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Abstract. A minimal Legendrian submanifold in a Sasakian mani-
fold is by definition a Legendrian submanifold in a Sasakian manifold
which is a minimal submanifold in the sense of vanishing mean cur-
vature vector field. The minimal Legendrian deformation means a
smooth family of minimal Legendrian submanifolds.

In this note we discuss minimal Legendrian deformations of cer-
tain 3-dimensional compact minimal Legendrian submanifolds em-
bedded in the 7-dimensional standard Einstein Sasakian manifolds,
7-dimensional unit sphere S7(1) and Stiefel manifold V2(R5). We
prove that all non-trivial minimal Legendrian deformations of a cer-
tain non-totally geodesic minimal Legendrian orbit of SU(2) in S7(1)
are given by the 7-dimensional family of minimal Legendrian subman-
ifolds which is constructed by the group action of Sp(2,C). Moreover
we show that a 3-dimensional compact minimal Legendrian subman-
ifold SO(3)/(Z2 + Z2) in V2(R5) with constant positive sectional
curvature has no nontrivial minimal Legendrian deformation.

Introduction

A smooth immersion ψ : L → M of a smooth manifold L into a con-
tact manifold (M, η) is called a Legendrian immersion if dimL = m and
ψ∗η = 0. A Legendrian deformation of ψ is defined as a one-parameter
smooth family {ψt} of Legendrian immersions ψt : L→M with ψ0 = ψ.
Let (M2m+1, η, g, ξ, φ) be a Sasakian manifold with the Sasakian struc-
ture (η, g, ξ, φ). A minimal Legendrian submanifold of a Sasakian mani-
fold is a Legendrian submanifold relative to its contact structure which
is a minimal submanifold with respect to the Riemannian metric of the
Sasakian structure in the sense of vanishing mean curvature vector field,
or equivalently extremal volume under any compactly supported smooth
variation.
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It is a natural and interesting question whether a given compact min-
imal Legendrian submanifold in a specfic Sasakian manifold can be de-
formed into a family of compact minimal Legendrian submanifolds or not.
The minimal Legendrian deformation means a one-parameter smooth
family of compact minimal Legendrian submanifolds. A minimal Legen-
drian deformation is said to be trivial if it is induced by the automor-
phisms of the ambient Sasakian manifold.

Question. Determine all minimal Legendrian deformations of a given
compact minimal Legendrian submanifold L in a Sasakian manifold.

The theory of minimal Legendrian deformations works well in the case
when the ambient Sasakian manifold is an η-Einstein Sasakian mani-
fold (see Section 3). It is known the standard construction of η-Einstein
and Einstein Sasakian manifolds from given Einstein-Kähler manifolds
with positive Einstein constant, and Einstein Sasakian manifolds provide
Ricci-flat Kähler cone metrics (cf. Section 2). In the construction min-
imal Legendrian submanifolds corresponds to both minimal Lagrangian
submanifolds in an Einstein-Kähler manifold with positive Einstein con-
stant and special Lagrangian subcones in a Ricci-flat Kähler cone.

The purpose of this note is to discuss minimal Legendrian deforma-
tions of 3-dimensional certain compact minimal Lagrangian submanifolds
in the 7-dimensional standard Einstein-Sasakian manifolds such as the
7-dimensional unit standard sphere S7(1) and the 7-dimensional Stiefel
manifold V2(R) of orthonormal 2-frames in R5. Such three examples
will be treated. The simplest example should be a 3-dimensional totally
geodesic Legendrian submanifold S3(1) embedded in S7(1) and we show
that it has no non-trivial minimal Legendrian deformation (see Proposi-
tion 4.1).

Let (V3, ρ3) be the irreducible unitary representation of SU(2) of degree
3. As the first non-trivial example, we know a non-totally geodesic min-
imal Legendrian orbit L3 := ρ3(SU(2))(w) of SU(2) in S7(1) ⊂ V3

∼= C4

(see Subsection 4.2, cf. [14]). One of our main results is as follows (see
Theorem 4.1) :

Theorem. All non-trivial minimal Legendrian deformations of L3 =
ρ3(SU(2))(w) ⊂ S7(1) are given by the 7-dimensional family of mini-
mal Legendrian submanifolds which is constructed by the group action of
Sp(2,C).

Let N3 = SO(3)/(Z2 + Z2) ⊂ S4(1) be a 3-dimensional isoparamet-
ric hypersurface embedded in S4(1) with 3 distinct principal curvatures,
which is one of so called Cartan hypersurfaces. The second example is
its Legendrian lift to V2(R

5) which is a compact embedded minimal Leg-
endrian submanifold L3 := SO(3)/(Z2 + Z2) ⊂ V2(R

5) whose metric
induced from the Einstein Sasakian metric of V2(R

5) is of constant pos-
itive sectional curvature. Our another result is as follows (see Theorem
4.2) :
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Theorem. L3 = SO(3)/(Z2 + Z2) ⊂ V2(R
5) has no non-trivial minimal

Legendrian deformation.

In Section 1 we shall prepare fundamental properties and formulas
for Legendrian submanifolds in a contact manifold, the notion of Leg-
endrian deformations and a Banach manifold structure of the space of
Legendrian submanifolds. In Section 2 we shall describe differential ge-
ometry of Legendrian submanifolds in Sasakian manifolds and the notion
of minimal Legendrian deformations. In Section 3 we shall describe a
general theory of minimal Legendrian deformations for minimal Legen-
drian submanifolds in η-Einstein Sasakian manifolds. Section 4 we shall
discuss the minimal Legendrian deformation problem for three exam-
ples of 3-dimensional compact minimal Legendrian submanifolds in the
7-dimensional unit standard sphere S7(1) and the 7-dimensional Stiefel
manifold V2(R

5).
In the forthcoming paper we shall discuss these problems, results and

their generalizations in detail.

1. Legendrian submanifolds and Legendrian deformations

Let (M2m+1, η) be a (2m+ 1)-dimensional contact manifold with con-
tact 1-form η and ψ : L −→M2m+1 be a smooth immersion a connected
smooth manifold L into M2m+1.

Definition 1.1. ψ is called a Legendrian immersion if

(1) ψ∗η = 0,

(2) dimL = m.

For any V ∈ C∞(ψ−1TM), we define a 1-form αV ∈ Ω1(L) on L by

αV (X) := −1

2
dη(V, ψ∗(X)).

for each X ∈ TL. If ψ is a Legendrian immersion, then we have the
canonical linear isomorphism

χ : φ−1TM/φ∗TL ∋ v 7−→ (η(v), αv) ∈ R ⊕ T ∗L .

Let ψt : L −→ M2m+1 be a smooth family of immersions with a Leg-

endrian immersion ψ0 = ψ. Set Vt :=
∂ψt
∂t

∈ C∞(ψ−1
t

∗
TM), which is the

variational vector field of ψt : L −→M2m+1.

Definition 1.2. {ψt} is called a Legendrian deformation of ψ if ψt is a
Legendrian immersion for each t.

Proposition 1.1. {ψt} is a Legendrian deformation if and only if

αVt =
1

2
d(η(Vt))

for each t.
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There were two notions of Hamiltonian deformations and Lagrangian
deformations in Lagrangian Geometry. In contrast there is only a notion
of Legendrian deformations in Legendrian Geometry.

The (suitable completion of a) space of all Lagrangian immersions of
compact L into M is a Banach manifold modeled on the vector space of
(suitable) functions on L in the following way (cf. [12]). Let φ : L −→
M be a Legendrian immersion of an m-dimensional compact smooth
manifold L into a (2m + 1)-dimensional contact manifold (M, η). We
may choose an almost contact metric structure (ξ, g) on M compatible
with the contact structure η. Let W be a sufficiently small neighborhood
of O in C∞(φ−1TM/φ∗TL). For each V ∈ W ⊂ C∞(φ−1TM/φ∗TL),
define a smooth map

expφV : L ∋ x 7−→ expφ(x)(Vx).

We have a homeomorphism

C∞(φ−1TM/φ∗TL) ⊃ W ∋ V 7−→ expφV ∈ W̄ ⊂ C∞(L,M)

and expφO = φ. We define a function

F : C∞(φ−1TM/φ∗TL) ⊃ W ∋ V 7−→ (expφV )∗η ∈ Ω1(L).

For each V ∈ C∞(φ−1TM/φ∗TL),

(dF)O(V ) = d(η(V )) + ιV (dη) ∈ Ω1(L).

Since ιV (dη), V ∈ C∞(φ−1TM/φ∗TL), can take all elements of Ω1(L),
the differential of F at O

(dF)O : C∞(φ−1TM/φ∗TL) −→ Ω1(L)

is surjective. Hence the (suitable completion of a) space of Legendrian
immersions which are C1-close to φ is a Banach manifold modeled on
the vector space of (suitable) functions on L ([12]).

2. Legendrian submanifolds in Sasakian manifolds

Let (M2m+1, η, g, ξ, φ) be a (2m + 1)-dimensional Sasakian manifold
with Sasakian structure (η, g, ξ, φ). Here

η : the contact 1-form of M

g : a Riemannian metric,

ξ : a Killing vector field,

ϕ : a tensor field of type (1, 1) on M

4



satisfying the following equations :

η(ξ) = 1,

ϕ2 = −Id + η ⊗ ξ,

g(ϕ(X), ϕ(Y )) = g(X, Y ) − η(X)η(Y ),

(dη)(X, Y ) = 2g(X,ϕ(Y )),

[ϕ, ϕ](X, Y ) + (dη)(X,Y )ξ = 0,

where

[ϕ, ϕ](X, Y ) := ϕ2[X,Y ] + [ϕ(X), ϕ(Y )] − ϕ[ϕ(X), Y ] − ϕ[X,ϕ(Y )].

A (2m + 1)-dimensional Sasakian manifold (M2m+1, η, g, ξ, φ) is called
η-Einstein with η-Ricci constant A if its Ricci tensor field Ricg satisfies

Ricg(X,Y ) = Ag + (2m− A) η ⊗ η .

Note that an η-Einstein Sasakian manifold (M2m+1, η, g, ξ, φ) is Einstein-
Sasakian if and only if A = 2m .

We shall recall the standard construction of a Sasakian manifold
(M2m+1, η, g, ξ, ϕ) from a given Kähler manifold (M̄2m, ω, J, ḡ) ([15, p331],
cf. [2], [7]) : Suppose that there is a non-zero constant γ such that
1
γ
[ω] ∈ H2(M̄2m,R) is an integral class. Then there is a principal U(1)-

bundle πγ : Pγ → M̄2m and a connection form θγ on Pγ whose curva-
ture form coincides with 2π

γ

√
−1π∗ω. The standard Sasakian structure

on M2m+1 = Pγ induced from the Kähler structure of M̄2m such that
π : (M2m+1, gγ) → (M̄2m, ḡ) is a Riemannian submersion with totally ge-
odesic fibers can be defined as follows : ηγ = γ

π
√
−1
θγ, gγ = π∗

γ ḡ+ ηγ ⊗ ηγ,

iξγgγ = ηγ and

ϕγ(X) =

{
(J(π∗X))∗ if X ∈ Ker η,

0 if X ∈ Rξ,

where (·)∗ denotes the horizontal lift with respect to the connection θγ.
If (M̄2m, ω, J, ḡ) is a Einstein-Kähler manifold, with Ricci form ρ̄ = κω,
then the Ricci tensor field Ricgγ satisfies

Ricgγ = (κ− 2)gγ + 2mηγ ⊗ ηγ,

that is, (M2m+1, ηγ, gγ, ξγ, ϕγ) is an η-Einstein-Sasakian manifold with
η-Ricci constant κ − 2. In particular κ = 2m + 2 if and only if gγ
is an Einstein-Sasakian metric. If (M̄2m, ω, J, ḡ) is an Einstein-Kähler
manifold with Einstein constant κ = 2m+ 2, then for each integer l ∈ Z

by choosing γ =
2π

(2m+ 2)l
=

π

(m+ 1)l
we obtain an Einstein-Sasakian

manifold (M2m+1 = Pγ, gγ, ηγ, ξγ, ϕγ).

Example 2.1. M̄2m = CPm = SU(m + 1)/S(U(1) × U(m)) is a com-
plex projective space equipped with the Fubini-Study metric ḡ. Then
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M2m+1 = S2m+1(1) is the (2m + 1)-dimensional unit standard sphere,
π : S2m+1(1) → CPm is the Hopf fibration.

Example 2.2. M̄2m = Qm(C) = G̃r2(R
m+2) = SO(m + 2)/SO(2) ×

SO(m) is the complex hyperquadric of CPm+1, which is compact Her-
mitian symmetric space of rank 2. Qm(C) is canonically isometric to the
real Grassmannian manifold G̃r2(R

m+2) of oriented 2-dimensional vector
subspaces of Rm+2. Then M2m+1 = V2(R

m+2) = SO(m + 2)/SO(m) is
the Stiefel manifold of orthonormal 2-frames in Rm+2 :

V2(R
m+2) := {(a,b) | a,b ∈ Rm+2, ∥a∥ = ∥b∥ = 1, ⟨a,b⟩ = 0}

and

π : V2(R
m+2) ∋ (a,b) 7−→ a ∧ b ∈ Qm(C) = G̃r2(R

m+2).

It is known that the cone metric CM2m+1 ∼= (0,∞) ×g M
2m+1 over a

Sasakian manifold M2m+1 is a Kähler metric and the converse holds :

Kähler manifold M̄2m =⇒ Sasakian manifold M2m+1

⇐⇒ Kähler cone CM2m+1.

Moreover it is known that the Kähler cone metric CM2m+1 ∼= (0,∞) ×g

M2m+1 over an Einstein-Sasakian manifold M2m+1 is Ricci-flat and the
converse holds :

M̄2m has an Einstein-Kähler metric

=⇒M2m+1 has an Einstein-Sasakian metric

⇐⇒CM2m+1 has a Ricci-flat Kähler cone metric .

Then there are bijective correspondences among minimal Lagrangian sub-
manifolds in M̄2m, minimal Legendrian submanifolds in M2m+1 and spe-
cial Lagrangian subcones in CM2m+1 :

CM2m+1: Ricci flat E-K. cone
∪
M2m+1 : Einstein-Sasakian mfd.

π U(1) = S1

M̄2m : Einstein-Kähler mfd.

-

-

CLm
∪
Lm

? ?
L̄m

SL

min. Leg.

min. Lag.
-

Let (M2m+1, η, g, ξ, ϕ) be a Sasakian manifold and ψ : L −→ M be a
Legendrian immersion. Let B denote the second fundamental form of L
in (M, g) and H denote the mean curvature vector field of ψ defined by

H =
m∑
i=1

B(ei, ei)
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where {ei} is an orthonormal basis of TxL relative to the induced metric
on L. The 1-form αH on L corresponding to the mean curvature vector
field H is called the mean curvature form of ψ. The mean curvature form
αH of ψ satisfies the identity

(dαH)(X,Y ) = −RicM(ψ∗X,ϕψ∗(Y )))

for each X,Y ∈ TL. This identity follows from the Codazzi equation.
Hence if M2m+1 is η-Einstein, then the mean curvature form αH of any
Legendrian immersion ψ is always a closed 1-form on L.

Suppose that L is compact without boundary. A Legendrian immer-
sion ψ is Legendrian minimal (or shortly L-minimal) if for every Legen-
drian deformation ψt : L −→M2m+1 with ψ0 = φ,

d

dt
Vol (L, φ∗

tg)|t=0 = 0.

Its Euler-Lagrange equation is δαH = 0 and thus a Legendrian immersion
ψ into an η-Einstein manifold M2m+1 is Legendrian minimal if and only
if the mean curvature form αH of ψ is a harmonic 1-form on L.

A minimal Legendrian immersion ψ is by definition a Legendrian im-
mersion whose mean curvature vector field (or equivalently, mean cur-
vature form) identically vanishes. The Legendrian stability of minimal
Legendrian submanifolds were studied in [15], [10].

Definition 2.1. A one-parameter smooth family ψt : L −→M is called
a minimal Legendrian deformation if ψt : L −→ M is a Legendrian
deformation such that ψt is a minimal immersion (i.e. its mean curvature
vector field H = 0) for each t.

A minimal Legendrian deformation ψt : L −→M is called trivial if the
minimal Legendrian deformation ψt is induced by the one-parameter fam-
ily of automorphisms of the ambient Sasakian manifold (M2m+1, η, g, ξ, φ).
The Lie algebra of the automorphism group Aut(M2m+1, g, η, ξ, φ) of the
Sasakian manifold (M2m+1, η, g, ξ, φ) consists of Sasakian Killing vector
fields on M2m+1, namely Killing vector fields preserving the Sasakian
structure of M2m+1. Let X be a Sasakian Killing vector field on M2m+1.
Then we have

0 = LXdϕ = (d ◦ ιX + ιX ◦ d)dϕ = d(ιXdϕ).

Suppose that M2m+1 is simply connected, more generally the first Betti
number of M2m+1 is zero. Then ιXdϕ is exact, that is, ιXdϕ = df for
some f ∈ C∞(M2m+1). Setting V = X ◦ϕ, we have αV = −1

2
ψ∗(ιV dη) =

−1
2
d(f ◦ ψ) and thus each Sasakian Killing vector field generates a Leg-

endrian deformation. For a minimal Legendrian immersion ψ : L → M ,
we define the Sasakian Killing nullity of ψ by

nsk(ψ) := dim{X⊥ | X ∈ Lie(Aut(M2m+1, g, η, ξ, φ))},
7



where X⊥ denotes the component of X ◦ ψ normal to ψ∗TL for each
X ∈ Lie(Aut(M2m+1, g, η, ξ, φ)). Then the dimension of all trivial infin-
itesimal minimal Legendrian deformations of ψ is equal to the Sasakian
Killing nullity nsk(ψ).

3. Minimal Legendrian deformations in η-Einstein Sasakian
manifolds

3.1. Infinitesimal minimal Legendrian deformations. Suppose that
(M2m+1, η, g, ξ, ϕ) is an η-Einstein Sasakian manifold with η-Ricci con-
stant A. Let Lm be a compact m-dimensional smooth manifold without
boundary and ψ : Lm −→M2m+1 be a minimal Legendrian immersion.

Lemma 3.1. The vector space of all infinitesimal minimal Legendrian
deformations of ψ can be identified with

Eψ := R ⊕ {f ∈ C∞(L) | ∆0
ψf = (A+ 2)f}.

where ∆0
ψ denotes the Hodge-de Rham-Laplace operator of L acting on

Ω0(L) = C∞(L) relative to the induced metric by ψ.

Under the canonical linear isomorphism χ : NL ∼= ψ∗TM/ψ∗TL →
C∞(L) ⊕ Ω1(L), the vector space of all infinitesimal Legendrian defor-
mations of ψ is given by

{(f, α) ∈ C∞(L) ⊕ Ω1(L) | α =
1

2
df } ∼= C∞(L) .

In minimal submanifold theory, the equation of infinitesimal minimal
deformations of ψ is known as the Jacobi equation :

Jψ(V ) = −∆⊥V + R̄(V ) − Ã(V ) = 0

for V ∈ C∞(NL), where ∇⊥ denotes the normal connection in the normal
bundle NL of ψ and the Jacobi differential operator Jψ = −∆⊥+R̄−Ã :
C∞(NL) → C∞(NL) is defined as

∆⊥(V ) :=
m∑
i=1

(∇⊥
ei
∇⊥
ei
V −∇⊥

∇L
ei
ei
V ),

g(R̄(V ), V ) =
m∑
i=1

g(R(ei, V )ei, V ),

g(Ã(V ), V ) =
m∑

i,j=1

g(B(ei, ej), V )2 = tr(AV ◦ AV ) .

For each V ∈ C∞(NL) with χ(V ) = (f, α) ∈ C∞(L) ⊕ Ω1(L),

χ(Jψ(V )) =
(
∆0
Lf − 2δα,−2df + ∆1α− (A− 2)α

)
∈ C∞(L) ⊕ Ω1(L) .
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Suppose that V is an infinitesimal Legendrian deformation of ψ, i.e.
α = 1

2
df . Then

χ(Jψ(V )) =

(
0,

1

2
(∆1

Ldf − (A+ 2)df)

)
∈ C∞(L) ⊕ Ω1(L).

Now we set a vector subspace

Γ := {(f, 1
2
df) | f ∈ C∞(L)} ⊂ C∞(L) ⊕ Ω1(L)

and we define a linear differential operator

J χ
ψ : Γ ∋ (f,

1

2
df) 7−→

(
0,

1

2
(∆1

L − (A+ 2)Id)df

)
=

(
0,

1

2
d(∆0

Lf − (A+ 2)f)

)
∈ Γ,

which can be considered as a linearized operator at ψ of the minimal
Legendrian submanifold equation on the space of Legendrian immersions
of L into M2m+1. Then J χ

ψ is self-adjoint, i.e. (J χ
ψ )∗ = J χ

ψ and thus

Ker(J χ
ψ ) = Ker(J χ

ψ )∗ = Eψ.
Hence the vector space of all infinitesimal minimal Legendrian defor-

mations of ψ corresponds to a vector space

Ker(J χ
ψ ) ={ (f, df) | ∆1

ψdf = (A+ 2)df }
∼=R ⊕ { f ∈ C∞(L) | ∆0

ψf = (A+ 2)f } = EL .

3.2. Kuranishi type deformation theory. We can apply the Kuran-
ishi type deformation theory to our problem. See also [12].

Let M(L) be the space of minimal Legendrian immersions near ψ from
compact Lm into an η-Einstein Sasakian manifold M2m+1. Then there
exist a neighborhood U of 0 in a vector space KerJ χ

ψ and a nonlinear
map, so called Kuranishi map,

Φ : Ker(J χ
ψ ) = Eψ ⊃ U −→ Ker(J χ

ψ )∗ = Eψ

such that Φ(0) = 0 and

[a nbd. of Φ−1(0) around 0] ∼= [a nbd. of M(L) around ψ]

(homeomorphic).

Here note that if M2m+1 is a real analytic η-Einstein Sasakian manifold,
then the Kuranishi map Φ is real analytic. Hence we know that if every
infinitesimal minimal Legendrian deformation of ψ is integrable, that is,
generates a minimal Legendrian deformation of ψ, then there is a neigh-
borhood in M(L) around ψ which is a smooth manifold of dimension
equal to dim(Eψ).
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4. Minimal Legendrian deformations of 3-dimensional
certain minimal Legendrian submanifolds

We shall give our attention to the case when m = 3 and

ψ : L3 −→M7

is a 3-dimensional compact minimal Legendrian submanifold embedded
in the 7-dimensional standard (η-)Einstein Sasakian manifolds

4.1. The simplest example. Let M5 = S7(1) = U(4)/U(3) be the 5-
dimensional standard unit sphere and L3 = S3(1) = SO(4)/SO(3) be a
totally geodesic Legendrian submanifold embedded in S7(1). The Hopf
fibration π : S7(1) → CP 3 induces the double covering

π : S7(1) ⊃ S3(1) −→ RP 3 ⊂ CP 3.

Since the multiplicity of the second eigenvalue 2m + 2 = 8 of ∆0
S3(1)

is equal to 9, we have dim(ES3(1)) = 1 + 9 = 10. On the other hand
nsk(S

3(1)) = dim(U(4)) − dim(SO(4)) = 16 − 6 = 10. Therefore we
obtain

Proposition 4.1. The 3-dimensional compact totally geodesic Legen-
drian submanifold S3(1) embedded in S7(1) has only trivial minimal Leg-
endrian deformations. Its deformation space is U(4)/O(4).

4.2. The first example. Let (V3, ρ3) be the irreducible unitary repre-
sentation of SU(2) of degree 3, where

V3 := {f(z1, z2) | complex homogeneous polynomials

with two variable z1, z2 of degree 3}.

V3 is a 4-dimensional complex vector space equipped with the standard
Hermitian inner product such that

{ 1√
3!
z3
1 ,

1√
2!
z2
1z2,

1√
2!
z1z

2
2 ,

1√
3!
z3
2}

is a unitary basis of V3. We shall consider the SU(2)-orbit on S7(1) :

L := ρ3(SU(2))(w) ⊂ S7(1)

through the point

w :=
1√
2
(

1√
3!
z3
1 +

1√
3!
z3
2).

Then we have

Proposition 4.2. The orbit L is a non-totally geodesic 3-dimensional
compact minimal Legendrian submanifold embedded in S7(1). Moreover
its fundamental group is π1(L) ∼= Z3 a finite cyclic group of order 3 and
thus L ∼= SU(2)/Z3

∼= S3/Z3.
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Remark. The induced metric on L is never of constant sectional curva-
tures. This compact minimal Legendrian submanifold was also treated
in [14]. For higher dimensional examples of compact minimal Legendrian
orbits, see also [3], [14].

We denote by ψ0 : L → S7(1) the minimal Legendrian embedding of
L = ρ3(SU(2))w into S7(1). Moreover

Lemma 4.1 ([14], Theorem 3.1). The multiplicity of the eigenvalue 2m+
2 = 8 of ∆0

ψ0
is equal to 19.

Thus we have dim(Eψ0) = 1 + 19 = 20. On the other hand nsk(ψ0) =
dim(U(4)) − dim(SU(2)) = 16 − 3 = 13.

Hence we see that L can have at most 7-dimensional family of non-
trivial minimal Legendrian deformations. In fact, we obtain the following
result

Theorem 4.1. All non-trivial minimal Legendrian deformations of ψ0

are given by the 7-dimensional family of minimal Legendrian embeddings
which is induced by the group action of Sp(2,C).

Such deformations can be explained in the following diagram :

?

?

H2 ∼=
∪
S7(1) = S7(1)

∪
C4

p2 S
1

CP 3

-L
ψ0

? ?
S1

S2
h0

?

-

RP 2 ⊂S4 = HP 1

p1 S
1

CP 3 ⊃ p1(ψ0(L))

Remark. (1) p1(ψ0(L)) ⊂ CP 3 is a 3-dimensional compact strictly
Hamiltonian stable minimal Lagrangian embedded in CP 3 with
non-parallel second fundamental form ([4], [14]).

(2) The embedding RP 2 ⊂ S4 is the Veronese surface, which is a
real projective plane with constant positive Gaussian curvature
minimally embedded in the standard 4-sphere by the first eigen-
functions of the Laplacian of RP 2.

(3) h0 : S2 → CP 3 is its horizontal holomorphic lift into the twistor
space CP 3 over S4.

Let ⟨ , ⟩ be the standard inner product of R8. Let I, J , IJ = K be
the standard quaternionic structure of R8. For each x ∈ S7(1) ⊂ R8,

R8 = Rx ⊕ RIx ⊕ RJx ⊕ RKx ⊕Hx.
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Relative to I, we have an identification

R8 ∼= H2 ∼= C4.

and the standard fibrations

S7(1) −→ CP 3 −→ HP 1 = S4.

Then CP 3 has the standard complex contact structure and the holomor-
phic contact 1-form η on CP 3 defined by

η̃x(X) := ⟨X, Jx⟩ +
√
−1⟨X,Kx⟩ = ⟨X, Jx⟩ +

√
−1⟨X, IJx⟩.

for each X ∈ RJx ⊕ RKx ⊕Hx.
Suppose that h : Σ → CP 3 is a horizontal holomorphic map, that

is, a holomorphic contact curve, which is a holomorphic map satisfying
h∗η = 0.

?

?

H2 ∼=
∪
S7(1) = S7(1)

∪
C4

p2 S
1

CP 3

-L = h−1(S7(1))
ψ

? ?
S1

Σ
h

?

F

-

F (Σ) ⊂S4 =HP 1

p1 S
1

CP 3 ⊃ p1(ψ(L))

If W ⊂ RJx ⊕ RKx ⊕Hx is a vector subspace of dimW = 2, I(W ) =
W and η̃(W ) = 0, then we have an orthogonal direct sum as

R8 = Rx ⊕ RIx ⊕W ⊕ RJx ⊕ RKx ⊕ JW.

Indeed, we express W as

W = Rw ⊕ RI(w).

Then we have JW = RJw ⊕ RKw = KW . Since Jw ⊥ w, Jw ⊥ Iw,
JIw ⊥ w, JIw ⊥ Iw, we have W ⊥ JW = KW . Since

η̃(W ) = 0 ⇔ Jx ⊥ W, Kx ⊥ W,

we have

x ⊥ W, Ix ⊥ W, Jx ⊥ W, Kx ⊥ W

and thus

x ⊥ JW, Ix ⊥ JW, Jx ⊥ JW, Kx ⊥ JW.

Hence we obtain

R8 = Rx ⊕ RJx ⊕ (RIx ⊕W ) ⊕ (RKx ⊕ JW )

and

J(RIx ⊕W ) = RKx ⊕ JW.
12



Therefore if we take another identification relative to J :

R8 ∼= H2 ∼= C4.

and the standard fibration

p1 : S7(1) −→ CP 3,

then the induced map

ψ = h̃ : L = h−1(S7(1)) −→ S7(1)

is a minimal Legendrian immersion relative to J and thus

p1 ◦ h̃ : L = h−1(S7(1)) −→ CP 3

is a minimal Lagrangian immersion relative to J

The complex Lie group Sp(2,C) acts holomorphically on CP 3 pre-
serving the horizontal distribution with respect to the Penrose twistor
fibration CP 3 → HP 1 ∼= S4 and transforms a horizontal holomorphic
curve to another horizontal holomorphic curve in CP 3.

?

?

H2

∪
S7(1) Sp(2) ⊂ Sp(2,C)

?
π2 S

1

CP 3 ∼=

-h−1(S7(1)) = L
ψ

? ?
S1

S2
h

horiz.holom.

?

-

RP 2 ⊂S4 = HP 1

Sp(2)/(Sp(1) × U(2))

This complex group action induces horizontal holomorphic deforma-
tions of h0 : S2 → CP 3 and hence minimal Legendrian deformations
of ψ0 : L = h−1

0 (S7(1)) → S7(1). The dimension of the so obtained
non-trivial family of minimal Legendrian immersions can be calculated
as follows :

dim(Sp(2,C)) − dim(Sp(2)) − (dim(Hol(S2)) − dim(Isom(S2)))

=20 − 10 − (6 − 3) = 7 .

Remark. Compare this construction with [9], [1], [8]. This family are
also very related to Lagrangian submanifolds attaining the equality in
the B. Y. Chen’s inequality on curvatures (see [5]).

4.3. The second example. We shall consider the (2m+1)-dimensional
real Stiefel manifold of orthonormal 2-frames in Rm+2 :

V2(R
m+2) := {(a,b) | a,b ∈ Rm+2 orthonormal } ∼= SO(m+ 2)/SO(m)

which is the standard Einstein-Sasakian manifold over a complex m-

dimensional complex hyperquadric Qm(C) ∼= G̃r2(R
m+2). The natural

projection p1 : V2(R
n+2) → Qm(C) is defined by p1(a,b) = [a+

√
−1b] =

13



a ∧ b. The natural projection p2 : V2(R
n+2) → Sm+(1) is defined by

p2(a,b) = a.
Let Nm be an oriented hypersurface in the (m + 1)-dimensional the

unit standard sphere Sm+1(1) ⊂ Rm+2. We denote by x the position
vector of a point of Nn and by n the unit normal vector field to Nm in
Sm+1(1).

?

V2(R
m+2) =V2(R

m+2)

p2 S
m

Sm+1(1)

-Lm
ψ

Legend.

?

∼=
?

Nm

ori.hypsurf.
-

p1 S
1

Qm(C) ⊃ p1(ψ(L))
Lagr.

Here the Legendrian life Lm of Nm ⊂ Sm+1(1) to V2(R
m+2) is defined by

Nm ∋ p 7−→ (x(p),n(p)) ∈ V2(R
m+2).

The Gauss map G of Nm is defined as a smooth map

G : Nm ∋ p 7−→ x(p) ∧ n(p) ∈ Qn(C),

which we discussed in [13], and then the Gauss map G coincides with the
composition map

p1 ◦ (p2|L)−1 : Nm −→ Qm(C).

We know that for any isoparametric hypersurface Nm in Sm+1(1), the
Gauss map G : Nm → Qn(C) is a minimal Lagrangian immersion and
the Legendrian life Lm of Nm ⊂ Sm+1(1) is a minimal Legendrian sub-
manifold in V2(R

m+2).
Now we shall discuss the case of the 7-dimensional real Stiefel manifold

of orthonormal 2-frames in R5 (m = 3) :

V2(R
5) := {(a,b) | a,b ∈ R5 orthonormal } ∼= SO(5)/SO(3)

which is the standard Einstein-Sasakian manifold over a 3-dimensional
complex hyperquadric Q3(C)

?

V2(R
5) = V2(R

5)

π2 S
3

S4(1)

-L3
ψ

Legend.

?

∼=
?

N3

ori.hypsurf.
-

π1 S
1

Q3(C) ⊃ π1(ψ(L))
Lagr.

Suppose that
N3 = SO(3)/(Z2 + Z2) ⊂ S4(1)
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which is a compact 3-dimensional isoparametric hypersurface with 3 dis-
tinct principal curvatures embedded in S4(1), which is one of so called
Cartan hypersurfaces. We choose an irreducible orthogonal representa-
tion of SO(3) which acts by conjugation on the vector space S2

0(R
3) ∼= R5

of all real symmetric matrices with trace 0 of degree 3. Then N3 is a
codimension 1 orbit of SO(3) in the unit hypersphere S4(1) of S2

0(R
3).

Then the corresponding Legendrian submanifold

L3 = SO(3)/(Z2 + Z2) ⊂ V2(R
5)

is a 3-dimensional compact minimal Legendrian submanifold embedded
in V2(R

5) and we denote by ψ0 the minimal Legendrian embedding.
Note that the induced metric is of constant positive sectional curva-
ture. Since the right action of SO(2) on V2(R

5) = SO(5)/SO(3) in-
duces the Killing vector field ξ, its Sasakian-Killing nullity is nsk(φ) =
dim(SO(5)) + dim(SO(2)) − dim(SO(3)) = 10 + 1 − 3 = 8.

On the other hand, we have

Lemma 4.2 ([13], Lemma 5.3). The multiplicity of eigenvalue 2m+2 = 8
of ∆0

ψ0
is equal to 7.

Hence we have dim(Eψ0) = 1 + 7 = 8. Therefore we obtain

Theorem 4.2. The 3-dimensional compact minimal Legendrian subman-
ifold L3 = SO(3)/Z2 +Z2 ⊂ V2(R

5) has only trivial minimal Legendrian
deformations. Its deformation space is SO(5)/SO(3).
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