
ON HOLOMORPHIC SECTIONS OF A CERTAIN KODAIRASURFACE REVISITEDYOICHI IMAYOSHI, YOHEI KOMORI, AND TOSHIHIRO NOGIAbstrat. In [2℄, we analysed the number of holomorphi setions of the holomor-phi family of genus two surfaes whose omplex struture was originally studied byRiera [4℄. Our aim was to give a preise estimation of the number of holomorphisetions, whose �niteness was already known as the Mordell onjeture in funtion�elds ase. In this note we review the present status of our results and disuss morearefully than in [2℄. We give a simple proof about the order of a loal monodromyaround a punture, whih is ruial for our setions to be extended at the punture.In this paper, we review our results in [2℄.We start with a de�nition of holomorphi families of losed Riemann surfaes. Let Mbe a two-dimensional omplex manifold and R be a Riemann surfae. We assume that aproper holomorphi mapping � :M ! R satis�es the following two onditions:(i) The Jaobian matrix of � has rank one at every point of M .(ii) The �ber Sr = ��1(r) over eah point r of R is a losed Riemann surfae ofgenus g0.We all suh a triple (M;�;R) a holomorphi family of losed Riemann surfaes of genusg0 over R.A holomorphi mapping s : R!M is said to be a holomorphi setion of (M;�;R) if� Æ s is the identity mapping on R.Let S be the set of all holomorphi setions of (M;�;R). Denote by ℄S the numberof all elements of S.In [2℄, we onstruted a ertain Kodaira surfae whose �bers are branhed over a �xedat torus. We explain briey its onstrution as follows.Take a point � in the upper half-plane H. Let �1;� be the disrete subgroup ofAut(Cw) generated by w 7! w+1; w 7! w+� . Let �1 : Cw ! Cw=�1;� be the anonialprojetion. We denote the pair (Cw=�1;� ; �1(0)) by (T̂ ; 0) and set T = T̂ n f0g.For any point t 2 T , we ut T̂ along a simple ar from 0 to t. Next we take tworeplias of the torus T̂ with the ut and all them sheet I and sheet II. The ut on eahsheet has two sides, whih are labeled + side and � side. We attah the + side of theut on I to the � side of the ut on II, and attah the � side of the ut on I to the +side of the ut on II. Now we obtain a losed Riemann surfae St of genus two, whih isthe two-sheeted branhed overing surfae St ! T̂ branhed over 0 and t.1991 Mathematis Subjet Classi�ation. 30F10, 32G15, 32H02, 55R05.Key words and phrases. Riemann surfae of genus two, holomorphi family, holomorphi setion.1



2 Y. IMAYOSHI, Y. KOMORI, AND T. NOGINote that the omplex struture on St depends not only on the point t but also onthe ut lous from 0 to t. Essentially there are four uts as in Figure 1 whih determinedi�erent omplex strutures on St. This is an obstrution to onstrut a holomorphifamily whose �bers are St over T .PSfrag replaements 0t C1 C2 C3 C4Figure 1. Four uts on T̂To solve this problem, let �2;2� be the disrete subgroup of Aut(Cz) generated byz 7! z + 2; z 7! z + 2� . Let �2 : Cz ! Cz=�2;2� be the anonial projetion and denotethe pair (Cz=�2;2� ; �2(0)) by (R̂; 0).De�ne ~� : Cz ! Cw by ~�(z) = z. Then ~� indues a (Z=2Z)2-unbranhed overing�̂ : R̂! T̂ whih orresponds to1 �! �1(R̂) �! �1(T̂ ) �! (Z=2Z)2 �! 1:Set R = R̂ n �̂�1(0) and � = �̂jR.Proposition 1. Choose an element of �̂�1(0) and denote it by 0R (we remark that thereare four elements in �̂�1(0)). For any r 2 R, let Cr be a simple ar from r to 0R in Rwhose image �(Cr) in T beomes a ut from 0 to �(r). Then the omplex struture ofthe genus two surfae Sr whih is obtained by means of the ut �(Cr) of T̂ , is uniquelydetermined by r 2 R, not depending on the hoie of Cr.Proof. First of all, the two-sheeted branhed overing surfae St ! T̂ de�ned bya ut from 0 to t in T̂ orresponds to the index two subgroup of �1(T̂ � f0; tg) withfree generators a; b; " where " is a yle around 0 (p300, [4℄). Hene the parities of theintersetion numbers of the ut with a and b respetively distinguishes the index twosubgroup of �1(T̂ � f0; tg) orresponding to the two-sheeted branhed overing surfaeSt ! T̂ .Let Cr and C 0r be simple ars from r to 0R in R. Then the omposition C 0r � C�1r isa losed loop from 0R to itself in R̂ and its image �(C 0r � C�1r ) is a losed loop from 0to itself in T̂ , homologous to ma+ nb where m;n are even numbers. Therefore two uts�(Cr) and �(C 0r) interset with a and b with the same parity, whih implies these twouts indue the isomorphi two-sheeted branhed overing surfaes S�(r) ! T̂ . �Hene after the hoie of 0R 2 �̂�1(0), M = tr2RSr ! R is well de�ned as a familyof Riemann surfaes.Following the idea of Riera in [4℄, we introdued a omplex struture on M in [2℄ suhthat the two-sheeted branhed overing � : M ! R � T̂ de�ned by (r; q) 7! (r; �r(q)) isa holomorphi mapping branhed over two graphs �0 of 0 and �� of � in R � T̂ , where



ON HOLOMORPHIC SECTIONS OF A CERTAIN KODAIRA SURFACE REVISITED 3�r is a two-branhed overing from Sr to T̂ and�0 = f(r; 0) j r 2 Rg � R � T̂ ;�� = f(r; �(r)) j r 2 Rg � R� T̂ :We de�ne � by the omposition PR Æ� of � and the �rst projetion PR : R� T̂ ! R,and we de�ne � by PT̂ Æ �, where PT̂ : R � T̂ ! T̂ is the seond projetion. As aonsequene, we have the following diagram in Figure 2.
PSfrag replaements

MR� T̂R T̂??y �! �� �PR PT̂�
Figure 2Thus the triple (M;�;R) is a holomorphi family of losed Riemann surfaes of genustwo. For any point r 2 R, the �ber Sr = ��1(r) is a two-sheeted branhed overingsurfae of T̂ �= frg � T̂ in R � T̂ branhed at (r; 0) and (r; �(r)).Here we should remark that this is a unique omplex struture for � :M ! R.Proposition 2. There is at most one omplex struture on M = tr2RSr whih makesM ! R a holomorphi family of genus two surfaes over R.Proof. Suppose that there are two omplex strutures on M = tr2RSr. Then theyindue the holomorphi mappings fi : H! T2 (i = 1; 2) from the universal overing ofR to the Teihm�uller spae of genus two surfaes. They satisfy the equality �2Æf1 = �2Æf2where �2 : T2 !M2 is the anonial projetion from the Teihm�uller spae to the modulispae. From this equality, for any p 2 H there exists an element p of the mapping lassgroupMod2 of genus two surfaes suh that f2(p) = p(f1(p)). SineMod2 is a ountablegroup, there exists  2Mod2 so that U := fp 2 H j p = g has aumulation points inH. Therefore f2 =  Æ f1 on U implies f2 =  Æ f1 on H by the identity theorem. �Our aim is to estimate the number ℄S of all holomorphi setions of (M;�;R). Everysetion s of S indues a holomorphi mapping from R to T̂ de�ned by the omposition� Æ s. Let Hol(R; T̂ ) be the set of all holomorphi mappings from R to T̂ . Thus we havethe anonial mapping � : S ! Hol(R; T̂ ):s 7! � Æ sIf �(s1) = �(s2) holds for s1; s2 2 S, then s1 = jr Æ s2, where jr : Sr ! Sr is theholomorphi involution with two �xed points and satis�es �r Æ jr = �r. Thus � is 2 to1 exept for the trivial setions s0 and s� de�ned by s0(r) = (r; 0) and s�(r) = (r; �(r)),respetively. So that we have the equality℄S = 2℄�(S) � 2: (1)



4 Y. IMAYOSHI, Y. KOMORI, AND T. NOGINow the estimation of ℄S redues to that of ℄�(S).Next we onsider the set of all non-onstant holomorphi mappings from R to T̂ anddenote it by Holn::(R; T̂ ). Then we showed that (Proposition 3.1 in [2℄)�(S) n f0g � Holn::(R; T̂ ):The key idea of our proof is that if g = � Æ s 2 �(S) is a non-zero onstant mapping thenthe graph �g of g and �� must interset transversely. Then around an intersetion pointof �g and ��, the setion s is not univalent, a ontradition. But ℄Holn::(R; T̂ ) is stillin�nite, our next purpose is to �nd a �nite subset of Holn::(R; T̂ ) whih ontains �(S).For this purpose, we studied the possibility for g = � Æ s : R ! T̂ to extend to aholomorphi mapping ĝ : R̂ ! T̂ . Sine ĝ beomes a overing mapping by means ofRiemann-Hurwitz formula, the indued mapping ~g : Cz ! Cw is an aÆne mapping,whih is easy to be handled. The proof onsists of two steps (Theorem 3.1 in [2℄):The �rst step is to show that the setion s : R!M an be extended to a holomorphisetion ŝ : R̂ ! M̂ where M̂ ! R̂ is the degenerate family whih is a ompletion of theholomorphi family M ! R. To do this, we need to show that the loal monodromyaround a punture of R is of in�nite order to apply the �rst author's result (Theorem3.2 in [2℄). In the next setion, we will give a simple proof of in�nite order of the loalmonodromy due to Hideki Miyahi.The seond step is to show that g : R! T̂ an be extended to a holomorphi mappingĝ : R̂ ! T̂ . From the result of the �rst step, we an prove that g�1(0) is a �nite set.Then g : R n g�1(0) ! T̂ n f0g is a holomorphi mapping between hyperboli Riemannsurfaes, hene g an be extended to ĝ : R̂ ! T̂ by Royden's theorem (Theorem 3.3 in[2℄).Now we know that ĝ : R̂! T̂ is a overing mapping whose lift ~g : Cz ! Cw of ĝ is anaÆne mapping. Then we ould prove that the graph �g intersets with neither �� nor�0 in R� T̂ (Proposition 3.2 in [2℄). Hene we showed�(S) � Holdis(R; T̂ ) [ f0; �g;where Holdis(R; T̂ ) is the set of all holomorphi mappings g : R ! T̂ whih extend tothe mappings ĝ : R̂! T̂ and satisfy �g \ �0 = ; and �g \ �� = ; in R� T̂ . FortunatelyHoldis(R; T̂ ) beomes a �nite set and we had the main inequality:2 = ℄fs0; s�g � ℄�(S) � ℄Holdis(R; T̂ ) + 2: (2)We determine Holdis(R; T̂ ) expliitly. In pratie we ount the lift ~g of ĝ. In the lastsetion we will explain the algorithm to ount all elements of Holdis(R; T̂ ).Here we restate our main results of [2℄. First we �x a fundamental domain of SL(2;Z)ating on H as the domain F of H de�ned by the following onditions : (i) �1=2 �Re(�) < 1=2, (ii) j� j � 1, (iii) Re(�) � 0 if j� j = 1. Any at torus is biholomorphiallyequivalent to C=�1;� for some � 2 F . We also set �1 = i and �2 = e2�i=3 and putT̂j = Cz=�1;�j ; j = 1; 2. Our result on ℄Holdis(R; T̂ ) isTheorem 1.



ON HOLOMORPHIC SECTIONS OF A CERTAIN KODAIRA SURFACE REVISITED 5(i) If T̂ is not biholomorphially equivalent to either T̂1 or T̂2, then ℄Holdis(R; T̂ ) = 4.(ii) If T̂ is biholomorphially equivalent to either T̂1 or T̂2, then ℄Holdis(R; T̂ ) = 12.Consequently the number ℄S an be estimated as follows:Theorem 2.(i) If T̂ is not biholomorphially equivalent to either T̂1 or T̂2, then ℄S = 2; 4; : : : ; 8,or 10.(ii) If hatT is biholomorphially equivalent to either T̂1 or T̂2, then ℄S = 2; 4; : : : ; 24,or 26. 1. loal monodromyAs explained in the previous setion, the next laim is ruial for g = � Æ s : R ! T̂to be able to extend to a holomorphi mapping ĝ : R̂! T̂ :Proposition 3 (p13, Claim 1 in [2℄). At any punture p 2 �̂�1(0) of R, the loal mon-odromy Mp around p is of in�nite order.We believe that our proof in [2℄ should be true, but we didn't give a proof that theMp is the twie produt of a Dehn twist. Here we show a simple and lear proof for thislaim: The idea is due to Hideki Miyahi.Proof. We assume that p = 0R; the same argument works for the rest ases. Chooser 2 R losed to 0R. Then we an take a ut C from 0 to �(r) in T as a short segment(with respet to the Eulidean metri on T̂ ). Draw an annulus A on T̂ suh that thebounded omponent of T̂ n A ontains the ut C. Sine C is short, our annulus A mayhave a big modulus m(A). Consider the branhed double overing �r : Sr ! T̂ and theinverse image of A under �r. It onsists of disjoint two annuli A1 and A2 of Sr homotopito eah other and their moduli satisfym(A1) = m(A2) = m(A);sine the modulus is a onformal invariant.Let ~A be an annulus of Sr homotopi to A1 and A2 and ontains them. Then themodulus inequality tells us thatm(A1) +m(A2) � m( ~A):PSfrag replaements T̂ A�(r) �r Sr
A1 A2

~A



6 Y. IMAYOSHI, Y. KOMORI, AND T. NOGITherefore if r onverses to 0R, we may assume thatm(A)!1, whih impliesm( ~A)!1, so that the extremal length of ~A goes to 0. Now Maskit's omparison theorem (p.383,Corollary 2 in [3℄) guarantees that the hyperboli length of the simple losed geodesiof Sr homotopi to ~A also goes to 0, whih implies that Sr diverges to the boundary ofthe Teihm�uller spae when r ! 0R. Hene Mp must be of in�nite order; otherwise Sronverges to the point in the Teihm�uller spae when r ! 0R (p.285, Theorem 2 in [1℄).� 2. Holdis(R; T̂ )In this setion we will determine all elements of Holdis(R; T̂ ). We reall that Holdis(R; T̂ )is the set of all holomorphi mappings g : R! T̂ whih extend to the mappings ĝ : R̂! T̂and satisfy �g \�0 = ; and �g\�� = ; in R� T̂ . From the de�nition of Holdis(R; T̂ ), ev-ery element g of Holdis(R; T̂ ) has a holomorphi extension ĝ : R̂! T̂ whih is a overingmapping of degree less than or equal to 4 sine ℄�̂�1(0) = 4. Hene a lift ~g : Cz ! Cwof ĝ is an aÆne mapping ~g(z) = Az +B;where A is uniquely determined by g, while B is determined modulo A � �2;2� + �1;� .Now we may assume that A 6= 1 (Lemma 3.1 in [2℄). Moreover ~g an be written as~g(z) = A(z + !) where ! = 0; 1; � and 1 + � (Lemma 3.2 in [2℄).Next we determine A. To do this, we may assume ~g(z) = Az. Sine ~g(�2;2� ) � �1;� ,we have 2A = p+ q�; (3)2A� = u+ v�; (4)for some p; q; u; v 2 Z. The Eulidean areas of R̂ and T̂ , and deg(ĝ) � 4 implies that1 � pv � qu � 4 (5)and j2Aj = jp+ q� j � 2: (6)By (3) and (4), we get the quadrati equation of � :q�2 + (p� v)� � u = 0: (7)Sine Im(�) > 0 implies that the disriminant is negative, we have(p+ v)2 < 4(pv � qu): (8)The root � of (7) with Im(�) > 0 is given by� = 8>><>>:v � p+p4(pv � qu)� (p+ v)2 i2q ; if q > 0;v � p�p4(pv � qu)� (p+ v)2 i2q ; if q < 0: (9)By (5) and (8), we have jp+ vj < 4 (10)



ON HOLOMORPHIC SECTIONS OF A CERTAIN KODAIRA SURFACE REVISITED 7To determine A, we will �nd four integers p; q; u and v whih satisfy the onditions(5), (6) and (10).Lemma 1. q = 0;�1, or �2.Proof. Suppose jqj � 3. We take the point �0 = e2�i=3 in F whose imaginary part isthe least in F . Then the imaginary part of the number 3�0 satis�esIm(3�0) = 3p32 > 2:Hene for any integers p and q, we havejp+ q� j � jIm(q�)j� Im(3�)� Im(3�0)> 2This ontradits the ondition (6) �Hene we may onsider the ases jqj � 2.Lemma 2. (i) If q = 0, then p = �1;�2.(ii) If q = �1, then jpj � 2.(iii) If q = �2, then jpj � 2.Proof. If q is equal to 0, then the relation 0 < jp + q� j � 2 shows (i). By the sameargument as in the proof of Lemma 1, we have (ii) and (iii). �By (5) and (10), both u and v are determined. Hene we have four integers p; q; u andv suh that they satisfy the onditions (5), (6) and (10).Next, �nding quadruplets (p; q; u; v) in these p; q; u; v suh that � represented in (9) isan element of F , we have the omplete list of suh a p; q; u; v; � and the �xed point of ~g,in the following Table 1 and 2.In these Tables, when some lift ~g has a �xed point whih is not ontained in �1;� , wesee that �g intersets ��, a ontradition.Next when (p; q; u; v) = (1;�1; 1; 2); (1;�1; 2; 2); (2; 1;�1; 1); (2; 1;�2; 1), we see that�g intersets �0, a ontradition. Finally when (p; q; u; v) = (2; 0; 0; 2), ~g is a lift of �, aontradition.Hene for every � 2 F , we see that (p; q; u; v) = (1; 0; 0; 1) satis�es (5), (6) and (10).In this ase A is equal to 1=2, and ~g(z) an be written as~g(z) = 12(z + !);where ! = 0; 1; � and 1 + � . Thus any � 2 F with � 6= i and � 6= e2�i=3, we have℄Holdis(R; T̂ ) = 4:Moreover, if � is equal to i or e2�=3, we have other hoies of ~g(z) as~g(z) = 1� i2 (z + !); 1 + i2 (z + !);



8 Y. IMAYOSHI, Y. KOMORI, AND T. NOGIor ~g(z) = 1�p3i2 (z + !); 1 +p3i2 (z + !):Hene ℄Holdis(R; T̂ ) = 3� 4 = 12:Thus we have proved Theorem 1.The authors wish to thank Professor Yoshihiro Ohnita for his enouragement. Manythanks are also due to Professor Hideki Miyahi for his valuable suggestions about theloal monodromy. Finally the authors would like to express their gratitude to referee forvaluable suggestions on the improvement of the paper.3. appendixIn the referee report, the referee suggested us an algebrai-geometri onstrutionof the holomorphi family � M ! R appeared in this paper, and he (or she) kindlypermitted us to show his (or her) onstrution in the appendix, hene the following ideais basially due to the referee.Let g! : R̂! T̂ be the map indued by the aÆne map between the universal overingsof R̂ and T̂ de�ned by w = 12 (z+!) where ! = 0; 1; � and 1+� . We onsider the produtof Riemann surfaes R̂� T̂ and denote the graphs of maps 0; � and g! (! = 0; 1; �; 1+ �)from R̂ to T̂ by �0;�� and �g! (! = 0; 1; �; 1 + �) respetively. We remark that �0 and�� interset transversely at four points p! := ([!℄; [0℄) 2 R̂� T̂ (! = 0; 1; �; 1+�). De�neF! := P�1R̂ ([!℄) where PR̂ is the projetion map form R̂� T̂ to R̂. Then divisors �0+��is linearly equivalent to 2�g! + 2F!�0 + �� � 2�g! + 2F!;beause the meromorphi funtion f!(z; w) on R̂� T̂ de�ned byf!(z; w) := P �w � 12(z + !)��P �12(z + !)� (! = 0; 1; �; 1 + �)has simple zeros at �0+�� and double poles at �g! +F! respetively, where P(z) is theWeierstrass P-funtion:P(z) = 1z2 + X!2Z+Z��f0g� 1(z � !)2 � 1!2� :Let � : � ! R̂ � T̂ be the blow-up of R̂ � T̂ at four points p! and E! := ��1(p!) beexeptional divisors (! = 0; 1; �; 1+ �). We also denote the proper transforms of divisors�0;��;�g! and F! by ~�0; ~��; ~�g! and ~F! respetively. Now ~�0 and ~�� are disjoint on �.Considering the meromorphi funtion f0 Æ � on � for simpliity, we have~�0 + ~�� � 2(~�g0 + ~F0 +E0 �X! 6=0E!):



ON HOLOMORPHIC SECTIONS OF A CERTAIN KODAIRA SURFACE REVISITED 9p q u v � �xed point0 1 �1 0 i (4 + 2i)=50 1 �2 0 p2i (2 +p2i)=30 1 �3 0 p3i (2 +p3i)=70 1 �4 0 2i (1 + i)=20 1 �1 �1 e2�i=3 (5 +p3i)=70 1 �2 �1 (�1 +p7i)=2 (5 +p7i)=80 1 �3 �1 (�1 +p11i)=2 (5 +p11i)=90 1 �4 �1 (�1 +p15i)=2 (5 +p15i)=100 �1 1 0 i 2(1 + 2i)=50 �1 2 0 p2i 2(1 +p2i)=30 �1 3 0 p3i 2(3 + 2p3i)=70 �1 4 0 2i (1 +p3i)=20 �1 1 1 e2�i=3 (3�p3i)=30 �1 2 1 (�1 +p7i)=2 (5 +p7i)=40 �1 3 1 (�1 +p11i)=2 (3�p11i)=50 �1 4 1 (�1 +p15i)=2 (3�p15i)=60 2 �2 0 i (1 + i)=20 2 �2 �1 (�1 +p15i)=4 (5 +p15i)=100 2 �2 �2 e2�i=3 p3i=30 �2 2 0 i (1 + i)=20 �2 2 1 (�1 +p15i)=4 (3�p15i)=60 �2 2 2 e2�i=3 lattie point1 0 0 1 any lattie point1 1 �1 0 e2�i=3 (3 +p3i)=31 1 �2 0 (�1 +p7i)=2 (3 +p7i)=41 1 �3 0 (�1 +p11i)=2 (5 +p11i)=51 1 �4 0 (�1 +p15i)=2 (3 +p15i)=61 1 �1 1 i lattie point1 1 �2 1 p2i (1 +p2i)=31 1 �3 1 p3i (1 +p3i)=21 �1 1 1 i lattie point1 �1 2 1 p2i 2(1�p2i)=31 �1 3 1 p3i (1�p3i)=21 �1 1 2 e2�i=3 lattie point1 �1 2 2 (�1 +p7i)=2 lattie point1 2 �2 �1 e2�i=3 2(2 +p3i)=71 2 �2 0 (�1 +p15i)=4 (3 +p15i)=6Table 1. p = 0; 1



10 Y. IMAYOSHI, Y. KOMORI, AND T. NOGIp q u v � �xed point�1 0 0 �1 any 2(1 + �)=3�1 1 �1 �2 e2�i=3 (7 +p3i)=13�1 1 �2 �2 (�1 +p7i)=2 (7 +p7i)=14�1 1 �1 �1 i (3 + i)=5�1 1 �2 �1 p2i 2(3 +p2i)=11�1 1 �3 �1 p3i (3 +p3i)=6�1 �1 1 �1 i 2(2 + i)=5�1 �1 2 �1 p2i 2(2 + 3p2i)=11�1 �1 3 �1 p3i (1 +p3i)=2�1 �1 1 0 e2�i=3 (5�p3i)=7�1 �1 2 0 (�1 +p7i)=2 (5�p7i)=8�1 �1 3 0 (�1 +p11i)=2 (5�p11i)=9�1 �1 4 0 (�1 +p15i)=2 (5�p15i)=10�1 �2 2 0 (�1 +p15i)=4 (5�p15i)=10�1 �2 2 1 e2�i=3 2(2�p3i)=72 0 0 2 any lattie point2 1 �1 1 e2�i=3 lattie point2 1 �2 1 (�1 +p7i)=2 lattie point2 2 �2 0 e2�i=3 lattie point�2 0 0 �2 any 1=2�2 �1 1 �1 e2�i=3 (7�p3i)=13�2 �1 2 �1 (�1 +p7i)=2 (7�p7i)=14�2 �2 2 0 e2�i=3 (3 +p3i)=6Table 2. p = �1;�2Hene the line bundle O(~�g0 + ~F0 +E0 �P! 6=0E!) is a square root of the line bundleO(~�0 + ~��) :O(~�g0 + ~F0 +E0 �X! 6=0E!)! O(~�g0 + ~F0 +E0 �X! 6=0E!)
2 �= O(~�0 + ~��):We denote this map by � : O(~�g0 + ~F0 + E0 �P! 6=0E!) ! O(~�0 + ~��), and thebundle map from O(~�0 + ~��) to � by q : O(~�0 + ~��) ! �: By means of f0 Æ �, wehave a holomorphi setion s : � ! O(~�0 + ~��) whose zero lous is ~�0 + ~��. Then~M := ��1(s(�)) is a omplex surfae in O(~�g0 + ~F0+E0�P! 6=0E!) and q Æ� : ~M ! �is a double branhed overing of � branhed at ~�0 + ~��. Finally�̂ := PR̂ Æ � Æ q Æ � : ~M ! R̂is a degenerate family of Riemann surfaes of genus two over R̂.



ON HOLOMORPHIC SECTIONS OF A CERTAIN KODAIRA SURFACE REVISITED 11PSfrag replaementsO(~�g0 + ~F0 +E0 �P! 6=0E!) � ~MO(~�0 + ~��) � s(�) � �R̂ � T̂R̂PR̂ � q
??y??y

??y ??y�
In pratie exept [!℄ (! = 0; 1; �; 1 + �), �̂�1([z℄) is a genus two surfae whih isa double branhed overing of T̂ branhed at [0℄ and �([z℄). We an also show that�̂�1([!℄) (! = 0; 1; �; 1+ �) are singular �bers; �̂�1([0℄) onsists of two disjoint tori andone rational urve whih intersets two tori transversely, while �̂�1([!℄) (! = 1; �; 1+ �)onsists of one torus and one rational urve whih interset eah other at two pointstransversely (See Figure 3). Restriting our degenerate family �̂ ~M ! R̂ to R, we havea holomorphi family � M ! R appeared in this paper.PSfrag replaementsO(~�g0 + ~F0 +E0 �P! 6=0E!)� ~MO(~�0 + ~��)� s(�) � �R̂� T̂̂RPR̂�q??y� Figure 3Referenes[1℄ Y. Imayoshi, Holomorphi families of Riemann surfaes and Teihm�uller Spaes, in Riemann sur-faes and Related Topis, 1978 Stony Brook Conferene, Ann. Math. Studies, No 97, 277{300, editedby I. Kra and B. Maskit, Prineton University Press, Prineton, New Jersey, 1981.[2℄ Y. Imayoshi, Y. Komori and T. Nogi, Holomorphi setions of a holomorphi family of Riemannsurfaes indued by a ertain Kodaira surfae, to appear in Kodai Math Journal.[3℄ B. Maskit, Comparison of hyperboli and extremal lengths, Ann. Aad. Si. Fenn. Ser. A I Math.10 (1985), 381{386.[4℄ G. Riera, Semi-diret produts of fuhsian groups and uniformization, Duke Math. J. 44 (1977),291{304.[5℄ H. L. Royden, The Piard theorem for Riemann surfaes, Pro. Amer. Math. So. 90 (1984), no.4, 571{574.
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