A Payne-Rayner type inequality for the Robin problem on arbitrary minimal surfaces in \mathbb{R}^{N}

Futoshi Takahashi and Akinobu Uegaki

Abstract

We prove a Payne-Rayner type inequality for the first eigenfunction of the Laplacian with Robin boundary condition on any compact minimal surface with boundary in \mathbb{R}^{N}. We emphasize that no topological condition is necessary on the boundary.

Mathematics Subject Classification (2000). Primary 35P15; Secondary 35J25. Keywords. Robin problem, Payne-Rayner type inequality.

1. Introduction

Let $\Omega \subset \mathbb{R}^{2}$ be a bounded domain with smooth boundary $\partial \Omega$, and let $\lambda_{1}(\Omega)$ and ψ denote the first eigenvalue and the corresponding first eigenfunction, respectively, to the eigenvalue problem

$$
\begin{cases}-\Delta u=\lambda u & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

In [7], Payne and Rayner proved the following inequality

$$
\left(\int_{\Omega} \psi^{2} d x\right) \leq \frac{\lambda_{1}(\Omega)}{4 \pi}\left(\int_{\Omega} \psi d x\right)^{2}
$$

A remarkable point of this inequality is that it gives an exact lower-bound of the first eigenvalue by means of some integral-norms of the first eigenfunction, on one hand, and on the other hand, it also says that the first eigenfunction satisfies a reverse Hölder type inequality. Actually, the L^{2} norm of ψ is bounded by the L^{1} norm of ψ.

In this paper, we extend the above result, known to hold on a flat domain with the Dirichlet boundary condition, to a more general setting. Namely, let Σ be

The first author acknowledges the support by JSPS Grant-in-Aid for Scientific Research (C), No. 20540216.
a compact minimal surface in $\mathbb{R}^{N}(N \geq 3)$ with smooth boundary $\partial \Sigma$. We consider the following eigenvalue problem with the Robin boundary condition:

$$
\begin{cases}-\Delta_{\Sigma} u=\lambda u & \text { in } \Sigma \tag{1.1}\\ \frac{\partial u}{\partial \nu}+\beta u=0 & \text { on } \partial \Sigma\end{cases}
$$

where Δ_{Σ} is the Laplace-Beltrami operator on Σ, β is a positive constant and ν is the outer unit normal to $\partial \Sigma$. Let $\lambda_{1}^{\beta}(\Sigma)$ denote the first eigenvalue of (1.1), given by the variational formula

$$
\lambda_{1}^{\beta}(\Sigma)=\min _{u \in H^{1}(\Sigma)} \frac{\int_{\Sigma}\left|\nabla_{\Sigma} u\right|^{2} d \mathcal{H}^{2}+\beta \int_{\partial \Sigma} u^{2} d \mathcal{H}^{1}}{\int_{\Sigma} u^{2} d \mathcal{H}^{2}}
$$

where ∇_{Σ} is the gradient operator on Σ and \mathcal{H}^{k} denotes the k-dimensional Hausdorff measure in \mathbb{R}^{N}. It is well known that $\lambda_{1}^{\beta}(\Sigma)$ is simple and isolated, and the corresponding eigenfunction ψ_{β} is smooth, positive, and unique up to multiplication by constants. (see, for example, [3]).

Now, let us consider the auxiliary problem

$$
\begin{cases}\Delta_{\Sigma} f=2 & \text { in } \Sigma \tag{1.2}\\ f=0 & \text { on } \partial \Sigma\end{cases}
$$

Our main result is the following Payne-Rayner type inequality.
Theorem 1.1. Let $\lambda_{1}^{\beta}(\Sigma)$ be the first eigenvalue of (1.1) and ψ_{β} be the eigenfunction corresponding to $\lambda_{1}^{\beta}(\Sigma)$. Then
$\int_{\Sigma} \psi_{\beta}^{2} d \mathcal{H}^{2} \leq \frac{\lambda_{1}^{\beta}(\Sigma)}{\sqrt{2} \pi}\left(\int_{\Sigma} \psi_{\beta} d \mathcal{H}^{2}\right)^{2}+\frac{1}{2} \int_{\partial \Sigma} \psi_{\beta}^{2}\left(\frac{\partial f_{\Sigma}}{\partial \nu}\right) d \mathcal{H}^{1}+\frac{1}{\sqrt{2} \pi} \mathcal{H}^{1}(\partial \Sigma)^{2}\left(M^{2}-m_{*}^{2}\right)$
holds, where $M=\max _{\partial \Sigma} \psi_{\beta}, m_{*}=\min _{\Sigma \cup \partial \Sigma} \psi_{\beta}$, and f_{Σ} is the unique solution to the problem (1.2)

As for the Dirichlet eigenvalue problem

$$
\begin{cases}-\Delta_{\Sigma} u=\lambda u & \text { in } \Sigma \tag{1.3}\\ u=0 & \text { on } \partial \Sigma\end{cases}
$$

the same proof of Theorem 1.1 works well and we obtain
Theorem 1.2. Let $\lambda_{1}^{D}(\Sigma)$ be the first eigenvalue of (1.3) and ψ_{D} be the eigenfunction corresponding to $\lambda_{1}^{D}(\Sigma)$. Then we have

$$
\int_{\Sigma} \psi_{D}^{2} d \mathcal{H}^{2} \leq \frac{\lambda_{1}^{D}(\Sigma)}{2 \sqrt{2} \pi}\left(\int_{\Sigma} \psi_{D} d \mathcal{H}^{2}\right)^{2}
$$

Under the assumption that the boundary $\partial \Sigma$ is weakly connected (see Li-Schoen-Yau [6]), Wang and Xia [8] recently proved the sharp inequality

$$
\int_{\Sigma} \psi_{D}^{2} d \mathcal{H}^{2} \leq \frac{\lambda_{1}^{D}(\Sigma)}{4 \pi}\left(\int_{\Sigma} \psi_{D} d \mathcal{H}^{2}\right)^{2}
$$

for the first eigenfunction to (1.3), with the equality holds if and only if Σ is a flat disc on an affine 2 -plane in \mathbb{R}^{N}.

Our method of proof is strongly related to that of [8], which in turn goes back to the work [7]. However, in our case, we cannot apply the sharp isoperimetric inequality by Li-Schoen-Yau [6] directly to level sets of the first eigenfunction, since we put no topological assumptions on the boundary. Instead, we use a weaker version of the isoperimetric inequality due to A. Stone ([1]: Lemma 4.3):

Let Σ be a compact minimal surface in \mathbb{R}^{N} with boundary $\partial \Sigma$. Let A denote the area of Σ and L the length of $\partial \Sigma$. Then the inequality

$$
\begin{equation*}
2 \sqrt{2} \pi A \leq L^{2} \tag{1.4}
\end{equation*}
$$

holds.
Though the constant $2 \sqrt{2} \pi$ in front of A is not the best possible value 4π, this weaker inequality is valid for any compact minimal surface in \mathbb{R}^{N} with boundary. Thanks to this, we do not need any topological assumption such as weak connectedness on the boundary in Theorem 1.1 and Theorem 1.2.

In case $\Sigma=\Omega \subset \mathbb{R}^{2}$ is a bounded smooth domain in (1.1), we can appeal to the classical sharp isoperimetric inequality $4 \pi A \leq L^{2}$ on the plane, then we obtain

Theorem 1.3. Let $\Sigma=\Omega$ is a smooth bounded domain in \mathbb{R}^{2}. Then we have
$\int_{\Omega} \psi_{\beta}^{2} d x \leq \frac{\lambda_{1}^{\beta}(\Omega)}{2 \pi}\left(\int_{\Omega} \psi_{\beta} d x\right)^{2}+\frac{1}{2} \int_{\partial \Omega} \psi_{\beta}^{2}\left(\frac{\partial f_{\Omega}}{\partial \nu}\right) d \mathcal{H}^{1}+\frac{1}{2 \pi} \mathcal{H}^{1}(\partial \Sigma)^{2}\left(M^{2}-m_{*}^{2}\right)$
We do not repeat the proof of Theorem 1.2 and Theorem 1.3 here, since it needs only a trivial change in the proof of Theorem 1.1.

2. Proof of Theorem 1.1

First, we set

$$
\begin{aligned}
U(t) & =\left\{x \in \Sigma: \psi_{\beta}(x)>t\right\}, \\
S(t) & =\Sigma \cap \partial U(t), \\
\Gamma(t) & =\partial \Sigma \cap \partial U(t)
\end{aligned}
$$

for $t>0$. Then $\partial U(t)=S(t) \cup \Gamma(t)$ is a disjoint union. Since ψ_{β} is smooth up to the boundary ([5]), Sard's lemma implies that $\left|\nabla_{\Sigma} \psi_{\beta}\right| \neq 0$ on $S(t), S(t)$ is a smooth hypersuraface and can be written as $S(t)=\left\{x \in \Sigma: \psi_{\beta}(x)=t\right\}$ for a.e. $t>0$. Recall $M=\max _{\partial \Sigma} \psi_{\beta}$ and $m_{*}=\min _{\Sigma \cup \partial \Sigma} \psi_{\beta}$. We claim that $\min _{\partial \Sigma} \psi_{\beta}>0$. Indeed, if $\psi_{\beta}\left(x_{0}\right)=0$ for some $x_{0} \in \partial \Sigma$, then the boundary condition implies that $\frac{\partial \psi_{\beta}}{\partial \nu}\left(x_{0}\right)=0$ also holds. On the other hand, by the positivity of ψ_{β} and Hopf's lemma, we have $\frac{\partial \psi_{\beta}}{\partial \nu}\left(x_{0}\right)<0$, which is a contradiction. Since ψ_{β} is positive on Σ, the above claim yields $m_{*}>0$, and then $U(t)=\Sigma$ for any $0<t<m_{*}$. Also we note that $\Gamma(t)=\phi$ if $t>M$.

As in the proof of [2], [3], [8], our main tool is the following co-area formula, asserting that for every $w \in L^{1}(\Sigma)$, it holds

$$
\begin{aligned}
\int_{U(t)} w d \mathcal{H}^{2} & =\int_{t}^{\infty} \int_{S(\tau)} \frac{w}{\left|\nabla_{\Sigma} \psi_{\beta}\right|} d \mathcal{H}^{1} d \tau \\
\frac{d}{d t} \int_{U(t)} w d \mathcal{H}^{2} & =-\int_{S(t)} \frac{w}{\left|\nabla_{\Sigma} \psi_{\beta}\right|} d \mathcal{H}^{1} .
\end{aligned}
$$

See, for instance, [4]. Note that in the right hand side, the integral over $\Gamma(t)$ does not appear.

We define the following two functions g and h as

$$
\begin{aligned}
g(t) & =\int_{U(t)} \psi_{\beta} d \mathcal{H}^{2}=\int_{t}^{\infty} \int_{S(\tau)} \frac{\psi_{\beta}}{\left|\nabla_{\Sigma} \psi_{\beta}\right|} d \mathcal{H}^{1} d \tau \\
h(t) & =-\int_{U(t)}\left\langle\nabla_{\Sigma}\left(\frac{1}{2} \psi_{\beta}^{2}\right), \nabla_{\Sigma} f\right\rangle d \mathcal{H}^{2} \\
& =-\int_{t}^{\infty} \int_{S(\tau)} \frac{\psi_{\beta}\left\langle\nabla_{\Sigma} \psi_{\beta}, \nabla_{\Sigma} f\right\rangle}{\left|\nabla_{\Sigma} \psi_{\beta}\right|} d \mathcal{H}^{1} d s,
\end{aligned}
$$

where f is the unique solution of the problem (1.2).
Differentiating g and h, we have

$$
\begin{align*}
g^{\prime}(t) & =-t \int_{S(t)} \frac{1}{\left|\nabla_{\Sigma} \psi_{\beta}\right|} d \mathcal{H}^{1}, \tag{2.1}\\
h^{\prime}(t) & =t \int_{S(t)} \frac{\left\langle\nabla_{\Sigma} \psi_{\beta}, \nabla_{\Sigma} f\right\rangle}{\left|\nabla_{\Sigma} \psi_{\beta}\right|} d \mathcal{H}^{1}=-t \int_{S(t)}\left\langle\nabla_{\Sigma} f, \nu\right\rangle d \mathcal{H}^{1} \\
& =-t \int_{S(t)} \frac{\partial f}{\partial \nu} d \mathcal{H}^{1} \tag{2.2}
\end{align*}
$$

for a.e. $t>0$, since $-\left.\frac{\nabla_{\Sigma} \psi_{\beta}}{\left|\nabla_{\Sigma} \psi_{\beta}\right|}\right|_{S(t)}$ is outward unit normal vector field ν of $S(t)$.
On the other hand, integrating both sides of $-\Delta_{\Sigma} \psi_{\beta}=\lambda_{1}^{\beta}(\Sigma) \psi_{\beta}$ over $U(t)$, we have

$$
\begin{align*}
& \lambda_{1}^{\beta}(\Sigma) g(t)=\lambda_{1}^{\beta}(\Sigma) \int_{U(t)} \psi_{\beta} d \mathcal{H}^{2}=-\int_{U(t)} \Delta_{\Sigma} \psi_{\beta} d \mathcal{H}^{2} \\
& =\int_{S(t)}\left|\nabla_{\Sigma} \psi_{\beta}\right| d \mathcal{H}^{1}-\int_{\Gamma(t)} \frac{\partial \psi_{\beta}}{\partial \nu} d \mathcal{H}^{1} \\
& =\int_{S(t)}\left|\nabla_{\Sigma} \psi_{\beta}\right| d \mathcal{H}^{1}+\beta \int_{\Gamma(t)} \psi_{\beta} d \mathcal{H}^{1} \\
& \geq \int_{S(t)}\left|\nabla_{\Sigma} \psi_{\beta}\right| d \mathcal{H}^{1}, \tag{2.3}
\end{align*}
$$

since $-\frac{\partial \psi_{\beta}}{\partial \nu}=\beta \psi_{\beta}>0$ on $\Gamma(t) \subset \partial \Sigma$.

Also, we see

$$
\begin{align*}
2 \mathcal{H}^{2}(U(t)) & =\int_{U(t)} 2 d \mathcal{H}^{2}=\int_{U(t)} \Delta f d \mathcal{H}^{2}=\int_{\partial U(t)} \frac{\partial f}{\partial \nu} d \mathcal{H}^{1} \\
& =\int_{S(t)} \frac{\partial f}{\partial \nu} d \mathcal{H}^{1}+\int_{\Gamma(t)} \frac{\partial f}{\partial \nu} d \mathcal{H}^{1} \\
& \geq \int_{S(t)} \frac{\partial f}{\partial \nu} d \mathcal{H}^{1}=\frac{-1}{t} h^{\prime}(t) \tag{2.4}
\end{align*}
$$

by (2.2). The last inequality follows by the fact $\frac{\partial f}{\partial \nu}>0$ on $\Gamma(t) \subset \partial \Sigma$, which in turn is assured by the Hopf lemma.

From the weak isoperimetric inequality (1.4) applied to $U(t)$, we have

$$
\begin{align*}
2 \sqrt{2} \pi \mathcal{H}^{2}(U(t)) & \leq \mathcal{H}^{1}(\partial U(t))^{2} \\
& \leq\left(\mathcal{H}^{1}(S(t))+\mathcal{H}^{1}(\Gamma(t))\right)^{2} \\
& \leq 2 \mathcal{H}^{1}(S(t))^{2}+2 \mathcal{H}^{1}(\Gamma(t))^{2} . \tag{2.5}
\end{align*}
$$

Now, Schwarz's inequality, (2.1) and (2.3) imply

$$
\begin{aligned}
\mathcal{H}^{1}(S(t))^{2} & =\left(\int_{S(t)} 1 d \mathcal{H}^{1}\right)^{2} \leq\left(\int_{S(t)}\left|\nabla_{\Sigma} \psi_{\beta}\right| d \mathcal{H}^{1}\right)\left(\int_{S(t)} \frac{1}{\left|\nabla_{\Sigma} \psi_{\beta}\right|} d \mathcal{H}^{1}\right) \\
& \leq \lambda_{1}^{\beta}(\Sigma) g(t) \cdot\left(-\frac{g^{\prime}(t)}{t}\right)
\end{aligned}
$$

Therefore, by (2.4) and (2.5), we obtain

$$
-\frac{\sqrt{2} \pi}{t} h^{\prime}(t) \leq 2 \sqrt{2} \pi \mathcal{H}^{2}(U(t)) \leq 2 \lambda_{1}^{\beta}(\Sigma) g(t) \cdot\left(-\frac{g^{\prime}(t)}{t}\right)+2 \mathcal{H}^{1}(\Gamma(t))^{2}
$$

or equivalently,

$$
\begin{equation*}
\frac{d}{d t}\left\{\lambda_{1}^{\beta}(\Sigma) g(t)^{2}-\sqrt{2} \pi h(t)-\int_{0}^{t} 2 \tau \mathcal{H}^{1}(\Gamma(\tau))^{2} d \tau\right\} \leq 0 \tag{2.6}
\end{equation*}
$$

for a.e $t>0$. Note that the function $l(t)=2 t \mathcal{H}^{1}(\Gamma(t))^{2}$ is integrable on the interval $t \in\left(0,\left\|\psi_{\beta}\right\|_{L^{\infty}(\partial \Sigma)}\right)$, and thus $l(t)=\frac{d}{d t} \int_{0}^{t} l(\tau) d \tau$.

Fix $\varepsilon>0$ so small such that $\varepsilon<m_{*}$. Integrating (2.6) from $m_{\varepsilon}=m_{*}-\varepsilon$ to t, we have
$\lambda_{1}^{\beta}(\Sigma) g(t)^{2}-\sqrt{2} \pi h(t)-\int_{0}^{t} 2 \tau \mathcal{H}^{1}(\Gamma(\tau))^{2} d \tau \leq \lambda_{1}^{\beta}(\Sigma) g\left(m_{\varepsilon}\right)^{2}-\sqrt{2} \pi h\left(m_{\varepsilon}\right)-\int_{0}^{m_{\varepsilon}} 2 \tau \mathcal{H}^{1}(\Gamma(\tau))^{2} d \tau$,
which implies

$$
\sqrt{2} \pi h\left(m_{\varepsilon}\right) \leq \lambda_{1}^{\beta}(\Sigma) g\left(m_{\varepsilon}\right)^{2}-\lambda_{1}^{\beta}(\Sigma) g(t)^{2}+\sqrt{2} \pi h(t)+\int_{m_{\varepsilon}}^{t} 2 \tau \mathcal{H}^{1}(\Gamma(\tau))^{2} d \tau
$$

We easily see that

$$
\int_{m_{\varepsilon}}^{t} 2 \tau \mathcal{H}^{1}(\Gamma(\tau))^{2} d \tau \leq \mathcal{H}^{1}(\partial \Sigma)^{2} \int_{m_{\varepsilon}}^{M} 2 \tau d \tau=\mathcal{H}^{1}(\partial \Sigma)^{2}\left(M^{2}-m_{\varepsilon}^{2}\right)
$$

for any $t>m_{\varepsilon}$. Letting $t \rightarrow+\infty$, and noting that $U(t)$ is empty for sufficiently large t, we obtain

$$
h\left(m_{\varepsilon}\right) \leq \frac{\lambda_{1}^{\beta}(\Sigma)}{\sqrt{2} \pi} g^{2}\left(m_{\varepsilon}\right)+\frac{1}{\sqrt{2} \pi} \mathcal{H}^{1}(\partial \Sigma)^{2}\left(M^{2}-m_{\varepsilon}^{2}\right)
$$

$g\left(m_{\varepsilon}\right)$ and $h\left(m_{\varepsilon}\right)$ are given by

$$
\begin{aligned}
g\left(m_{\varepsilon}\right) & =\int_{\Sigma} \psi_{\beta} d \mathcal{H}^{2} \\
h\left(m_{\varepsilon}\right) & =-\int_{\Sigma}\left\langle\nabla_{\Sigma}\left(\frac{1}{2} \psi_{\beta}^{2}\right), \nabla_{\Sigma} f\right\rangle d \mathcal{H}^{2} \\
& =\int_{\Sigma} \frac{1}{2} \psi_{\beta}^{2} \Delta f d \mathcal{H}^{2}-\frac{1}{2} \int_{\partial \Sigma} \psi_{\beta}^{2} \frac{\partial f}{\partial \nu} d \mathcal{H}^{1} .
\end{aligned}
$$

Since $\Delta_{\Sigma} f=2$ by (1.2), we have
$\int_{\Sigma} \psi_{\beta}^{2} d \mathcal{H}^{2}-\frac{1}{2} \int_{\partial \Sigma} \psi_{\beta}^{2} \frac{\partial f}{\partial \nu} d \mathcal{H}^{1} \leq \frac{\lambda_{1}^{\beta}(\Sigma)}{\sqrt{2} \pi}\left(\int_{\Sigma} \psi_{\beta} d \mathcal{H}^{2}\right)^{2}+\frac{1}{\sqrt{2} \pi} \mathcal{H}^{1}(\partial \Sigma)^{2}\left(M^{2}-m_{\varepsilon}^{2}\right)$.
Finally letting $\varepsilon \rightarrow 0$, we obtain the result.
Remark 2.1. In the case that $\Omega=B_{R} \subset \mathbb{R}^{2}$ is a disc of radius R, then the inequality in Theorem 1.3 becomes the equality

$$
\begin{equation*}
\int_{B_{R}} \psi_{\beta}^{2} d x=\frac{\lambda_{1}^{\beta}(\Omega)}{4 \pi}\left(\int_{B_{R}} \psi_{\beta} d x\right)^{2}+\frac{R}{2} \int_{\partial \Omega} \psi_{\beta}^{2} d \mathcal{H}^{1} \tag{2.7}
\end{equation*}
$$

This is because, first, ψ_{β} is positive, radial and decreasing in the radial direction on $B_{R}\left([3]\right.$:Proposition 2.6). Therefore $\psi_{\beta} \equiv c>0$ on ∂B_{R} and $U(c)=B_{R}$, $\partial U(t)=S(t)$ for any $t>c$. Also $\left|\nabla \psi_{\beta}\right|$ is constant on $S(t)$. Secondly, we can use the sharp isoperimetric inequality as the equality $4 \pi \mathcal{H}^{2}(U(t))=\mathcal{H}^{1}(S(t))^{2}$ in (2.5) in this case. Finally, the unique solution $f_{B_{R}}$ of (1.2) is $f_{B_{R}}=\frac{1}{2}|x|^{2}-\frac{1}{2} R^{2}$. By these reasons, we see all inequalities in the proof of Theorem 1.1 are equalities and we obtain

$$
\frac{d}{d t}\left\{\lambda_{1}^{\beta}\left(B_{R}\right) g(t)^{2}-4 \pi h(t)\right\}=0
$$

for a.e. $t>c$, instead of (2.6). Integrating this from $t=c$ to t, and letting $t \rightarrow \infty$, we obtain (2.7).

References

[1] A. Stone: On the isoperimetric inequality on a minimal surface, Calc. Var. 17 (2003) 369-391.
[2] D. Bucur, and D. Daners: An alternative approach to the Faber-Krahn inequality for Robin problems, Calc. Var. 37 (2010) 75-86.
[3] Q. Dai, and Y. Fu: Faber-Krahn inequality for Robin problem involving p-Laplacian, preprint (2008)
[4] L. C. Evans, and R. F. Gariepy: Measure Theory and Fine Properties of Functions, Studies in Advanced Math. CRC Press, Boca Raton, FL (1992)
[5] B. Gilbarg, and N. Trudinger: Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 2nd edition, Berlin-New York, (1983)
[6] P. Li, R. Schoen and S. T. Yau: On the isoperimetric inequality for minimal surfaces, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 11 (1984) 237-244.
[7] L. E. Payne, and M. E. Rayner: An isoperimetric inequality for the first eigenfunction in the fixed membrane problem Z. Angew. Math. Phys. 23 (1972) 13-15.
[8] Q. Wang, and C. Xia: Isometric bounds for the first eigenvalue of the Laplacian, Z. Angew. Math. Phys. 61 (2010) 171-175.

Futoshi Takahashi
Department of Mathematics, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
e-mail: futoshi@sci.osaka-cu.ac.jp
Akinobu Uegaki
Department of Mathematics, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
e-mail: u.akinobu@gmail.com

