ON HOLOMORPHIC SECTIONS OF A CERTAIN KODAIRA
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ABSTRACT. In [2], we analysed the number of holomorphic sections of the holomor-
phic family of genus two surfaces whose complex structure was originally studied by
Riera [4]. Our aim was to give a precise estimation of the number of holomorphic
sections, whose finiteness was already known as the Mordell conjecture in function
fields case. In this note we review the present status of our results and discuss more
carefully than in [2]. We give a simple proof about the order of a local monodromy
around a puncture, which is crucial for our sections to be extended at the puncture.

In this paper, we review our results in [2].

We start with a definition of holomorphic families of closed Riemann surfaces. Let M
be a two-dimensional complex manifold and R be a Riemann surface. We assume that a
proper holomorphic mapping 7 : M — R satisfies the following two conditions:

(i) The Jacobian matrix of 7 has rank one at every point of M.
(ii) The fiber S, = 7#~!(r) over each point r of R is a closed Riemann surface of
genus go.

We call such a triple (M, 7, R) a holomorphic family of closed Riemann surfaces of genus
go over R.

A holomorphic mapping s : R — M is said to be a holomorphic section of (M, n, R) if
m o s is the identity mapping on R.

Let S be the set of all holomorphic sections of (M, 7, R). Denote by £S the number
of all elements of S.

In [2], we constructed a certain Kodaira surface whose fibers are branched over a fixed
flat torus. We explain briefly its construction as follows.

Take a point 7 in the upper half-plane H. Let I'y ; be the discrete subgroup of
Aut(C,,) generated by w — w+1, w — w+7. Let a1 : C,, = C,,/T'1 - be the canonical
projection. We denote the pair (C,,/T1 +,a;(0)) by (T,0) and set T =T\ {0}.

For any point t € T, we cut T along a simple arc from 0 to t. Next we take two
replicas of the torus T with the cut and call them sheet I and sheet II. The cut on each
sheet has two sides, which are labeled + side and — side. We attach the + side of the
cut on I to the — side of the cut on II, and attach the — side of the cut on I to the +
side of the cut on II. Now we obtain a closed Riemann surface S; of genus two, which is
the two-sheeted branched covering surface S; — T branched over 0 and .
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Note that the complex structure on S; depends not only on the point ¢ but also on
the cut locus from 0 to ¢. Essentially there are four cuts as in Figure 1 which determine
different complex structures on S;. This is an obstruction to construct a holomorphic
family whose fibers are S; over T'.

Ficure 1. Four cuts on T

To solve this problem, let I's 5 be the discrete subgroup of Aut(C,) generated by
z 242, 2z 2+ 27. Let ay : C, — C, /T3 2, be the canonical projection and denote
the pair (C. /T2 2,,a2(0)) by (R,0).

Define p : C. — C, by p(2) = 2. Then j induces a (Z/2Z)?-unbranched covering
p: R — T which corresponds to

1 — m(R) — m(T) — (Z/2Z)?
Set R=R\ p~'(0) and p = j|R.

Proposition 1. Choose an element of p~1(0) and denote it by Or (we remark that there
are four elements in p~1(0)). For any r € R, let C, be a simple arc from r to Og in R
whose image p(C.) in T becomes a cut from 0 to p(r). Then the complex structure of
the genus two surface S, which is obtained by means of the cut p(C,) of T, is uniquely
determined by r € R, not depending on the choice of C,.

Proof. First of all, the two-sheeted branched covering surface S, - T defined by
a cut from 0 to ¢ in T corresponds to the index two subgroup of m; (T — {0,¢}) with
free generators a, b,e where ¢ is a cycle around 0 (p300, [4]). Hence the parities of the
intersection numbers of the cut with a and b respectively distinguishes the index two
subgroup of m; (T — {0,t}) corresponding to the two-sheeted branched covering surface
St — T

Let C, and C! be simple arcs from r to Og in R. Then the composition C! - C7! is
a closed loop from O to itself in R and its image p(C". - C;'!) is a closed loop from 0
to itself in T, homologous to ma + nb where m,n are even numbers. Therefore two cuts
p(C) and p(C)) intersect with @ and b with the same parity, which implies these two

cuts induce the isomorphic two-sheeted branched covering surfaces S,y — T d

Hence after the choice of Og € p~1(0), M = U,ecrS, — R is well defined as a family
of Riemann surfaces.

Following the idea of Riera in [4], we introduced a complex structure on M in [2] such
that the two-sheeted branched covering IT : M — R x T defined by (r,q) — (r, 8-(q)) is
a holomorphic mapping branched over two graphs I'g of 0 and I', of p in R x T, where
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Br is a two-branched covering from S, to T and
To={(r0)|reR}CRxT,
,={(rp(r) |r€eRYCRxT.

We define 7 by the composition Pg o IT of II and the first projection Pg : R X T — R,
and we define 8 by Py o II, where P; : R X T — T is the second projection. As a
consequence, we have the following diagram in Figure 2.

/l

FIGURE 2

T—>T

Thus the triple (M, 7, R) is a holomorphic family of closed Riemann surfaces of genus
two. For any point r € R, the fiber S, = 7 !(r) is a two-sheeted branched covering
surface of T = {r} x T in R x T branched at (r,0) and (r, p(r)).

Here we should remark that this is a unique complex structure for 7 : M — R.

Proposition 2. There is at most one complex structure on M = U,crS, which makes
M — R a holomorphic family of genus two surfaces over R.

Proof. Suppose that there are two complex structures on M = U,cgS,. Then they
induce the holomorphic mappings f; : H — Ty (i = 1,2) from the universal covering of
R to the Teichmiller space of genus two surfaces. They satisfy the equality mao fi = w0 fy
where 7y : Ty — M is the canonical projection from the Teichmiiller space to the moduli
space. From this equality, for any p € H there exists an element 7, of the mapping class
group M od, of genus two surfaces such that fa(p) = v,(f1(p)). Since Mod, is a countable
group, there exists v € Mody so that U := {p € H| v, = v} has accumulation points in
H. Therefore fo = v o fi; on U implies fo = v o f; on H by the identity theorem. O

Our aim is to estimate the number §S of all holomorphic sections of (M, 7, R). Every
section s of S induces a holomorphic mapping from R to T defined by the composition
Bos. Let Hol(R, T) be the set of all holomorphic mappings from R to T. Thus we have
the canonical mapping

$:S — Hol(R,T).
s—fPos
If ®(s1) = ®(s2) holds for s1,s9 € S, then s; = j,. o s, where j, : S, — S, is the
holomorphic involution with two fixed points and satisfies 3, o 5, = B,. Thus ® is 2 to
1 except for the trivial sections sq and s, defined by so(r) = (r,0) and s,(r) = (r, p(r)),
respectively. So that we have the equality

£S = 243(S) — 2. (1)
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Now the estimation of 4S reduces to that of §®(S).
Next we consider theAset of all non-constant holomorphic mappings from R to 7" and
denote it by Hol, .. (R,T). Then we showed that (Proposition 3.1 in [2])

$(S) \ {0} C Holy . (R, T).

The key idea of our proof is that if g = Sos € ®(S) is a non-zero constant mapping then
the graph I'y of g and I', must intersect transversely. Then around an intersection point
of 'y and 'y, the section s is not univalent, a contradiction. But ﬂHoln,C,(R,T) is still
infinite, our next purpose is to find a finite subset of Hol, . (R,T) which contains ®(S).

For this purpose, we studied the possibility for ¢ = fos: R — T to extend to a
holomorphic mapping ¢ : R — T. Since g becomes a covering mapping by means of
Riemann-Hurwitz formula, the induced mapping g : C, — C,, is an affine mapping,
which is easy to be handled. The proof consists of two steps (Theorem 3.1 in [2]):

The first step is to show that the section s : R — M can be extended to a holomorphic
section § : R — M where M — R is the degenerate family which is a completion of the
holomorphic family M — R. To do this, we need to show that the local monodromy
around a puncture of R is of infinite order to apply the first author’s result (Theorem
3.2in [2]). In the next section, we will give a simple proof of infinite order of the local
monodromy due to Hideki Miyachi.

The second step is to show that g : R — T can be extended to a holomorphic mapping
g : R — T. From the result of the first step, we can prove that g—1(0) is a finite set.
Then g: R\ g 1(0) — T \ {0} is a holomorphlc mapping between hyperbolic Riemann
surfaces, hence g can be extended to § : R—T by Royden’s theorem (Theorem 3.3 in
[2])-

Now we know that ¢ : R—oTisa covering mapping whose lift §: C, — C,, of § is an
affine mapping. Then we could prove that the graph I'y intersects with neither I', nor
Ty in R x T (Proposition 3.2 in [2]). Hence we showed

$(S) C Holais (R, T) U {0, p},

where Holg;s(R, T) is the set of all holomorphic mappings g : R — T which extend to
the mappings § : R — T and satisfy T, Ny = 0 and T, N I',=0in R x T. Fortunately
Holgis (R, T) becomes a finite set and we had the main inequality:

2 = t{s0,5,} < 1®(S) < fHolais(R,T) + 2. (2)

We determine Holdis(R,T) explicitly. In practice we count the lift § of §. In the last
section we will explain the algorithm to count all elements of Holgis(R,T).

Here we restate our main results of [2]. First we fix a fundamental domain of SL(2,Z)
acting on H as the domain F' of H defined by the following conditions : (i) —1/2 <
Re(r) < 1/2, (ii) |7| > 1, (iii) Re(r) < 0 if |7] = 1. Any flat torus is biholomorphically
equivalent to C/Ty , for some 7 € F. We also set 71 = i and 7» = €>™/3 and put
Tj =C./T1;,j =1,2. Our result on jooldis(R,T) is

Theorem 1.
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(i) IfT is not biholomorphically equivalent to either Ty or T, then fHola;s (R

R.T)
(ii) IfT is biholomorphically equivalent to either Ty or Tg, then fHolgis (R T) =

1
Consequently the number #S can be estimated as follows:

Theorem 2.
(i) IfT is not biholomorphically equivalent to either Ty or Tg, then S = 2,4,...,8,
or 10.
(i1) If hatT is biholomorphically equivalent to either Ty or Tg, then $S = 2,4,...,24,
or 26.

1. LOCAL MONODROMY

As explained in the previous section, the next claim is crucial for g = fos: R — T
to be able to extend to a holomorphic mapping § : R — T':

Proposition 3 (p13, Claim 1 in [2]). At any puncture p € p=(0) of R, the local mon-
odromy M, around p is of infinite order.

We believe that our proof in [2] should be true, but we didn’t give a proof that the
M, is the twice product of a Dehn twist. Here we show a simple and clear proof for this
claim: The idea is due to Hideki Miyachi.

Proof. We assume that p = Og; the same argument works for the rest cases. Choose
r € R closed to 0g. Then we can take a cut C from 0 to p(r) in T as a short segment
(with respect to the Euclidean metric on T) Draw an annulus A on T such that the
bounded component of T \ A contains the cut C. Since C' is short, our annulus A may
have a big modulus m(A). Consider the branched double covering 3, : S, — T' and the
inverse image of A under 3,. Tt consists of disjoint two annuli A; and A5 of S, homotopic
to each other and their moduli satisfy

m(A1) = m(Az) = m(A),

since the modulus is a conformal invariant.
Let A be an annulus of S, homotopic to A; and As and contains them. Then the
modulus inequality tells us that

m(A;) + m(As) < m(fi)
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Therefore if  converses to 0, we may assume that m(A) — oo, which implies m(A) —
00, so that the extremal length of A goes to 0. Now Masgkit’s comparison theorem (p.383,
Corollary 2 in [3]) guarantees that the hyperbolic length of the simple closed geodesic
of S, homotopic to A also goes to 0, which implies that S, diverges to the boundary of
the Teichmiiller space when r» — Og. Hence M, must be of infinite order; otherwise S,
converges to the point in the Teichmiiller space when r — Og (p.285, Theorem 2 in [1]).
O

2. Holgis(R,T)

In this section we will determine all elements of Holyis (R, T) We recall that Holgis (R, T)
is the set of all holomorphic mappings g : R — T which extend to the mappings g : R->T
and satisfy [yNTo =0 and [;NI, =0 in Rx T. From the definition of Holgis (R, T) ev-
ery element g of Holg;s(R, T) has a holomorphic extension ¢ : R — T which is a covering
mapping of degree less than or equal to 4 since #51(0) = 4. Hence a lift §: C. — C,,
of g is an affine mapping

g(z) = Az + B,
where A is uniquely determined by ¢, while B is determined modulo A -T's 5, + 'y ;.

Now we may assume that A # 1 (Lemma 3.1 in [2]). Moreover § can be written as

9(z) = A(z + w) where w =0,1,7 and 1 + 7 (Lemma 3.2 in [2]).

Next we determine A. To do this, we may assume §(z) = Az. Since §(I's2-) C ' -,
we have

2A =p+qr, (3)
2AT = u + v, (4)
for some p,q,u,v € Z. The Euclidean areas of R and T, and deg(g) < 4 implies that
1<pv—qu<4 (5)
and
24] = [p+gr] <2 (6)

By (3) and (4), we get the quadratic equation of 7:

qr* + (p—v)T —u = 0. (7)
Since Im(7) > 0 implies that the discriminant is negative, we have

(p+0v)* < 4(pv — qu). ®)
The root 7 of (7) with Im(7) > 0 is given by

v—p+\/‘l(pi);qu)—(prv)2 i g,
T Yv-p- VAl —qqu)—(p+v)2i ©)
5 , if ¢ < 0.

By (5) and (8), we have
lp+v| <4 (10)
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To determine A, we will find four integers p, ¢, u and v which satisfy the conditions
(5), (6) and (10).
Lemma 1. ¢ =0,+1, or £2.

Proof. Suppose |q| > 3. We take the point 9 = e2™/3 in F whose imaginary part is
the least in F'. Then the imaginary part of the number 37y satisfies

Im(3rg) = 32£ > 2.

Hence for any integers p and ¢, we have

lp+aqr| > [Im(qr)]
> Im(37)
> Im(37)
> 2
This contradicts the condition (6) O

Hence we may consider the cases |q| < 2.

Lemma 2. (i) If g =0, then p = £1, £2.
(ii) If ¢ = £1, then |p| < 2.
(i) If ¢ = £2, then |p| < 2.

Proof. If ¢ is equal to 0, then the relation 0 < |p + ¢7| < 2 shows (i). By the same
argument as in the proof of Lemma 1, we have (ii) and (iii). O

By (5) and (10), both u and v are determined. Hence we have four integers p, ¢, u and
v such that they satisfy the conditions (5), (6) and (10).

Next, finding quadruplets (p, g, u, v) in these p, g, u,v such that 7 represented in (9) is
an element of F', we have the complete list of such a p, ¢, u,v, 7 and the fixed point of g,
in the following Table 1 and 2.

In these Tables, when some lift § has a fixed point which is not contained in I'y ;, we
see that I'y intersects I',, a contradiction.

Next when (p,q,u,v) = (1,-1,1,2),(1,-1,2,2),(2,1,—-1,1),(2,1,-2,1), we see that
', intersects Iy, a contradiction. Finally when (p, ¢, u,v) = (2,0,0,2), § is a lift of p, a
contradiction.

Hence for every T € F, we see that (p,q,u,v) = (1,0,0,1) satisfies (5), (6) and (10).

In this case A is equal to 1/2, and §(z) can be written as
. 1
§() = 2 (= + ),

where w = 0,1,7 and 1 + 7. Thus any 7 € F with 7 # i and 7 # €*™/3, we have
tHolgis (R, T') = 4.

Moreover, if 7 is equal to i or €2/3, we have other choices of 9(z) as
. 1—i 141
§(2) = (e + W), (s w),
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or

g(z) = 1 _2\/§i (z +w), 1 +2\/§i (z +w).

Hence
#Holgis (R, T) = 3 x 4 = 12.
Thus we have proved Theorem 1.

The authors wish to thank Professor Yoshihiro Ohnita for his encouragement. Many
thanks are also due to Professor Hideki Miyachi for his valuable suggestions about the
local monodromy. Finally the authors would like to express their gratitude to referee for
valuable suggestions on the improvement of the paper.

3. APPENDIX

In the referee report, the referee suggested us an algebraic-geometric construction
of the holomorphic family # M — R appeared in this paper, and he (or she) kindly
permitted us to show his (or her) construction in the appendix, hence the following idea
is basically due to the referee.

Let g : R — T be the map induced by the affine map between the universal coverings
of R and T defined by w = %(z—}—w) where w = 0,1, 7 and 1+ 7. We consider the product
of Riemann surfaces R x T' and denote the graphs of maps 0, p and g., (w=0,1,7,147)
from R to T by T, I,and Iy, (w=0,1,7,1+7) respectively We remark that 'y and
T, intersect transversely at four points p,, := ([w],[0]) € RxT (w =0,1,7,147). Define
F, = Pgl([w]) where Pj, is the projection map form RxT to R. Then divisors [y + r,
is linearly equivalent to 21“5,w +2F,

To+T, ~ 2T, +2F,,

because the meromorphic function f,(z,w) on R x T' defined by

folz,w) =P <w— %(z+w)> -P <%(z+w)> (w=0,1,7,1+7)

has simple zeros at I'g + I', and double poles at 'y, + F,, respectively, where P(z) is the
Weierstrass P-function:

o-de T (o2

weZ+Zr—{0}

Let 0 : ¥ — R x T be the blow-up of R x T' at four points p,, and E, := o 1(p.) be
exceptional divisors (w =0,1,7,1+ 7). We also denote the proper transforms of divisors
Iy,T,, Ty, and F,, by FO,F Fgw and F, respectively. Now Ty and F are disjoint on X.
Considering the meromorphic function fy o ¢ on ¥ for simplicity, we have

To+T,~2(C, +Fo+E— Y E.)
w#0
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| P | q | u | v | T | fixed point |
o[ 1 [-1]0 i (4+2i)/5
0] 1 |=2]0 V2i (2 +/2i)/3
0] 1 |-3]0 V/3i (2 ++/30)/7
o1 [-4]0 2i (1+1i)/2
0] 1 [-1]-1 e2mi/3 (5+/3i)/7
0 1 | =2 =1 (=1+v7i)/2 | (5+/Ti)/8
0] 1 | =3]—-1](=1+V113)/2| (5+11i)/9
0] 1 | —4]|—-1|(=14+V15)/2] (5+15i)/10
o[-1] 170 i 2(1+2i)/5
0o[-1] 210 V2i 2(1++/2i)/3
0[-1] 3]0 V/3i 2(3 +2V/3i)/7
0[—-1] 4]0 2i (1+/3i)/2
o]—-1|1]1 e2mi/3 (3—/3i)/3
o1 2 | 1] (=1+vV7)/2 | (+V7i)/4
0]—-1] 3| 1 |[(=1+V1Li)/2] (3-+11i)/5
0] —1| 4 | 1 [(-1++15)/2| (3—+/15i)/6
ol 2 [-2]0 i (1+1i)/2
0] 2 | =2 1| (=14+V15i)/4 | (5+15i)/10
0] 2 | -2|-2 e2mi/3 V/3i/3
ol-2] 2710 i (1+4)/2
0]—2] 2 | 1 [(=14+V15)/4]| (3—+15i)/6
0[—-21] 2 | 2 e2mi/3 lattice point
110 0 1 any lattice point
11 [-1]0 e2mi/3 (3+13i)/3
L)1 [ =20 | (=1+V7)/2 | 3+V7i)/4
1)1 | =3]0[(=1+V11)/2| (5+V11i)/5
1|1 | —4] 0 [ (-1+V15)/2 | (3+15i)/6
111 (-1]1 i lattice point
11 [=2]1 V2i (1++/2i)/3
11 [-3]1 V/3i (1+/3i)/2
1(-1|1 1 i lattice point
1-1]2 11 V2i 2(1 —+/2i)/3
1|-1]3 |1 V/3i (1—+/3i)/2
1|—=1| 1] 2 e2mi/3 lattice point
1|-1] 2| 2 [ (=1++7i)/2 | lattice point
1|2 -2]-1 e2mi/3 2(2 +/3i) /7
1] 2 | =2] 0 | (-1+V15)/4| (3+/15i)/6

TABLE 1. p=0,1
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| P | q u | v | T | fixed point
-1] 0] 0 |-1 any 2(1+1)/3
11 [-1]=2 e2mi/3 (7+/3i)/13
—1] 1 [ =2 =2 (=14+V70)/2 | (7T+V7i)/14
11 [=1]-1 i (3+1i)/5
-1 1 |-2]-1 V2i 2(3 +/2i)/11
1|1 [-3]-1 V/3i (3++/3i)/6
111 -1 i 22+14)/5
-1|-1] 2 [ -1 V2i 2(2 + 3v/2i)/11
—1|-1] 3 | -1 V/3i (1++/3i)/2
—1|-1[1]o0 e2mi/3 (5 —+/31)/7
—1] =112 0| (=1+V7)/2] (5-V7i)/8
—1| -1 3]0 [(-1+V11i)/2| (5—11i)/9
—1|=1| 4 | 0 |(=1+V15)/2| (5—+/15i)/10
—1] =2 2|0 [(-1+V15)/4] (5—+/15i)/10
-11-2] 2|1 e?mi/3 2(2 — /3i) /7
2 0 0 2 any lattice point
2 1 | -1] 1 e2mi/3 lattice point
2 | 1 |=2| 1 | (=14++7i)/2 | lattice point
2 12 |-2]0 e2mi/3 lattice point
-2, 0|0 |-2 any 1/2
—2|-1] 1 |-1 e2mi/3 (7—+/3i)/13
2| =1 2 | 1| (=14+VT)/2 | (7—-+/Ti)/14
—2(-2]21]0 23 (3+1/3i)/6

TABLE 2. p=—1,42

Hence the line bundle O(fgo +Fy+Ep - Zwﬂ) E,) is a square root of the line bundle
O(fo + fp) :

O(fgo + Fg + Eg — Z Ew) — O(fgo + Fg + Ey — Z Ew)®2 = O(fo + fp)
w#0 w#0

We denote this map by x : O(T,, + Fo + Ey — >wzo Bu) — O(Ty + T,), and the
bundle map from Oy +T,) to £ by ¢ : O(I'g +T',) = X. By means of f, oo, we
have a holomorphic section s : ¥ — O(I'g + I'y) whose zero locus is I'g + I',. Then
M := x~'(s(X)) is a complex surface in O(T,, + Fy+ Fo — > w0 Ew) and gox : M =Y
is a double branched covering of ¥ branched at I'g + I',. Finally

7:=Ppoooqox: M- R

is a degenerate family of Riemann surfaces of genus two over R.
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Oy + Fo+ Eo— Y00 B.) DM
< | |
Oe+T,) Ds(%)

]

RxT &-%

P

:UN* X

In practice except [w] (w = 0,1,7,1+ 7), #71([z]) is a genus two surface which is
a double branched covering of 7' branched at [0] and p([z]). We can also show that
77 ([w]) (w=0,1,7,14 7) are singular fibers; #=1([0]) consists of two disjoint tori and
one rational curve which intersects two tori transversely, while 771 ([w]) (w=1,7,1+7)
consists of one torus and one rational curve which intersect each other at two points
transversely (See Figure 3). Restricting our degenerate family # M — R to R, we have
a holomorphic family # M — R appeared in this paper.

FiGURE 3
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