proposition 4.2, $rf(J_{r,s}) \ge (r+s)/2$. Let us consider the case s = r - 2. Since $V(6_1; \omega) = i\sqrt{3}$, $V(6_1; \omega) = -i\sqrt{3}$ (cf. [12, Table 3.1]), we have $V(J_{r,r-2}; \omega) = -3^{r-1}$. Thus by Theorem 4.3 $rf(J_{r,r-2}) \ge r$, and so $rf(J_{r,r-2}) = r$, which cannot be deduced from Proposition 4.2.

Example 4.7. Let K_n be the connected sum of n copies of the knot 8_8 , (n-1) copies of the knot $8_8!$, and the knot 8_9 ;

$$K_n = 8_9 \# 8_8 \# \begin{pmatrix} n-1 \\ \# \\ (8_8 \# 8_8!) \end{pmatrix}$$
(4.8)

Then we have $rf(K_n) = n + 1$. In fact, the knots 8_8 and 8_9 are ribbon knots of 1-fusion (see [11, Appendix F.5]), and the connected sum $8_8\#8_8!$ is also a ribbon knot of 1-fusion since 8_8 is a 2-bridge knot. Thus $rf(K_n) \leq n+1$. On the other hand,

 $\rho(8_8) = \sqrt{5}, \rho(8_9) = -\sqrt{5} \text{ (cf. [4, Table]) and so } \rho(K_n) = -5^n.$ Thus by Theorem 4.4 $\operatorname{rf}(K_n) > n$. Note that using Proposition 4.2, we only have $\operatorname{rf}(K_n) \ge n$.

5. Band Surgery from a (2, 2n) Torus Link to a (2n + 1)-Crossing Knot

The motivation of this section is the study of Bath, Sherratt, and Colloms [1] of a DNA site-specific recombination; they showed that the action of the Xer site-specific recombination at *psi* site is the change from a (2, 2n) torus link to a (2n+1)-crossing knot by a band surgery. So characterizing such change is an important problem. In this section, we consider a problem whether a given knot with (2n + 1) crossings is related to a (2, 2n) torus link or not by a band surgery. Also, DNA knots or links are mainly of 2 bridge, so we consider this problem for 2-bridge knots with 7 or 9 crossings. Applying Corollary 2.3 or Corollary 3.2 we can conclude that some knot cannot be related with a (2, 2n) torus link by a band surgery.

5.1. Torus links

First, we calculate some values for torus links needed to apply Eq. (2.2) and Corollaries 2.3 and 3.2. For a positive integer m, we denote by T_m the oriented torus knot or link of type (2, m) with m crossings as shown in Fig. 4.

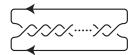


Fig. 4. The oriented torus knot or link of type $(2, m), T_m$.

If m is even, then T_m is a 2-component link. We denote by T'_{2n} the oriented torus link obtained from T_{2n} by reversing the orientation of one component, and $T_{2n}!$, $T'_{2n}!$ the mirror images of T_{2n} , T'_{2n} , respectively. Fig. 5 shows torus links T_6 , T'_6 , $T_6!$, $T'_6!$.

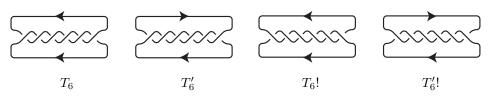


Fig. 5. Oriented torus links of type (2, 6).

Lemma 5.1. The torus links T_{2n} , T'_{2n} , T_{2n} !, T'_{2n} ! have the linking numbers, the signatures, and the values of the Jones polynomials at $t = \omega$ as in Table 1.

Table 1. The linking number, the signature, and the Jones polynomial at $t = \omega$ of the torus links of type (2, 2n).

L	lk(L)	$\sigma(L)$	$V(L;\omega) \pmod{6}$					
			$n\equiv 0$	$n\equiv 1$	$n\equiv 2$	$n \equiv 3$	$n \equiv 4$	$n \equiv 5$
$\overline{T_{2n}}$	-n	2n - 1	$-\sqrt{3}$	i	i	$\sqrt{3}$	-i	-i
T'_{2n}	n	$^{-1}$	$-\sqrt{3}$	-i	i	$-\sqrt{3}$	-i	i
$T_{2n}!$	n	-2n + 1	$-\sqrt{3}$	-i	-i	$\sqrt{3}$	i	i
$T'_{2n}!$	-n	1	$-\sqrt{3}$	i	-i	$-\sqrt{3}$	i	-i

Proof. The signatures of T_{2n} and T_{2n} ! are given in [5, Theorem 5.2]; cf. [21, Theorem 7.5.1]. We obtain the signatures of T'_{2n} and T'_{2n} ! by the following formula due to Murasugi [20, Theorem 1]:

$$\sigma(L') = \sigma(L) + 2\mathrm{lk}(L), \tag{5.1}$$

where L is an oriented 2-component link with linking number lk(L) and L' a link obtained from L by reversing the orientation of one component

Now we consider the Jones polynomial of T'_n . Since (T'_{2n}, T'_{2n-2}, U) is a skein triple, from Eq. (2.4) we have

$$t^{-1}V(T'_{2n};t) - tV(T'_{2n-2};t) = t^{1/2} - t^{-1/2}.$$
(5.2)

Then

$$V(T'_{2n};t) - \mu^{-1} = t^2 \left(V(T'_{2n-2};t) - \mu^{-1} \right)$$

= $t^{2n} \left(V(T'_0;t) - \mu^{-1} \right)$
= $t^{2n} \left(\mu - \mu^{-1} \right),$ (5.3)

where $\mu = V(U^2; t) = -t^{1/2} - t^{-1/2}$. Then

$$V(T'_{2n};\omega) = -\sqrt{3}^{-1} + \omega^{2n} \left(-\sqrt{3} + \sqrt{3}^{-1}\right)$$

=
$$\begin{cases} -\sqrt{3} & \text{if } n \equiv 0 \pmod{3}; \\ -i & \text{if } n \equiv 1 \pmod{3}; \\ i & \text{if } n \equiv 2 \pmod{3}. \end{cases}$$
(5.4)

Since $V(T'_{2n}!;t) = V(T'_{2n};t^{-1})$ [7, Theorem 3] and $\omega^{-1} = \overline{\omega}$, the complex conjugate of ω , we have $V(T'_{2n}!;\omega) = \overline{V(T'_{2n};\omega)}$. Since $V(T_{2n};t) = t^{-3n}V(T'_{2n};t)$ [13,18], we have $V(T_{2n};\omega) = (-1)^n V(T'_{2n};\omega)$. Similarly, we have $V(T_{2n}!;\omega) = (-1)^n V(T'_{2n}!;\omega)$. Similarly, we have $V(T_{2n}!;\omega) = (-1)^n V(T'_{2n}!;\omega)$. Then we obtain Table 1.

Let $\rho_m = \rho(T_m)$. Then we have the following.

Lemma 5.2.

$$\rho_m = \begin{cases}
\sqrt{5} & \text{if } m \equiv 0 \pmod{5}; \\
1 & \text{if } m \equiv 1, 4 \pmod{5}; \\
-1 & \text{if } m \equiv 2, 3 \pmod{5}.
\end{cases}$$
(5.5)

Proof. From an unoriented skein quadruple $(T_{m+1}, T_{m-1}, T_m, U^2)$, where U^2 is the trivial 2-component link, by Eq. (3.2) we have

$$Q(T_{m+1};z) + Q(T_{m-1};z) = z \left(Q(T_m;z) + Q(U^2;z) \right).$$
(5.6)

Since $\rho(U^2) = \sqrt{5}$, we have

$$\rho_{m+1} + \rho_{m-1} = \frac{\sqrt{5} - 1}{2} \left(\rho_m + \sqrt{5} \right). \tag{5.7}$$

Using $\rho_0 = \sqrt{5}$, $\rho_1 = 1$, we obtain Eq. (5.5).

Combining Theorem 3.1 and Lemma 5.2, we obtain immediately the following.

Corollary 5.3. Suppose that a knot K is obtained from a torus link of type (2, 2n) by a band surgery. Then

$$\rho(K) \in \begin{cases} \left\{ \begin{array}{l} 1, \pm \sqrt{5}, 5 \right\} & \text{if } n \equiv 0 \pmod{5}; \\ \left\{ \begin{array}{l} \pm 1, -\sqrt{5} \right\} & \text{if } n \equiv 1, 4 \pmod{5}; \\ \left\{ \begin{array}{l} \pm 1, \sqrt{5} \end{array} \right\} & \text{if } n \equiv 2, 3 \pmod{5}. \end{cases} \tag{5.8}$$

5.2. 7-crossing 2-bridge knots

We consider the problem whether a 7-crossing 2-bridge knot is related to a (2, 6) torus link or not by a band surgery. According to Shimokawa, the knots 7_1 , 7_2 , 7_4 are obtained from a (2, 6) torus link.

First, we consider applying Corollary 2.3. The γ -values of (2, 6) torus links are $\pm i\sqrt{3}$ from Table 1. Then we can apply Corollary 2.3 for a knot K with $V(K;\omega) = \pm 1$. Note that the determinant of such a knot is $\neq 0 \pmod{3}$; see Eq. (2.5). Since the determinants of the knots 7₃, 7₅, 7₆, 7₇ are 13, 17, 19, 21, respectively, we should test this method except for the knot 7₇. Then for the knot 7₃ and 7₆ we can obtain the result.

Proposition 5.4. The knots 7_3 and 7_6 cannot be obtained from a (2, 6) torus link by a band surgery.

Proof. Suppose that the knot 7₆ is related with a (2,6) torus link by a band surgery. Since $\sigma(7_6) = 2$ (cf. [12, Table 8.1]), by Eq. (2.2) T'_6 ! should be such a torus link. From Table 1 $V(T'_6!; \omega) = -\sqrt{3}$, and so by Corollary 2.3 $V(7_6; \omega) \in \{1, \pm i\sqrt{3}, 3\}$, which is a contradiction since $V(7_6; \omega) = -1$ (cf. [12, Table 3.1]).

For the knot 7₃, the proof is similar. Since $\sigma(7_3) = -4$, we have to consider the link $T_6!$ Suppose that 7₃ is related with $T_6!$ by a band surgery. Since $V(T_6!; \omega) = \sqrt{3}$, $V(7_3; \omega) \in \{-1, \pm i\sqrt{3}, -3\}$, which is a contradiction since $V(7_3; \omega) = 1$.

Remark 5.5. Kawauchi has proved that 7_3 and 7_7 cannot be obtained from a (2, 6) torus link by a band surgery using the Alexander invariants. Also, Darcy, Ishihara, Shimokawa have given a characterization of band surgery for the knots 7_2 and 7_4 . So the question whether the knot 7_5 , whose signature is -4, is related by a band surgery to a (2, 6) torus link $T_6!$ or not remains open.

For a 7 crossing knot, we cannot apply Corollary 5.3. In fact, in order to apply Corollary 5.3 the knot should satisfy $\rho(K) = -\sqrt{5}$. Then the determinant of such a knot is $\equiv 0 \pmod{5}$; see Eq. (3.3).

5.3. 9-crossing 2-bridge knots

We consider the problem whether a 9-crossing 2-bridge knot is related to a (2, 8) torus link or not by a band surgery. Since (2, 8) torus links have signatures ± 1 or ± 7 (Table 1), a knot with signature ± 4 is never related to (2, 8) torus links by a band surgery by Eq. (2.2). The following knots have signature ± 4 : 9₄, 9₇, 9₁₀, 9₁₁, 9₁₃, 9₁₈, 9₂₀, 9₂₃; see [11, Appendix F.3]. Also, it is easy to see that the knots 9₁, 9₂ are related to a (2, 8) torus link by a band surgery.

First, we consider applying Corollary 2.3. The γ -values of (2,8) torus links are ± 1 (Table 1), and so we can apply Corollary 2.3 for a knot K with $V(K; \omega) = \pm i\sqrt{3}$. Note that the determinant of such a knot is $\equiv 0 \pmod{3}$; see Eq. (2.5). Thus we apply this method for the knots 9₆, 9₁₅, 9₁₇, whose determinants are 27, 39, 39, respectively.

Proposition 5.6. The knots 9_{15} and 9_{17} cannot be obtained from a (2,8) torus link by a band surgery.

Proof. The proof is similar to that of Proposition 5.4. We list the necessary data:

$$\sigma(9_{15}) = -2, \quad V(9_{15};\omega) = -i\sqrt{3}; \tag{5.9}$$

$$\sigma(9_{17}) = 2, \quad V(9_{17};\omega) = i\sqrt{3}.$$
 (5.10)

Next, we consider applying Corollary 5.3. We can apply Corollary 2.3 for a knot K with $\rho(K) = -\sqrt{5}$. Note that the determinant of such a knot is $\equiv 0 \pmod{5}$. Thus we apply this method for the knots 9_6 , 9_{15} , 9_{17} .

Proposition 5.7. The knot 9_{31} cannot be obtained from a (2,8) torus link by a band surgery.

Proof. Suppose that the knot 9_{31} is related with a (2, 8) torus link by a band surgery. By Lemma 5.2 $\rho(T_8) = -1$, and so by Corollary 3.2 $\rho(9_{31}) \in \{\pm 1, -\sqrt{5}\}$, which is a contradiction since $\rho(9_{31}) = \sqrt{5}$. (Note that $Q(9_{31}) = -7 + 12z + 36z^2 - 22z^3 - 58z^4 - 4z^5 + 28z^7 + 14z^8 + 2z^9$, which is obtained from the Kauffman F polynomial listed in [11, Appendix F.6].)

For the following 9 crossing 2-bridge knots we cannot decide whether they are related to a (2, 8) torus link or not by a band surgery using our method:

$$9_k, \quad k = 3, 5, 6, 8, 9, 12, 14, 19, 21, 26, 27.$$
 (5.11)

Acknowledgments

The author would like to thank Professor Koya Shimokawa for introducing the problem in Sect. 5. This work was partially supported by Grant-in-Aid for Scientific Research (C) (No. 21540092), Japan Society for the Promotion of Science.

References

- J. Bath, D. J. Sherratt and S. D. Colloms, Topology of Xer recombination on catenanes produced by lambda integrase, J. Mol. Biol. 289 (1999) 873–883.
- [2] J. S. Birman and T. Kanenobu, Jones' braid-plat formula and a new surgery triple, Proc. Amer. Math. Soc. 102 (1988) 687–695.
- [3] S. A. Bleiler and M. Eudave-Muñoz, Composite ribbon number one knots have twobridge summands, *Trans. Amer. Math. Soc.* **321** (1990) 231–243.
- [4] R. D. Brandt, W. B. R. Lickorish and K. Millett, A polynomial invariant for unoriented knots and links, *Inv. Math.* 84 (1986) 563–573.
- [5] C. McA. Gordon, R. A. Litherland and K. Murasugi, Signatures of covering links, *Canad. J. Math.* **33** (1981) 381–415.
- [6] C. F. Ho, A polynomial invariant for knots and links—preliminary report, Abstracts Amer. Math. Soc. 6 (1985) 300.
- [7] V. F. R. Jones, A polynomial invariant for knots via von Neumann algebra, Bull. Amer. Math. Soc. 12 (1985) 103–111.
- [8] V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. Math. 126 (1987) 335–388.
- [9] V. F. R. Jones, On a certain value of the Kauffman polynomial, Comm. Math. Phys. (1989) 103–111.
- [10] T. Kanenobu and Y. Miyazawa, H(2)-unknotting number of a knot, Communications in Mathematical Research (to appear).
- [11] A. Kawauchi, A Survey of Knot Theory, (Birkhäuser Verlag, Berlin, 1996).
- [12] W. B. R. Lickorish, An introduction to Knot Theory, Graduate Texts in Math., 175 (Springer-Verlag, New York, 1997).
- [13] W. B. R. Lickorish and K. C. Millett, The reversing formula for the Jones polynomial, *Pacific J. Math.* **124** (1986) 173–176.

- [14] W. B. R. Lickorish and K. C. Millett, Some evaluations of link polynomials, Comment. Math. Helv. 61 (1986), 349–359.
- [15] A. S. Lipson, An evaluation of a link polynomial, Math. Proc. Camb. Phil. Soc. 100 (1986) 361–364.
- [16] Y. Marumoto, On ribbon 2-knots of 1-fusion, Math. Sem. Notes, Kobe Univ. 5 (1977) 59–68.
- [17] Y. Miyazawa, Talk at the conference "The 5th East Asian School of Knots and Related Topic" (Gyeongju, Korea, 2009).
- [18] H. R. Morton, The Jones polynomial for unoriented links, Quart. J. Math. Oxford 37 (1986) 55–60.
- [19] K. Murasugi, On the certain numerical invariant of links, Trans. Amer. Math. Soc. 117 (1965) 387–422.
- [20] K. Murasugi, On the signature of links, Topology 9 (1970) 283–298.
- [21] K. Murasugi, Knot Theory and Its Applications (Birkhäuser, 1996).
- [22] Y. Nakanishi and Y. Nakagawa, On ribbon knots, Math. Sem. Notes, Kobe Univ. 10 (1982) 423–430.
- [23] D. Rolfsen, *Knots and Links*, (AMS Chelsea Pub. 2003).
- [24] Y. Rong, The Kauffman polynomial and the two-fold cover of a link, Indiana Univ. Math. J. 40 (1991) 321–331.
- [25] A. Stoimenow, Polynomial values, the linking form and unknotting numbers, Math. Res. Lett. 11 (2004) 755–769.
- [26] T. Tanaka, On bridge numbers of composite ribbon knots, J. Knot Theory Ramifications 9 (2000) 423–430.
- [27] T. Yanagawa, On ribbon 2-knots. I. The 3-manifold bounded by the 2-knots. Osaka J. Math. 6 (1969) 447–464.