
ON HOLOMORPHIC SECTIONS OF A CERTAIN KODAIRASURFACE REVISITEDYOICHI IMAYOSHI, YOHEI KOMORI, AND TOSHIHIRO NOGIAbstra
t. In [2℄, we analysed the number of holomorphi
 se
tions of the holomor-phi
 family of genus two surfa
es whose 
omplex stru
ture was originally studied byRiera [4℄. Our aim was to give a pre
ise estimation of the number of holomorphi
se
tions, whose �niteness was already known as the Mordell 
onje
ture in fun
tion�elds 
ase. In this note we review the present status of our results and dis
uss more
arefully than in [2℄. We give a simple proof about the order of a lo
al monodromyaround a pun
ture, whi
h is 
ru
ial for our se
tions to be extended at the pun
ture.In this paper, we review our results in [2℄.We start with a de�nition of holomorphi
 families of 
losed Riemann surfa
es. Let Mbe a two-dimensional 
omplex manifold and R be a Riemann surfa
e. We assume that aproper holomorphi
 mapping � :M ! R satis�es the following two 
onditions:(i) The Ja
obian matrix of � has rank one at every point of M .(ii) The �ber Sr = ��1(r) over ea
h point r of R is a 
losed Riemann surfa
e ofgenus g0.We 
all su
h a triple (M;�;R) a holomorphi
 family of 
losed Riemann surfa
es of genusg0 over R.A holomorphi
 mapping s : R!M is said to be a holomorphi
 se
tion of (M;�;R) if� Æ s is the identity mapping on R.Let S be the set of all holomorphi
 se
tions of (M;�;R). Denote by ℄S the numberof all elements of S.In [2℄, we 
onstru
ted a 
ertain Kodaira surfa
e whose �bers are bran
hed over a �xed
at torus. We explain brie
y its 
onstru
tion as follows.Take a point � in the upper half-plane H. Let �1;� be the dis
rete subgroup ofAut(Cw) generated by w 7! w+1; w 7! w+� . Let �1 : Cw ! Cw=�1;� be the 
anoni
alproje
tion. We denote the pair (Cw=�1;� ; �1(0)) by (T̂ ; 0) and set T = T̂ n f0g.For any point t 2 T , we 
ut T̂ along a simple ar
 from 0 to t. Next we take tworepli
as of the torus T̂ with the 
ut and 
all them sheet I and sheet II. The 
ut on ea
hsheet has two sides, whi
h are labeled + side and � side. We atta
h the + side of the
ut on I to the � side of the 
ut on II, and atta
h the � side of the 
ut on I to the +side of the 
ut on II. Now we obtain a 
losed Riemann surfa
e St of genus two, whi
h isthe two-sheeted bran
hed 
overing surfa
e St ! T̂ bran
hed over 0 and t.1991 Mathemati
s Subje
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 se
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2 Y. IMAYOSHI, Y. KOMORI, AND T. NOGINote that the 
omplex stru
ture on St depends not only on the point t but also onthe 
ut lo
us from 0 to t. Essentially there are four 
uts as in Figure 1 whi
h determinedi�erent 
omplex stru
tures on St. This is an obstru
tion to 
onstru
t a holomorphi
family whose �bers are St over T .PSfrag repla
ements 0t C1 C2 C3 C4Figure 1. Four 
uts on T̂To solve this problem, let �2;2� be the dis
rete subgroup of Aut(Cz) generated byz 7! z + 2; z 7! z + 2� . Let �2 : Cz ! Cz=�2;2� be the 
anoni
al proje
tion and denotethe pair (Cz=�2;2� ; �2(0)) by (R̂; 0).De�ne ~� : Cz ! Cw by ~�(z) = z. Then ~� indu
es a (Z=2Z)2-unbran
hed 
overing�̂ : R̂! T̂ whi
h 
orresponds to1 �! �1(R̂) �! �1(T̂ ) �! (Z=2Z)2 �! 1:Set R = R̂ n �̂�1(0) and � = �̂jR.Proposition 1. Choose an element of �̂�1(0) and denote it by 0R (we remark that thereare four elements in �̂�1(0)). For any r 2 R, let Cr be a simple ar
 from r to 0R in Rwhose image �(Cr) in T be
omes a 
ut from 0 to �(r). Then the 
omplex stru
ture ofthe genus two surfa
e Sr whi
h is obtained by means of the 
ut �(Cr) of T̂ , is uniquelydetermined by r 2 R, not depending on the 
hoi
e of Cr.Proof. First of all, the two-sheeted bran
hed 
overing surfa
e St ! T̂ de�ned bya 
ut from 0 to t in T̂ 
orresponds to the index two subgroup of �1(T̂ � f0; tg) withfree generators a; b; " where " is a 
y
le around 0 (p300, [4℄). Hen
e the parities of theinterse
tion numbers of the 
ut with a and b respe
tively distinguishes the index twosubgroup of �1(T̂ � f0; tg) 
orresponding to the two-sheeted bran
hed 
overing surfa
eSt ! T̂ .Let Cr and C 0r be simple ar
s from r to 0R in R. Then the 
omposition C 0r � C�1r isa 
losed loop from 0R to itself in R̂ and its image �(C 0r � C�1r ) is a 
losed loop from 0to itself in T̂ , homologous to ma+ nb where m;n are even numbers. Therefore two 
uts�(Cr) and �(C 0r) interse
t with a and b with the same parity, whi
h implies these two
uts indu
e the isomorphi
 two-sheeted bran
hed 
overing surfa
es S�(r) ! T̂ . �Hen
e after the 
hoi
e of 0R 2 �̂�1(0), M = tr2RSr ! R is well de�ned as a familyof Riemann surfa
es.Following the idea of Riera in [4℄, we introdu
ed a 
omplex stru
ture on M in [2℄ su
hthat the two-sheeted bran
hed 
overing � : M ! R � T̂ de�ned by (r; q) 7! (r; �r(q)) isa holomorphi
 mapping bran
hed over two graphs �0 of 0 and �� of � in R � T̂ , where



ON HOLOMORPHIC SECTIONS OF A CERTAIN KODAIRA SURFACE REVISITED 3�r is a two-bran
hed 
overing from Sr to T̂ and�0 = f(r; 0) j r 2 Rg � R � T̂ ;�� = f(r; �(r)) j r 2 Rg � R� T̂ :We de�ne � by the 
omposition PR Æ� of � and the �rst proje
tion PR : R� T̂ ! R,and we de�ne � by PT̂ Æ �, where PT̂ : R � T̂ ! T̂ is the se
ond proje
tion. As a
onsequen
e, we have the following diagram in Figure 2.
PSfrag repla
ements

MR� T̂R T̂??y �! �� �PR PT̂�
Figure 2Thus the triple (M;�;R) is a holomorphi
 family of 
losed Riemann surfa
es of genustwo. For any point r 2 R, the �ber Sr = ��1(r) is a two-sheeted bran
hed 
overingsurfa
e of T̂ �= frg � T̂ in R � T̂ bran
hed at (r; 0) and (r; �(r)).Here we should remark that this is a unique 
omplex stru
ture for � :M ! R.Proposition 2. There is at most one 
omplex stru
ture on M = tr2RSr whi
h makesM ! R a holomorphi
 family of genus two surfa
es over R.Proof. Suppose that there are two 
omplex stru
tures on M = tr2RSr. Then theyindu
e the holomorphi
 mappings fi : H! T2 (i = 1; 2) from the universal 
overing ofR to the Tei
hm�uller spa
e of genus two surfa
es. They satisfy the equality �2Æf1 = �2Æf2where �2 : T2 !M2 is the 
anoni
al proje
tion from the Tei
hm�uller spa
e to the modulispa
e. From this equality, for any p 2 H there exists an element 
p of the mapping 
lassgroupMod2 of genus two surfa
es su
h that f2(p) = 
p(f1(p)). Sin
eMod2 is a 
ountablegroup, there exists 
 2Mod2 so that U := fp 2 H j 
p = 
g has a

umulation points inH. Therefore f2 = 
 Æ f1 on U implies f2 = 
 Æ f1 on H by the identity theorem. �Our aim is to estimate the number ℄S of all holomorphi
 se
tions of (M;�;R). Everyse
tion s of S indu
es a holomorphi
 mapping from R to T̂ de�ned by the 
omposition� Æ s. Let Hol(R; T̂ ) be the set of all holomorphi
 mappings from R to T̂ . Thus we havethe 
anoni
al mapping � : S ! Hol(R; T̂ ):s 7! � Æ sIf �(s1) = �(s2) holds for s1; s2 2 S, then s1 = jr Æ s2, where jr : Sr ! Sr is theholomorphi
 involution with two �xed points and satis�es �r Æ jr = �r. Thus � is 2 to1 ex
ept for the trivial se
tions s0 and s� de�ned by s0(r) = (r; 0) and s�(r) = (r; �(r)),respe
tively. So that we have the equality℄S = 2℄�(S) � 2: (1)



4 Y. IMAYOSHI, Y. KOMORI, AND T. NOGINow the estimation of ℄S redu
es to that of ℄�(S).Next we 
onsider the set of all non-
onstant holomorphi
 mappings from R to T̂ anddenote it by Holn:
:(R; T̂ ). Then we showed that (Proposition 3.1 in [2℄)�(S) n f0g � Holn:
:(R; T̂ ):The key idea of our proof is that if g = � Æ s 2 �(S) is a non-zero 
onstant mapping thenthe graph �g of g and �� must interse
t transversely. Then around an interse
tion pointof �g and ��, the se
tion s is not univalent, a 
ontradi
tion. But ℄Holn:
:(R; T̂ ) is stillin�nite, our next purpose is to �nd a �nite subset of Holn:
:(R; T̂ ) whi
h 
ontains �(S).For this purpose, we studied the possibility for g = � Æ s : R ! T̂ to extend to aholomorphi
 mapping ĝ : R̂ ! T̂ . Sin
e ĝ be
omes a 
overing mapping by means ofRiemann-Hurwitz formula, the indu
ed mapping ~g : Cz ! Cw is an aÆne mapping,whi
h is easy to be handled. The proof 
onsists of two steps (Theorem 3.1 in [2℄):The �rst step is to show that the se
tion s : R!M 
an be extended to a holomorphi
se
tion ŝ : R̂ ! M̂ where M̂ ! R̂ is the degenerate family whi
h is a 
ompletion of theholomorphi
 family M ! R. To do this, we need to show that the lo
al monodromyaround a pun
ture of R is of in�nite order to apply the �rst author's result (Theorem3.2 in [2℄). In the next se
tion, we will give a simple proof of in�nite order of the lo
almonodromy due to Hideki Miya
hi.The se
ond step is to show that g : R! T̂ 
an be extended to a holomorphi
 mappingĝ : R̂ ! T̂ . From the result of the �rst step, we 
an prove that g�1(0) is a �nite set.Then g : R n g�1(0) ! T̂ n f0g is a holomorphi
 mapping between hyperboli
 Riemannsurfa
es, hen
e g 
an be extended to ĝ : R̂ ! T̂ by Royden's theorem (Theorem 3.3 in[2℄).Now we know that ĝ : R̂! T̂ is a 
overing mapping whose lift ~g : Cz ! Cw of ĝ is anaÆne mapping. Then we 
ould prove that the graph �g interse
ts with neither �� nor�0 in R� T̂ (Proposition 3.2 in [2℄). Hen
e we showed�(S) � Holdis(R; T̂ ) [ f0; �g;where Holdis(R; T̂ ) is the set of all holomorphi
 mappings g : R ! T̂ whi
h extend tothe mappings ĝ : R̂! T̂ and satisfy �g \ �0 = ; and �g \ �� = ; in R� T̂ . FortunatelyHoldis(R; T̂ ) be
omes a �nite set and we had the main inequality:2 = ℄fs0; s�g � ℄�(S) � ℄Holdis(R; T̂ ) + 2: (2)We determine Holdis(R; T̂ ) expli
itly. In pra
ti
e we 
ount the lift ~g of ĝ. In the lastse
tion we will explain the algorithm to 
ount all elements of Holdis(R; T̂ ).Here we restate our main results of [2℄. First we �x a fundamental domain of SL(2;Z)a
ting on H as the domain F of H de�ned by the following 
onditions : (i) �1=2 �Re(�) < 1=2, (ii) j� j � 1, (iii) Re(�) � 0 if j� j = 1. Any 
at torus is biholomorphi
allyequivalent to C=�1;� for some � 2 F . We also set �1 = i and �2 = e2�i=3 and putT̂j = Cz=�1;�j ; j = 1; 2. Our result on ℄Holdis(R; T̂ ) isTheorem 1.



ON HOLOMORPHIC SECTIONS OF A CERTAIN KODAIRA SURFACE REVISITED 5(i) If T̂ is not biholomorphi
ally equivalent to either T̂1 or T̂2, then ℄Holdis(R; T̂ ) = 4.(ii) If T̂ is biholomorphi
ally equivalent to either T̂1 or T̂2, then ℄Holdis(R; T̂ ) = 12.Consequently the number ℄S 
an be estimated as follows:Theorem 2.(i) If T̂ is not biholomorphi
ally equivalent to either T̂1 or T̂2, then ℄S = 2; 4; : : : ; 8,or 10.(ii) If hatT is biholomorphi
ally equivalent to either T̂1 or T̂2, then ℄S = 2; 4; : : : ; 24,or 26. 1. lo
al monodromyAs explained in the previous se
tion, the next 
laim is 
ru
ial for g = � Æ s : R ! T̂to be able to extend to a holomorphi
 mapping ĝ : R̂! T̂ :Proposition 3 (p13, Claim 1 in [2℄). At any pun
ture p 2 �̂�1(0) of R, the lo
al mon-odromy Mp around p is of in�nite order.We believe that our proof in [2℄ should be true, but we didn't give a proof that theMp is the twi
e produ
t of a Dehn twist. Here we show a simple and 
lear proof for this
laim: The idea is due to Hideki Miya
hi.Proof. We assume that p = 0R; the same argument works for the rest 
ases. Chooser 2 R 
losed to 0R. Then we 
an take a 
ut C from 0 to �(r) in T as a short segment(with respe
t to the Eu
lidean metri
 on T̂ ). Draw an annulus A on T̂ su
h that thebounded 
omponent of T̂ n A 
ontains the 
ut C. Sin
e C is short, our annulus A mayhave a big modulus m(A). Consider the bran
hed double 
overing �r : Sr ! T̂ and theinverse image of A under �r. It 
onsists of disjoint two annuli A1 and A2 of Sr homotopi
to ea
h other and their moduli satisfym(A1) = m(A2) = m(A);sin
e the modulus is a 
onformal invariant.Let ~A be an annulus of Sr homotopi
 to A1 and A2 and 
ontains them. Then themodulus inequality tells us thatm(A1) +m(A2) � m( ~A):PSfrag repla
ements T̂ A�(r) �r Sr
A1 A2

~A



6 Y. IMAYOSHI, Y. KOMORI, AND T. NOGITherefore if r 
onverses to 0R, we may assume thatm(A)!1, whi
h impliesm( ~A)!1, so that the extremal length of ~A goes to 0. Now Maskit's 
omparison theorem (p.383,Corollary 2 in [3℄) guarantees that the hyperboli
 length of the simple 
losed geodesi
of Sr homotopi
 to ~A also goes to 0, whi
h implies that Sr diverges to the boundary ofthe Tei
hm�uller spa
e when r ! 0R. Hen
e Mp must be of in�nite order; otherwise Sr
onverges to the point in the Tei
hm�uller spa
e when r ! 0R (p.285, Theorem 2 in [1℄).� 2. Holdis(R; T̂ )In this se
tion we will determine all elements of Holdis(R; T̂ ). We re
all that Holdis(R; T̂ )is the set of all holomorphi
 mappings g : R! T̂ whi
h extend to the mappings ĝ : R̂! T̂and satisfy �g \�0 = ; and �g\�� = ; in R� T̂ . From the de�nition of Holdis(R; T̂ ), ev-ery element g of Holdis(R; T̂ ) has a holomorphi
 extension ĝ : R̂! T̂ whi
h is a 
overingmapping of degree less than or equal to 4 sin
e ℄�̂�1(0) = 4. Hen
e a lift ~g : Cz ! Cwof ĝ is an aÆne mapping ~g(z) = Az +B;where A is uniquely determined by g, while B is determined modulo A � �2;2� + �1;� .Now we may assume that A 6= 1 (Lemma 3.1 in [2℄). Moreover ~g 
an be written as~g(z) = A(z + !) where ! = 0; 1; � and 1 + � (Lemma 3.2 in [2℄).Next we determine A. To do this, we may assume ~g(z) = Az. Sin
e ~g(�2;2� ) � �1;� ,we have 2A = p+ q�; (3)2A� = u+ v�; (4)for some p; q; u; v 2 Z. The Eu
lidean areas of R̂ and T̂ , and deg(ĝ) � 4 implies that1 � pv � qu � 4 (5)and j2Aj = jp+ q� j � 2: (6)By (3) and (4), we get the quadrati
 equation of � :q�2 + (p� v)� � u = 0: (7)Sin
e Im(�) > 0 implies that the dis
riminant is negative, we have(p+ v)2 < 4(pv � qu): (8)The root � of (7) with Im(�) > 0 is given by� = 8>><>>:v � p+p4(pv � qu)� (p+ v)2 i2q ; if q > 0;v � p�p4(pv � qu)� (p+ v)2 i2q ; if q < 0: (9)By (5) and (8), we have jp+ vj < 4 (10)



ON HOLOMORPHIC SECTIONS OF A CERTAIN KODAIRA SURFACE REVISITED 7To determine A, we will �nd four integers p; q; u and v whi
h satisfy the 
onditions(5), (6) and (10).Lemma 1. q = 0;�1, or �2.Proof. Suppose jqj � 3. We take the point �0 = e2�i=3 in F whose imaginary part isthe least in F . Then the imaginary part of the number 3�0 satis�esIm(3�0) = 3p32 > 2:Hen
e for any integers p and q, we havejp+ q� j � jIm(q�)j� Im(3�)� Im(3�0)> 2This 
ontradi
ts the 
ondition (6) �Hen
e we may 
onsider the 
ases jqj � 2.Lemma 2. (i) If q = 0, then p = �1;�2.(ii) If q = �1, then jpj � 2.(iii) If q = �2, then jpj � 2.Proof. If q is equal to 0, then the relation 0 < jp + q� j � 2 shows (i). By the sameargument as in the proof of Lemma 1, we have (ii) and (iii). �By (5) and (10), both u and v are determined. Hen
e we have four integers p; q; u andv su
h that they satisfy the 
onditions (5), (6) and (10).Next, �nding quadruplets (p; q; u; v) in these p; q; u; v su
h that � represented in (9) isan element of F , we have the 
omplete list of su
h a p; q; u; v; � and the �xed point of ~g,in the following Table 1 and 2.In these Tables, when some lift ~g has a �xed point whi
h is not 
ontained in �1;� , wesee that �g interse
ts ��, a 
ontradi
tion.Next when (p; q; u; v) = (1;�1; 1; 2); (1;�1; 2; 2); (2; 1;�1; 1); (2; 1;�2; 1), we see that�g interse
ts �0, a 
ontradi
tion. Finally when (p; q; u; v) = (2; 0; 0; 2), ~g is a lift of �, a
ontradi
tion.Hen
e for every � 2 F , we see that (p; q; u; v) = (1; 0; 0; 1) satis�es (5), (6) and (10).In this 
ase A is equal to 1=2, and ~g(z) 
an be written as~g(z) = 12(z + !);where ! = 0; 1; � and 1 + � . Thus any � 2 F with � 6= i and � 6= e2�i=3, we have℄Holdis(R; T̂ ) = 4:Moreover, if � is equal to i or e2�=3, we have other 
hoi
es of ~g(z) as~g(z) = 1� i2 (z + !); 1 + i2 (z + !);



8 Y. IMAYOSHI, Y. KOMORI, AND T. NOGIor ~g(z) = 1�p3i2 (z + !); 1 +p3i2 (z + !):Hen
e ℄Holdis(R; T̂ ) = 3� 4 = 12:Thus we have proved Theorem 1.The authors wish to thank Professor Yoshihiro Ohnita for his en
ouragement. Manythanks are also due to Professor Hideki Miya
hi for his valuable suggestions about thelo
al monodromy. Finally the authors would like to express their gratitude to referee forvaluable suggestions on the improvement of the paper.3. appendixIn the referee report, the referee suggested us an algebrai
-geometri
 
onstru
tionof the holomorphi
 family � M ! R appeared in this paper, and he (or she) kindlypermitted us to show his (or her) 
onstru
tion in the appendix, hen
e the following ideais basi
ally due to the referee.Let g! : R̂! T̂ be the map indu
ed by the aÆne map between the universal 
overingsof R̂ and T̂ de�ned by w = 12 (z+!) where ! = 0; 1; � and 1+� . We 
onsider the produ
tof Riemann surfa
es R̂� T̂ and denote the graphs of maps 0; � and g! (! = 0; 1; �; 1+ �)from R̂ to T̂ by �0;�� and �g! (! = 0; 1; �; 1 + �) respe
tively. We remark that �0 and�� interse
t transversely at four points p! := ([!℄; [0℄) 2 R̂� T̂ (! = 0; 1; �; 1+�). De�neF! := P�1R̂ ([!℄) where PR̂ is the proje
tion map form R̂� T̂ to R̂. Then divisors �0+��is linearly equivalent to 2�g! + 2F!�0 + �� � 2�g! + 2F!;be
ause the meromorphi
 fun
tion f!(z; w) on R̂� T̂ de�ned byf!(z; w) := P �w � 12(z + !)��P �12(z + !)� (! = 0; 1; �; 1 + �)has simple zeros at �0+�� and double poles at �g! +F! respe
tively, where P(z) is theWeierstrass P-fun
tion:P(z) = 1z2 + X!2Z+Z��f0g� 1(z � !)2 � 1!2� :Let � : � ! R̂ � T̂ be the blow-up of R̂ � T̂ at four points p! and E! := ��1(p!) beex
eptional divisors (! = 0; 1; �; 1+ �). We also denote the proper transforms of divisors�0;��;�g! and F! by ~�0; ~��; ~�g! and ~F! respe
tively. Now ~�0 and ~�� are disjoint on �.Considering the meromorphi
 fun
tion f0 Æ � on � for simpli
ity, we have~�0 + ~�� � 2(~�g0 + ~F0 +E0 �X! 6=0E!):



ON HOLOMORPHIC SECTIONS OF A CERTAIN KODAIRA SURFACE REVISITED 9p q u v � �xed point0 1 �1 0 i (4 + 2i)=50 1 �2 0 p2i (2 +p2i)=30 1 �3 0 p3i (2 +p3i)=70 1 �4 0 2i (1 + i)=20 1 �1 �1 e2�i=3 (5 +p3i)=70 1 �2 �1 (�1 +p7i)=2 (5 +p7i)=80 1 �3 �1 (�1 +p11i)=2 (5 +p11i)=90 1 �4 �1 (�1 +p15i)=2 (5 +p15i)=100 �1 1 0 i 2(1 + 2i)=50 �1 2 0 p2i 2(1 +p2i)=30 �1 3 0 p3i 2(3 + 2p3i)=70 �1 4 0 2i (1 +p3i)=20 �1 1 1 e2�i=3 (3�p3i)=30 �1 2 1 (�1 +p7i)=2 (5 +p7i)=40 �1 3 1 (�1 +p11i)=2 (3�p11i)=50 �1 4 1 (�1 +p15i)=2 (3�p15i)=60 2 �2 0 i (1 + i)=20 2 �2 �1 (�1 +p15i)=4 (5 +p15i)=100 2 �2 �2 e2�i=3 p3i=30 �2 2 0 i (1 + i)=20 �2 2 1 (�1 +p15i)=4 (3�p15i)=60 �2 2 2 e2�i=3 latti
e point1 0 0 1 any latti
e point1 1 �1 0 e2�i=3 (3 +p3i)=31 1 �2 0 (�1 +p7i)=2 (3 +p7i)=41 1 �3 0 (�1 +p11i)=2 (5 +p11i)=51 1 �4 0 (�1 +p15i)=2 (3 +p15i)=61 1 �1 1 i latti
e point1 1 �2 1 p2i (1 +p2i)=31 1 �3 1 p3i (1 +p3i)=21 �1 1 1 i latti
e point1 �1 2 1 p2i 2(1�p2i)=31 �1 3 1 p3i (1�p3i)=21 �1 1 2 e2�i=3 latti
e point1 �1 2 2 (�1 +p7i)=2 latti
e point1 2 �2 �1 e2�i=3 2(2 +p3i)=71 2 �2 0 (�1 +p15i)=4 (3 +p15i)=6Table 1. p = 0; 1



10 Y. IMAYOSHI, Y. KOMORI, AND T. NOGIp q u v � �xed point�1 0 0 �1 any 2(1 + �)=3�1 1 �1 �2 e2�i=3 (7 +p3i)=13�1 1 �2 �2 (�1 +p7i)=2 (7 +p7i)=14�1 1 �1 �1 i (3 + i)=5�1 1 �2 �1 p2i 2(3 +p2i)=11�1 1 �3 �1 p3i (3 +p3i)=6�1 �1 1 �1 i 2(2 + i)=5�1 �1 2 �1 p2i 2(2 + 3p2i)=11�1 �1 3 �1 p3i (1 +p3i)=2�1 �1 1 0 e2�i=3 (5�p3i)=7�1 �1 2 0 (�1 +p7i)=2 (5�p7i)=8�1 �1 3 0 (�1 +p11i)=2 (5�p11i)=9�1 �1 4 0 (�1 +p15i)=2 (5�p15i)=10�1 �2 2 0 (�1 +p15i)=4 (5�p15i)=10�1 �2 2 1 e2�i=3 2(2�p3i)=72 0 0 2 any latti
e point2 1 �1 1 e2�i=3 latti
e point2 1 �2 1 (�1 +p7i)=2 latti
e point2 2 �2 0 e2�i=3 latti
e point�2 0 0 �2 any 1=2�2 �1 1 �1 e2�i=3 (7�p3i)=13�2 �1 2 �1 (�1 +p7i)=2 (7�p7i)=14�2 �2 2 0 e2�i=3 (3 +p3i)=6Table 2. p = �1;�2Hen
e the line bundle O(~�g0 + ~F0 +E0 �P! 6=0E!) is a square root of the line bundleO(~�0 + ~��) :O(~�g0 + ~F0 +E0 �X! 6=0E!)! O(~�g0 + ~F0 +E0 �X! 6=0E!)
2 �= O(~�0 + ~��):We denote this map by � : O(~�g0 + ~F0 + E0 �P! 6=0E!) ! O(~�0 + ~��), and thebundle map from O(~�0 + ~��) to � by q : O(~�0 + ~��) ! �: By means of f0 Æ �, wehave a holomorphi
 se
tion s : � ! O(~�0 + ~��) whose zero lo
us is ~�0 + ~��. Then~M := ��1(s(�)) is a 
omplex surfa
e in O(~�g0 + ~F0+E0�P! 6=0E!) and q Æ� : ~M ! �is a double bran
hed 
overing of � bran
hed at ~�0 + ~��. Finally�̂ := PR̂ Æ � Æ q Æ � : ~M ! R̂is a degenerate family of Riemann surfa
es of genus two over R̂.
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In pra
ti
e ex
ept [!℄ (! = 0; 1; �; 1 + �), �̂�1([z℄) is a genus two surfa
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ting our degenerate family �̂ ~M ! R̂ to R, we havea holomorphi
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