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Abstract. A real Bott manifold is the total space of an iterated RP1-bundles
over a point, where each RP1-bundle is the projectivization of a Whitney sum
of two real line bundles. In this paper, we characterize real Bott manifolds

which admit a symplectic form. In particular, it turns out that a real Bott
manifold admits a symplectic form if and only if it is cohomologically symplec-
tic. In this case, it admits even a Kähler structure. We also prove that any

symplectic cohomology class of a real Bott manifolds can be represented by a
symplectic form. Finally, we study the flux of a symplectic real Bott manifold.

1. Introduction

A real Bott tower (of height n) is a sequence of RP1-bundles:

Mn → Mn−1 → · · · → M1 → M0 = {a point},

where each RP1-bundle Mi → Mi−1 is the projectivization of a Whitney sum of
two real line bundles on Mi−1. Each Mi is called a real Bott manifold. Clearly
M1 = RP1 and M2 = (RP1)2 or a Klein bottle. If every bundle in the tower
is trivial, then Mn = (RP1)n. However, there are many choices of non-trivial
bundles at each stage in the tower and it is known that there are many different
diffeomorphism classes in real Bott manifolds ([5], [6]). A real Bott manifold is also
an example of a real toric manifold which admits a flat Riemannian metric ([5]).

Although orientable ones occupy a small portion in all real Bott manifolds ([3]),
the number of orientable ones of dimension n approaches infinity as n approaches
infinity. Among those orientable ones, some are symplectic, i.e., admit a symplectic
form. In this paper we give a complete characterization of symplectic real Bott
manifolds (Theorem 3.1). In particular, we prove that among real Bott manifolds
M the following are equivalent:

(1) M is cohomologically symplectic,
(2) M is symplectic,
(3) M admits a Kähler structure.

We remark that the implication (3) ⇒ (2) ⇒ (1) always holds but the reverse
implications (1) ⇒ (2) and (2) ⇒ (3) do not hold in general as is well-known. For
example, C P 2# C P 2 is cohomologically symplectic but not symplectic because
it does not admit an almost complex structure and a certain T 2-bundle over T 2

constructed in [8] is symplectic but does not admit a Kähler structure.
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This paper is organized as follows. In Section 2 we recall the quotient description
of real Bott manifolds. In Section 3 we state and prove our main theorem. In Section
4 we study the flux group of a symplectic real Bott manifold.

Throughout this paper, all cohomology will be de Rham cohomology over R.

2. Quotient description of real Bott manifolds

In this section, we recall the quotient description of real Bott manifolds (see [5]
and [6] for details) and observe the cohomology ring of a real Bott manifold.

Let B(n) be the the set of n × n upper triangular (0, 1) matrices with zero
diagonal entries. For a matrix A ∈ B(n), Ai

j denotes the (i, j) entry of A and Ai

(respectively, Aj) denotes the i-th row (respectively, j-th column) of A. Let S1 be
the unit circle in C. For z ∈ S1 and a ∈ Z /2 = {0, 1}, we set z(a) := a if a = 0
and z̄ if a = 1. We then define the involution ai on Tn := (S1)n by

(2.1) ai(z1, . . . , zn) := (z1, . . . , zi−1,−zi, zi+1(Ai
i+1), . . . , zn(Ai

n))

for i = 1, . . . , n. Let G(A) denote the transformation group on Tn generated by ai’s.
Then the quotient space M(A) := Tn/G(A) is known to be a real Bott manifold and
every real Bott manifold can be obtained as M(A) for some A ∈ B(n). Although
A is not necessarily uniquely determined by a real Bott manifold, A contains all
geometrical information on M(A). For example,

(2.2) M(A) is orientable ⇐⇒
n∑

j=1

Ai
j = 0 in Z /2 for any i

(see [5]).
It is also helpful to describe M(A) as the quotient of Rn by affine transformations.

In fact, let Γ(A) denote the affine transformation group on Rn generated by si’s
defined by

(2.3) si(u1, . . . , un) := (u1, . . . , ui−1, ui +
1
2
, (−1)Ai

i+1ui+1, . . . , (−1)Ai
nun)

for i = 1, . . . , n. Then, an exponential map from R to S1 sending u to exp(2π
√
−1u)

induces a diffeomorphism from Rn /Γ(A) onto Tn/G(A) = M(A).
Let du1, . . . , dun denote the standard 1-forms on Rn. Since each duj is invariant

under parallel translations on Rn, it descends to a closed 1-form on Tn ∼= Rn / Zn,
which we also denote by duj . The (de Rham) cohomology ring H∗(Tn) of Tn is
the exterior algebra in n variables [du1], . . . , [dun] over R, where [duj ] denotes the
cohomology class represented by the 1-form duj . It follows from (2.1) or (2.3) that
the endomorphism a∗

i of H∗(Tn) induced by ai ∈ G(A) is given by

(2.4) a∗
i ([duj ]) =

{
[duj ] if Ai

j = 0,

−[duj ] if Ai
j = 1.

We note that since M(A) = Tn/G(A) and G(A) is a finite group, we have

(2.5) H∗(M(A)) = H∗(Tn)G(A)

(see [2, Theorem 2.4 in p.120] for example), where the right hand side denotes the
G(A)-invariants in H∗(Tn).

Lemma 2.1. Let J be a subset of {1, . . . , n}. Then
∏

j∈J [duj ] ∈ H∗(Tn) is G(A)-
invariant if and only if

∑
j∈J Aj = 0 in Z /2.
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Proof. By (2.4), we have

a∗
i (

∏
j∈J

[duj ]) = (−1)
P

j∈J Ai
j

∏
j∈J

[duj ],

Thus,
∏

j∈J [duj ] is fixed by a∗
i if and only if

∑
j∈J Ai

j = 0 in Z /2. This implies
the lemma since G(A) is generated by ai’s. ¤

3. Main theorem

The following is our main theorem in this paper.

Theorem 3.1. Let A ∈ B(2n). The following conditions are equivalent:

(1) M(A) is cohomologically symplectic, that is, there exists an α ∈ H2(M(A))
such that αn is nonzero.

(2) There exist n subsets {j1, jn+1}, . . . , {jn, j2n} of {1, 2, . . . , 2n} such that
•

∐n
k{jk, jk+n} = {1, 2, . . . , 2n} and

• Aj1 = Ajn+1 , . . . , Ajn = Aj2n .
(3) There exists a symplectic form on M(A).
(4) There exists a Kähler structure on M(A).

Moreover, any α ∈ H2(M(A)) in (1) can be represented by a symplectic form on
M(A).

Proof. Because any closed symplectic manifold is cohomologically symplectic and
any Kähler manifold is a symplectic manifold, it suffices to prove implications (1)
⇒ (2) and (2) ⇒ (4).

Proof of (1) ⇒ (2). Assume that there exists a de Rham cohomology class
α ∈ H2(M(A)) such that αn 6= 0. We identify H∗(M(A)) with H∗(Tn)G(A) by
(2.5). Then it follows from Corollary 2.1 that we can write α uniquely as

(3.1) α =
∑

j<k,Aj=Ak

cj,k[duj ∧ duk] with some cj,k ∈ R.

Thus αn 6= 0 implies the condition (2).
Proof of (2) ⇒ (4). Assume that A ∈ B(2n) satisfies the condition (2), namely

Ajk
= Ajk+n

for k = 1, . . . , n. Then we identify R2n with Cn by

zk := ujk
+
√
−1ujk+n

for k = 1, . . . , n. Consider the standard Hermitian metric on Cn. Then, Γ(A) acts
on Cn as biholomorphisms and isometries. In fact, through the above identification,
it follows from (2.3) that the action of si ∈ Γ(A) on Cn is given by

si(z1, . . . , zn)k =


zk + 1

2 if i = jk,

zk +
√
−1
2 if i = jk+n,

zk if Ai
jk

= Ai
jk+n

= 0 and i 6= jk, jk+n,

−zk if Ai
jk

= Ai
jk+n

= 1,

where the left hand side denotes the k-th component of si(z1, . . . , zn). Thus the
quotient M(A) = Cn /Γ(A) inherits the standard Kähler structure on Cn.

Finally, we shall prove the last statement in the theorem. As observed above,
α ∈ H2(M(A)) is of the form (3.1). We then define the differential closed 2-form ω
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on R2n by

(3.2) ω :=
∑

j<k,Aj=Ak

cj,kduj ∧ duk.

Comparing (3.1) with (3.2), one sees that the condition αn 6= 0 implies that ωn

is nowhere zero. Thus ω is a symplectic form on R2n. Since ω is invariant under
the Γ(A)-action on R2n, ω descends to a symplectic form on the quotient M(A) =
R2n /Γ(A) and this represents the given class α. ¤

Example 3.2. Let A ∈ B(4). If A is the zero matrix, then M(A) is the 4-dimensional
torus and symplectic. Suppose that A is non-zero and M(A) is symplectic. Then
it follows from Theorem 3.1 (2) that A is one of the following:(

0 1 1 0
0 0 0 0
0 0 0 0
0 0 0 0

)
,

(
0 1 0 1
0 0 0 0
0 0 0 0
0 0 0 0

)
,

(
0 0 1 1
0 0 0 0
0 0 0 0
0 0 0 0

)
,

(
0 0 1 1
0 0 1 1
0 0 0 0
0 0 0 0

)
,

(
0 0 0 0
0 0 1 1
0 0 0 0
0 0 0 0

)
.

Real Bott manifolds M(A) for A above are diffeomorphic to each other but not
diffeomorphic to the 4-dimensional torus ([5], [6]). One sees that M(A) is the total
space of a non-trivial T 2-bundle over T 2. On the other hand, T 2-bundles over T 2

which are symplectic are classified in [4]. One can easily check that our M(A) is of
type {−I, I, (0, 0)} in [4, Table 1] .

Finally we note that if

A =

(
0 1 1 0
0 0 1 1
0 0 0 0
0 0 0 0

)
,

then M(A) is orientable by (2.2), but not symplectic. Therefore the class of sym-
plectic real Bott manifolds is strictly smaller than that of orientable real Bott
manifolds.

4. The flux group

In this section, we will study the flux group of a symplectic real Bott manifold.
For that, we recall the definition of a flux group for a general symplectic manifold.

Let (M,ω) be a closed symplectic manifold. A diffeomorphism φ : M → M is
called a symplectomorphism if φ∗ω = ω and the group of symplectomorphisms of
(M,ω) is denoted by Symp(M,ω). Associated to a smooth function f : M → R,
the Hamiltonian vector field Xf is defined by iXf

ω = df . For a one-parameter
family {ft}0≤t≤1 of functions, we obtain a one parameter family {Xft}0≤t≤1 of
Hamiltonian vector fields, and integrating {Xft}, we obtain a one-parameter family
{φt}0≤t≤1 of diffeomorphisms defined by

d

dt
φt = Xft ◦ φt and φ0 = id .

The time-one map φ1 is a symplectomorphism and called a Hamiltonian diffeomor-
phism. It is known that all Hamiltonian diffeomorphisms of (M,ω) form a subgroup,
denoted Ham(M,ω), of the identity component Symp0(M,ω) of Symp(M,ω). For
a symplectic isotopy {φt}, that is, an isotopy through symplectomorphisms, we
obtain a one-parameter family {Xt} of vector fields define by

d

dt
φt = Xt ◦ φt.
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The flux of {φt} is then defined to be

(4.1)
∫ 1

0

[iXtω]dt ∈ H1(M).

It is known that the flux depends only on the homotopy class of symplectic isotopies
with fixed end points φ0 = id and φ1, so that it defines a homomorphism

Flux : Symp0(M,ω) → H1(M)/Γω,

where Γω is the image of the fundamental group π1(Symp0(M,ω)) by the flux and
called the flux group of (M,ω). The solution of the flux conjecture ([7]) says that
the subgroup Γω of H1(M) is closed and discrete. According to [1], the kernel of
Flux is exactly equal to Ham(M,ω), in other words, we have an exact sequence

{1} → Ham(M,ω) → Symp0(M,ω) Flux→ H1(M)/Γω.

Now, we consider the flux of a symplectic real Bott manifold.

Theorem 4.1. Let M(A) be a real Bott manifold with a symplectic form ω given
by (3.2). Then, the flux group Γω is a lattice group of H1(M(A)) of full rank.

Proof. It follows from Lemma 2.1 that H1(M(A)) is generated by [duj ] with Aj = 0,
and since M(A) is symplectic, the number of zero columns in A is even by Theorem
3.1, so that H1(M(A)) is even dimensional. Let 2r be the dimension of H1(M(A)).
We may assume that H1(M(A)) is generated by du1, . . . , du2r by changing the
suffices of the coordinates. Moreover, through a linear coordinate change of the
first 2r coordinates u1, . . . , u2r, we may assume that the symplectic form ω on
M(A) is of the form

(4.2) ω =
r∑

i=1

dui ∧ dui+r +
∑

j<k,Aj=Ak 6=0

cj,kduj ∧ duk.

Since M(A) = T 2n/G(A) and Ap = 0 for p = 1, . . . , 2r, the multiplication of S1

on the p-th coordinate on T 2n for 1 ≤ p ≤ 2r descends to an S1-action on M(A)
and defines a symplectic isotopy {φp

t }. The one-parameter family {Xp
t } of vector

fields associated with {φp
t } is then ∂/∂up (possibly up to a non-zero constant), so

that it follows from (4.1) and (4.2) that

the flux of {φp
t } =

∫ 1

0

[iXp
t
ω]dt =

∫ 1

0

[duq]dt = [duq]

where q = p + r if 1 ≤ p ≤ r and q = p − r if r + 1 ≤ p ≤ 2r. This shows that Γω

spans H1(M(A)) over R. Since Γω is closed and discrete in H1(M(A)) as remarked
before, it must be a lattice group of H1(M(A)) of full rank. ¤
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