GEOMETRY OF LAGRANGIAN SUBMANIFOLDS
AND ISOPARAMETRIC HYPERSURFACES

YOSHIHIRO OHNITA

AsstrACT. In this expository article we shall focus on a relationship between Lagrangian
submanifold theory in symplectic geometry and isoparametric hypersurface theory in Rie-
mannian geometry. First we explain some basic notions, invariants and results of La-
grangian submanifolds in symplectic manifolds and iahker manifolds. Secondly we
discuss theory of isoparametric hypersurfaces in spheres and some necessary results on
them. We give attention to Lagrangian submanifolds in complex hyperquadrics obtained
from isoparametric hypersurfaces in spheres. The “Gauss map”of an oriented hypersur-
faces in a unit sphere provides Lagrangian submanifolds in complex hyperquadrics. The
Gauss images of isoparametric hypersurfaces in spheres are the main subject of the au-
thor’s recent joint work with Hui Ma (Tsingua University, Beijing). We obtain that the
Gauss image of a compact oriented isoparametric hypersurfacegwdititinct constant
principal curvatures in a unit sphe8+1(1) is a compact minimal Lagrangian subman-

ifold embedded imQy(C) and a monotone, cyclic Lagrangian submanifold with minimal
Maslov index equal to12/g. Moreover we mention further related topics and problems.

INTRODUCTION

In this expository article we shall focus on a relationship between Lagrangian subman-
ifold theory in symplectic geometry and isoparametric hypersurface theory in Riemannian
geometry.

In symplectic geometry in these twenty years there has been remarkable much progress
such as Floer cohomology theory for intersections of Lagrangian submanifolds due to K.
Fukaya, Y.-G. Oh, H. Ohta and K. Ono, (FOOO [9], etc.). Inspired by such progress in
symplectic geometry, recently more several developments are mad&dreuiial geome-
ters in the study of Lagrangian submanifolds in specifihker manifolds, such as complex
space forms, Hermitian symmetric spaces, generalized flag manifolds, toric manifolds and
so on. Submanifold theory is an area of the longest history in Riemannian geometry, and
it can provide various techniques and so many examples to such a study of Lagrangian
submanifolds.

The isoparametric hypersurfacis one of most fundamental and attractive subjects in
submanifold theory. An isoparametric hypersurface of a Riemannian marioisl a
level hypersurface for a regular value of a smooth funcficon M satisfying the partial
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differential equations:
Af = S(f),
(0.1) —
IV EIP = T(f).

Such a functiorf is called arisoparametric functionlt is well-known that an isoparamet-

ric hypersurface of a real space folvh i.e. a Riemannian manifold of constant sectional
curvatures, is nothing but a hypersurface with constant principal curvatures. Nowadays the
isoparametric hypersurface theory is a well-developed area as an very interesting class of
nice smooth manifolds. The excellent survey articles on isoparametric hypersurfaces are
G. Thorbergsson [39], and T. E. Cecil [4].

In this article, first we recall some basic notions, invariants and results of Lagrangian
submanifolds in general symplectic manifolds and Lagrangian subamifoldsileKman-
ifolds. Secondly we review theory of isoparametric hypersurfaces in spheres and we pre-
pare some fundamental results which are applied to our research.

Now we should notice the construction of Lagrangian submanifolds related to isopara-
metric hypersurfaces. Especially we shall give attention to Lagrangian submanifolds in
complex hyperquadrics obtained from isoparametric hypersurfaces in spheres.

The n-dimensional complex hyperquadri€(C) is a compact algebraic hypersurface
of a complex projective spac8P™! defined by the homogeneous quadratic equation
(20)?> + (z)? + -+ + (z:+1)? = 0. It can be identified with the real Grassmann manifold
Gr,(R™2) of oriented 2-dimensional vector subspaces of Euclidean vector $psée
in the natural way. It has the homogeneous space expre&Hi@) = Gr,(R™?) =
SQn+2)/(S A2)xS An)) and it is a compact rank 2 Hermitian symmetric space equipped
with the standard Einstein#hler manifold of positive Einstein constag) (C) = S? and
Q2(C) = S? x S? andQ,,(C) is irreducible ifn > 3. Note that the complex hyperquadrics
Qn(C) is considered as a compactification of the tangent vector bin@lél) of the unit
standard spherg"(1).

The “Gauss may of oriented hypersurfaces in spheres provides Lagrangian subman-
ifolds in complex hyperquadrics (see Subsection 4.2). The Gauss images of isoparametric
hypersurfaces in spheres are the main subject of my recent joint work with Hui Ma (Tsin-
gua University, Beijing). We obtain that the Gauss img{&") of a compact oriented
isoparametric hypersurfa®' with g distinct constant principal curvatures in a unit sphere
S™1(1) is a compact minimal Lagrangian submanifold embedde@h(€) covered byN"
with Deck transformation grou@y (see Theorem 4.1). MoreoveB(N") is a compact
monotone, cyclic Lagrangian submanifold with minimal Maslov index equal to a natural
number 2/g (see Theorem 4.3), andZy is even if and only ifG(N") is orientable (see
Theorem 4.2). Furthermore we will mention related topics and open problems.

This article is organized as follows: In Section 1, we recall the notions and elementary
results of the Hamiltonian deformations of a Lagrangian submanifold in a symplectic man-
ifolds, the moment map of Hamiltonian group action and Lagrangian orbits, the Maslov
index and minimal Maslov number, the monotone and cyclic properties for Lagrangian
submanifolds. In Section 2, we treat Lagrangian submanifolds iarddf manifold, espe-
cially in an Einstein-Khler manifold, and describe the definitions and results of the mean
curvature form, the Hamiltonian minimality, the Hamiltonian stability, and the integral for-
mula for Maslov index. In Section 3, we review the fundamental structures and known
results on isoparametric hypersurfaces in spheres. In Section 4, we shall discuss the basic
structures and properties of compact Lagrangian submanifolds in complex hyperquadrics
obtained as the Gauss images of isoparametric hypersurfaces in spheres. In Section 5,
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we shall mention about a construction of special Lagrangian submanifolds in the tangent
vector bundle of the standard sphere from isoparametric hypersurfaces in the spheres.

1. LAGRANGIAN SUBMANIFOLDS IN A SYMPLECTIC MANIFOLD

1.1. Hamiltonian deformations of Lagrangian submanifolds. Let (M, w) be a connected
symplectic manifold of dimensionm2with a symplectic formw. A smooth immersion
(resp. embeddingy : L — M of a connected smooth manifoldinto M is called a
Lagrangian immersioifresp. Lagrangian embeddingf dim L = n and¢*w = 0. A sub-
manifold of M satisfying only the conditiop*w = 0 is called arisotropic submanifold

of M. We say thaLl is a immersed (resp. embedded) Lagrangian submanifald. irif

¢ . L > M is a Lagrangian immersion, then the vector bundle homomorphism between
the normal bundle ap and the cotangent bundle bfdefined by

(1.1) e TM/@. TLaVi— ay = w(v,) € TL

is an isomorphism.

The Lagrangian deformatiorof a Lagrangian immersiop is by definition a one-
parameter smooth family of Lagrangian immersigns L — M (Jt| < &) with ¢ = ¢.
{¢¢} is a Lagrangian deformation if and only if a 1-forry, onL is closed for each where
Vi = %% € C*(¢ 1T M) is the variational vector field dfz}. Moreover, if a 1-formuy,
on L is exact for each, then such a Lagrangian immersign} is called aHamiltonian
deformationof ¢ = ¢g. Note that ifH(L; R) = {0}, then a Lagrangian deformation and a
Hamiltonian deformation are same.

1.2. Moment maps and Lagrangian submanifolds. Suppose that a connected Lie group
K has a Hamiltonian group action oM(w) with the moment map : M — . Leté¢
denotes the fundamental vector field Mncorresponding t& € t defined by

~ d
©)x = at exp(t¢) - Xl=o
for eachx € M. The following results are standard and well-known :

Lemma 1.1.

(1) Let L be a connected isotropic submanifoldbf, w). If L is invariant under the
action of K, then there is an element 3(t*) such that Lc 1, *(). Here

() = met [(Ad &)(n) = n(Yae K)}.

When K is compact, we can identify*) with the center(t) of Lie algebrat.

(2) AnorbitL=K-pc M of K is aLagrangian orbitifand only if = K- pc M is
a connected componentm}l(n) for somey € 3(F*) = ¢(b).

(3) Assume that K and M are compact and connected. Then an osbiKL. p c M
of K is a Lagrangian orbit if and only if L= x,* () for somen € 3(t) = (¥).

1.3. Maslov index of monotone and cyclic Lagrangian submanifolds.in this subsec-
tion we recall some basic notions and invariants of Lagrangian submanifolds in a sym-
plectic manifold (cf. [26], [28], [31], [32]). The Floer chomology theory of Lagrangian
Intersection was investigated in [26], [27], [29] and see FOOO ([9]) for further great de-
velopments. In Subsection 2.3 we shall mention some useful results on those invariants for
Lagrangian submanifolds in Einsteirakler manifolds.

Let (M, w) be a symplectic manifold andd be a Lagrangian submanifold . Let
w : (D?,8D?) — (M, L) be a smooth map of pairs, whe® anddD? denote a unit open
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disk of R? and a unit circle as the boundary Bf, respectively. We take an identifica-
tion w(TM) = D? x R?". Set LagrR?") := {Lagrangian vector subspacesR¥"} =
O(2n)/U(n). By using theMaslov class: € HY(O(2n)/U(n); R), we define a loopvof
LagrR*") by

(1.2) W: D2 3 p— TypL € AR
TheMaslov indexof L is a homomorphisnl, | : m2(M, L) — Z defined by
(1.3) L (W) 1= (W) € Z.

I, is invariant under Lagrangian deformations.
We define thaninimal Maslov numbeX, of L by

(14) 2= min{I#,L(A) | Ac 7T2(M, L), |/1’|_(A) > 0}
Another homomorphism, : (M, L) — R is defined by
(1.5) lo([W]) := f wWow e R.
D2

for any smooth maw : (D?,6D?) — (M, L). |, is invariant under Hamiltonian deforma-
tions, but not invariant under Lagrangian deformations in general.

A Lagrangian submanifold. in a symplectic manifold I, ) is called monotoneif
there is a positive constant> 0 such that

(1.6) Lt = Al

Let (M, w) be a symplectic manifold. Thperiod groupof (M, w) is defined by the
additive subgroup

@.7) Iy, = {[w](A) | Ae Hy(M; Z)} c R.
Note that ifM is simply connected, then
(1.8) [, = {{w](u) | u: S> — M smooth c R.

A symplectic manifold i, w) is prequantizabléf ', is discrete irR, or equivalently there

is a non-zero constantsuch that{g} is an integral class, i.e{.g] € i(H*(M; Z2)), where
Y Y

i denotes the natural homomorphismH?(M; Z) — H?(M;R) induced by the inclusion

Z c R. ltis well-known that[2 is an integral class if and only if there is a complex line
Y

bundleE over M with a U(1)-connectiorV whose curvature form is2y-1 Y HMis
Y

prequantizable, then we can choose a non-negative real nynbey, such that

(1.9) T, =v.,2.

Suppose that a symplectic manifolbl(w) is prequantizable. A Lagrangian submani-
fold L of M is calledcyclic if the additive subgroup

(1.10) [, :={[w](B) | Be Hy(M,L;Z)} cR

is discrete. IfL is cyclic, then we can choose a non-negative real numpeisuch that
(1.12) Col =%Yoo Z.

and there is an integdrsuch that

(1.12) Yo = KyoL.

and moreover, there is an positive integeuch thate(¢1E, ¢~1V) is trivial.
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Assume thaiM is simply connected. Thehis cyclic if and only if there is an integér
such that*(¢~1E, ¢~1V) is trivial. Define
Yo

(1.13) n.:=minfk € Z | k> 1, 1E, ¢ V) is trivial) =
Yo,L

e’.

2. LAGRANGIAN SUBMANIFOLDS IN KAHLER MANIFOLDS

2.1. Mean curvature form of Lagrangian submanifolds. Suppose thatM, w, J, g) is a

complexn-dimensional Kahler manifold with Kahler formw, complex structure tensar

and Kahler metricg. Let Ric¥ denote the Ricci tensor field oM, g) andp™ denotes the

Ricci form of a Kahler manifold M, w, J, g) defined byoM(X, Y) := RicM(JX Y). The first
. . 1

Chern clasg1(M) of (M, J) is an integral class dfi>(M; R) represented byz; oM.

Lety : L —» M be a Lagrangian immersion into géakler manifold. Denote b and
H the second fundamental form and the mean curvature vector field of the immersion
respectively. Define a symmetric tensor fi€léf degree 3 or. by

S(X,Y.Z) = w(B(X,Y),Z) foreachX,Y,ZeTL
and themean curvature formy of ¢ by

(2.1) ap(X) := w(H,X) foreachX e TL.
The mean curvature foria satisfies the identity ([6]):
2.2) dan(X) = ¢"p".

The conditionH = 0, equivalentlywy = 0, is the usual minimal submanifold condition. In
that case, we call it minimal Lagrangian submanifolith a Kahler manifold.

2.2. Hamiltonian minimality and Hamiltonian stability of Lagrangian submanifolds.

The notion of Hamiltonian minimality and Hamiltonian stability for Lagrangian subman-
ifolds in a Kahler manifold was introduced and investigated first by Y.-G. Oh ([23], [24],
[25], [28]). For the simplicity we assume thhatis compact without boundary. A La-
grangian immersiop : L — (M, w, J, g) is calledHamiltonian minimalf for each Hamil-
tonian deformatiorp; : L — M with ¢ = ¢g

d
aVOKL, ¢ 9l=0 = 0.

The Hamiltonian minimal equation is given by

(2.3) day =0,
wheres denotes the cofferential operator to the exteriorffiirentiatiord on L with respect
to ¢*0.

A Hamiltonian minimal Lagrangian immersian : L —» (M, w, J, g) is calledHamil-
tonian stabldf for each Hamiltonian deformatiopg : L — M with ¢ = ¢q

2

d .
(2.4) @V()'(L, @;9)l=0 > O.

The Lagrangian version of the second variational formula was given in [25]. The null space
of the Morse index form of the second variational formula for a compact Hamiltonian
minimal Lagrangian submanifold in a&kler manifold is the vector space of all solutions
to the linearized Hamiltonian minimal equation. We denote its dimensio{djyand call
it the nullity of a Hamiltonian minimal Lagrangian immersign
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For each holomorphic Killing vector fielX on the ambient Ehler manifoldM, the
corresponding 1-formvy := w(X,-) on M is closed. If we assume that dift(M;R) = 0
or M is simply connected, theayx is exact, that isax = d f for somef € C*(M).
Thus a holomorphic Killing vector fiel& is a Hamitonian vector field and generates
a Hamiltonian deformation preserving the metric and thus the volume of any Lagrangian
submanifoldy : L — M. Hencep*ax = d(f oy) is a solution to the linearized Hamiltonian
minimal equation. Denote by

Nrk(e) := dim{¢*ax | X is a holomorphic Killing vector field ot },

which is called thénolomorphic Killing nullityof a Hamiltonian minimal Lagrangian im-
mersiong In generalnq(¢) < n(y) and a Hamiltonain minimal Lagrangian immersign
is said to beHamiltonain rigidif npk(¢) = N(y).

In the case whenl, w, J,g) is an Einstein-Khler manifold with Einstein constarf
from the second variational formula we know that a compact minimal Lagrangian La-
grangian submanifold immersed M if and only if the first (positive) eigenvalug, of
the Laplacian on functions is greater than or equal. té&hen a Lagrangian submanifold

embedded in a Khler manifoldM is obtained as a Lagrangian orbit of a compact Lie
subgroup of the automorphism group Aut(w, J, g), we call it a compachomogeneous
Lagrangian submanifolth M.

Proposition 2.1([18]). Any compact homogeneous Lagrangian submanifold in a Kahler
manifold is Hamiltonian minimal.

The classification of compact homogeneous Lagrangian submanifolds in a spadbiiéc K
manifold is an interesting and important problem in the sense of Riemannian and Symplec-
tic geometry:

Problem. Classify all compact homogeneous Lagrangian submanifolds in in a specific
Kahler manifold such as complex projective spaces, complex Euclidean spaces, complex
space forms, Hermitian symmetric spaces and generalized flag manifolds with an invariant
symplectic form.

2.3. Minimal Maslov number of cyclic Lagrangian submanifolds in Einstein-K&hler
manifolds.

Theorem 2.1([28]). Let L be a Lagrangian submanifold in an Einstein-Kahler manifold
(M, w, J,g). Then the real cohomology clagsy] of the mean curvature form of L in
H(L; R) is globally invariant under every Hamiltonian deformation of L.

Hajime Ono showed the following integral formula of Maslov indgx of a Lagrangian
submanifold in a Khler manifold and it enables us to improve some results of Y. G. Oh

(128)).

Theorem 2.2([31]). Let L be a Lagrangian submanifold in a Kahler manif¢M, w, J, g).
For each smooth map of pairs WD?, dD?) — (M, L), it holds

(25) o) =+ [ wou [ o) an

The following two theorems are applications of his integral formula.

Theorem 2.3([31]). Suppose thatM, w, J, g) is a simply connected Einstein-Kahler man-
ifold with positive Einstein constant and L is a compact Lagrangian submanifold in M.
Then L is monotone if and only[i#y] = 0in HY(L; R).
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We see that it is a compact monotone Hamiltonian minimal Lagrangian submanifold
in M, thenL must be minimal, and any compact minimal Lagrangian submanifold in a
simply connected Einsteindtler manifold with positive Einstein constant is monotone.
Define
Yo, = Min{cy(M)(A) | A € Ho(M; Z), co(M)(A) > 0} € Z,
YL = Min{c(M)(B) | B € Hy(M, L; Z), c1(M)(B) > O} € Z.
The following formula (2.6) will be essentially used in the proof of Theorem 4.3.

Theorem 2.4([31]). Suppose thatM, w, J, g) is a simply connected Einstein-Kahler man-
ifold with positive Einstein constant. If L is a compact monotone Lagrangian submanifold
in M, then L is cyclic and it holds the formula

(2.6) LI = 2.

Remark. The numbery., for each Hermitian symmetric spabé of compact type is given
as follows ([2, p.521]): IftM = SU(p + 0)/S(U(p) x U(Q)), theny,, = p+q. If M =
SQA2p)/U(p), theny,, = 2p-2. If M = Sp)/U(p), theny,, = p+1. If M =
SQAp+2)/(SA2)xSAp)) (p > 2), thenye, = p. If M = E¢/T*-S pin(10), theny,, = 12.
If M = E7/T! Eg, theny,, = 18.

3. |SOPARAMETRIC HYPERSURFACES IN SPHERES

3.1. Structure theory. In this subsection we shall explain briefly the fundamental struc-
ture of isoparametric hypersurfaces in the unit standard sphere due to Elie Cartan and H.
F. Minzner ([21], [22], cf. G. Thorbergsson [39], T. E. Cecil [4]).

Let N" be a connected oriented hypersurface embedded in the unit standard sphere
S™1(1) with g distinct constant principal curvaturés > k, > --- > kg and the corre-
sponding multiplicitieam, (¢ = 1,---,g). Letx(p) andn(p) denote the position vector
from the origin O and the unit normal vector 8¥1(1) atp € N". Letx denote the posi-
tion vector ofN" andn the unit normal vector field tdl" in S™*(1) compatible with the
orientation.

Theorem 3.1([21]). Setk = cotf, (@ = 1,--- ,g) withO < 6; < --- < 63 < . Then the
following properties hold:

(3.1) 9(,=91+(a-1)’-; (@=1--,0),
3.2) m, = m,;2> indices modulo g
(3.3) n= { w 9=2)
my (9=1)
Thus ifgis odd, themmy = mp = --- = my. Sinced; + (« - l)g <rm= %T we have
0<6, < w, and particularly < 6; < f_

We define a smooth functiovi in a tubular neighborhood of N" by

V(q) := cos@ t(a))
for eachg € A. Hereé; — t(g) is equal to the distance from a poigto N" in S™(1).
Define

F(q) := r¥ cos@t(q)) = r?V(a)
7



for eachr > 0 and eaclg € A. The functionF on an open congJ;.orA c R™?2 extends
to a homogeneous polynomigl: R™? — R of degreeg, the so calledCartan-Minzner
polynomial satisfying the dierential equations:

AF =cr92
3.4 ’
G4 {IlgraoFll2 = gro2,

wherec = ¢?

-m
% andr = [[X|> = (X)? + (%)% + (X3)? + - - - + (Xns2)2. Moreover

V = Flgna) satisfies the isoparametric function equatio®iri'(1):

(3.5) {KV = -g(@+n)V +c = S(V),

IVVIR = g?(1-V?) = T(V),

whereV andA denote the covariant fierentiation of the Levi-Civita connection and the
Laplace-Beltrami operator d6™*(1). In particular,V = Flswiy i anisoparametric
functionon S™(1). As 0< 6; < ’—é we have cogfph1) # +1 and thus cogf) is a regular

value of the functiorv on S™1(1). The level hypersurface (cos@g.)) is a compact
connectedrientableisoparametric hypersurfacembedded ir5"1(1) andN" is an open
subset o/ ~1(cos@#h)). EachN, := V-1(+1) is a compaatonnecteaninimal submanifold
embedded ir8"*(1) of codimension at least 2, which is calledogal submanifoldf an
isoparametric hypersurfadé.
Suppose thalll" is a compact connected oriented isoparametric hypersurface embedded

in S™1(1). From the above argument we can assumeNfat V-1(cos@6,)) andn(p) =

(gradV)x(p)

lI(gradv)xp i
Lemma 3.1. For each pe N",

for eachp € N". Then we have

cosdx(p) +singn(p) € V-(cos@hr)) = N"
if and only if

_ 2n(a - 1) 2n(a — 1)

0 or 2601 + forsomexr =1,---,0.

The following results are famous and important results éhiher and Abresch.

Theorem 3.2([22]).

(1) g must bel, 2,3,4 or 6.

(2) Ifg=6,then m = nmy.
Theorem 3.3([1]). Ifg=6,thenm =m, = 1or 2.
3.2. Minimal isoparametric hypersurfaces in spheres. It is well-known that there exists
only oneminimalisoparametric hypersurfadd” in each isoparametric family &"1(1).
From [21] we easily compute its principal curvatures as follows (cf. [30, p.265]):
Proposition 3.1.

(1) Ifg=1,thenk =0.

() Ifg = 2, then kg = /% and k= /%.
N

(3) Ifg=3,thenk = V3, k,=0 and Ik =—-V3.
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(4) If g = 4, then
VTR + VT N -y

K1 =

1 N 2 N

R s T R S R

33—~ s K4 = — .
W s

(5) If g = 6, then
K1=2+ \/é,K2=1,K3=2— \/é,
Kgq = —(2— \/:_))), ks = =1, kg = —(2+ \/:._):)
3.3. Homogeneous isoparametic hypersurfaces in sphereBue to W.-Y. Hsiang and
H. B. Lawson, Jr. ([14]) and R. Takagi and T. Takahashi ([38]), any homogeneous isopara-

metric hypersurface in a sphere can be obtained as a principal orbit of the isotropy repre-
sentation of a Riemannian symmetric pai; K) of rank 2

TasLe 1. Homogeneous isoparametric hypersurfaces in spheres

g| Type (U, K) dimN" | m, m N" = K/Kg
1] Six (S*xSQn+2),SAn+1)) n n SN
BDII n>1 [ReAl
2 | BDIIx (SAp+2)xSAn+2-p), n p,n-p SPx S"P
BDII SAp+1)xSAn+1-p))
l1<p<n-1[A®A]

3] Al (SU3), SO3)) [A2] 3 1,1 %%

3 (SUB) x SU3), SUB)) [A2] 6 2,2 =

3] All, (SU(6), S p(3)) [Ac] 12 4,4 Sy

3| EIvV (Es, F4) [Ad] 24 8,8 #‘;@

4| Dby (SA5) x SA5),SA5)) [Ba 8 2,2 =

41 Alll, (SUM+2),SUER)xUM)) |4m-2 2, e A
m> 2, [BC](m= 3),[By](m= 2) 2m-3

41 BDI, (SAQm+2),SA2)xSAQm)) | 2m-2 1, SR

m > 3, [By] m-2

41 ci (SEmM+2), S p2) x S (M) 8m-2 4, %
m> 2, [BC](m= 3),[By](m= 2) 4m-5

41 DI, (SQ10),U(5)) [BC,] 18 4,5 SRS O,

41 EN (Es, U(1) - S pin(10)) [BC,] 30 6,9 U;ﬁ%gg;g)

6 a2 (G2 xG2,G) [G7] 12 2,2 %

6| G (G2, SO4))[G,] 6 1,1 E1.0)

Zy+Z3

3.4. Isoparametric hypersurfaces of OT-FKM type. The Clifford construction of non-
homogeneous isoparametric hypersurfaces in spheres was discovered first by [33], [34] and
generalized by [8]. It is another important class of isoparametric hypersurfaces in the unit
standard sphere, which are called “isoparametric hypersurfaces of OT-FKM type”.

Let CI(R™?) be the Cliford algebra over Euclidean spa®®™(?!, (, )). A representa-
tion of CI(R™?) onR' of degred is an algebra homomorphism

CI(R™1) — M(I;R).
9



Note that
CI(R™?) = Clg(R™) > S pin(m).
Then we can choodéy, - - - , En1 € O(l) such that
E?=-1,EE;=-EE,i#]j.

Denote byy(R?) the vector space of symmetric endomorphismR8nDefinePg, Py, - - - , Py, €
b(R?) by
Po(u,V) := (U, V), P1(u,v) := (v, u), P1:i(u,v) := (Ejv, —Eju)
CI(R™1) has an irreducible representation of dedréeand only if | = §(m) as in the
table:

CI(R™?) o(m)
R 1
C
H
HeoH
H(2) = M(2, H)
C(4) = M(4,C)
R(8) = M(8,R)
R(8)® R(8) = M(8,R) & M(8, R)
8 M(CI(R*T), 16) 165(K)

+|oo| ~|o| g A w|[ N k|3
oo| 00| co| oo| B[ N[N

=~

Any reducible representation Gf(R™?) of degred for | = ks(m) with k > 1 is a direct
sum ofk irreducible representations 61(R™*) on R*(M,
The systemPs, - - - , Py) is called aClifford systenof R?. Set

(3.6) m:=m mp:=l-m-1=kdé(m-m-1
Then the polynomial functioff : R? — R defined by

(3.7) F(X) := (X, X)? — ZZ(Pi X, X)2
-0

is a Cartan-Minzner polynomial, that ig; satisfies the Cartan-thzner diferential equa-
tions (3.4) forg = 4 and thusF provides a family of isoparametric hypersurfaces with
4 distinct principal curvatures and multiplicitiesy, m) = (m,| — m— 1) in the (2 - 1)-
dimensional unit standard sph&#-%(1) c R? = R'@R!, which is called aisoparametric
hypersurface of OT-FKM type

TasLe 2. Multiplicities of principal curvatures of isoparametric hyper-
surfaces of OT-FKM type

kom | 1 2 ] ] 8 8 8 8 16 32
1 - - - - G2 [ 61| - — [ (9.6 | (10,21)
2 @] 34) | 43) | (5.10)] 6.9) | (7.8) | (8.7) | (9.22) | (10,53)
3 | @) @3)] B8 | @7 |(5.18)| (6.17)| (7.16) | (8 15) | (9,38) | (10,85)
4 [(L2)| 25| (312)] (411)] (5.26)| (6.25) | (7.24) | (8,23)| (9.54) | -
5 |(13)](27)](3.16)] (415)| (5.34)| (6.33)| (7.32) | (8.31)| -
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Remark.An isoparametric hypersurface of OT-FKM type in the sphere is homogeneous if
and only if it is of type Alll, BDI,, Cll; or Elll.

3.5. Classification problem of isoparametic hypersurfaces in spheresNow all known
examples of isoparametic hypersurfaces in spheres are homogeneous isoparametric hyper-
surfaces and isoparametric hypersurfaces of OT-FKM type. It is conjectured that they are
ALL isoparametic hypersurfaces in spheres.

Let N" ¢ S™(1) be an isoparametric hypersurface in the sphereg # 1,2 or 3,
thenN" is homogeneous (E. Cartan). df= 6 andm = 1, thenN" it is homogeneous
(Dorfmeister and Neher [7], R. Miyaoka [20]). The case 6 andm = 2 is investigated by
R. Miyaoka. Ifg = 4, then the multiplicitiesr(y, n;) must be the same as those in examples
of homogeneous one and of OT-FKM type (Stolz [37]), &idmust be homogeneous or
of OT-FKM type except for the casesy, my) = (4,5), (3,4),(6,9), (7, 8) (Cecil, Chi and
Jensen [5], Immervoll [15]). The research of the remaining cases is still in progress by
Q.-S. Chi.

4. LAGRANGIAN SUBMANIFOLDS IN COMPLEX HYPERQUADRICS
OBTAINED FROM ISOPARAMETRIC HYPERSURFACES

4.1. Complex hyperquadrics. Thecomplex hyperquadric
Qn(C) = Grp(R™?) = SQn+2)/(SA2) x SQAN))
is a compact Hermitian symmetric space of rank 2, where
Qu(C):={[zleCP™ | Z+Z +---+Z,, =0},

Gro(R™?) := {W | oriented 2-dimensional vector subspacdRf?}.

The identification betwee®,(C) and(??z(R“+2) is given by

2
CP™ 5 Qu(C)> [a+ V=1b] «>W=aAb eGr,(R™?) c A R™2,

Here{a, b} is an orthonormal basis &/ compatible with its orientation. Ifi = 2, then
Q,(C) = S?x S2. If n > 3, thenQ,(C) is irreducible.

Note that the standard#ler metricgf?tf(c) on Qn(C) = Gro(R™2) induced from the
standard inner product &2 is Hermitian symmetric and an Einsteiriiler metric with

the Einstein constantequal ton.

4.2. Gauss map of an oriented hypersurface in a sphereLet N" — S™1(1) c R™2 be
an oriented hypersurface immersed or embedded innthel(-dimensional unit standard
sphere.

Let x andn denote the position vector of points Nf* and the unit normal vector field
of N" in S™1(1), respectively. Th&auss maglefined by

G:N"3 pr— [x(p) + V=1n(p)] = x(P) A N(P) € Qn(C) = Gr(R™?)
is always a Lagrangian immersion.

Proposition 4.1([17], [18]).

(1) Let N;, N, ¢ S™1(1) be oriented hypersurfaces in the unit sphere. TherisN
parallel to N, if and only ifG(N1) = G(Ny).
11



(2) The Gauss maps for any deformation of an oriented hypersurfdda 8"1(1)
gives a Hamiltonian deformation of the Gauss ngapConversely, a small Hamil-
tonian deformation of the Gauss mgpcorresponds to a deformation of the ori-
ented hypersurface'Nn S™(1).

Letk; (i = 1,--- , n) denote the principal curvatures §f ¢ S™(1). Setx; = coté; (i =
1,---,n), where 0< 6 < 7. Choose an orthonormal franig} on N" ¢ S™(1) such
that the second fundamental fotmof N" in S™1(1) with respect tan is diagonalized as
h(e, &) = «i 6ij and let{¢'} be its dual coframe. Then the induced meg’r*thQt:'(c) on N"
by the Gauss mag@ is expressed as

n
(4.1) G g = Z(l +x2)0 @6
i=1

Let H denote the mean curvature vector fieldef Then B. Palmer showed that the
mean curvature form of the Gauss nm@js expressed in terms of the principal curvatures
of N" as follows:

Lemma 4.1([35]).

ay = d(|m[|ogfl[(1+ x/-_lki))] = -d(i ei].

i=1
Remark.The last equality was pointed by Jianquan Ge (Beijing Normal University).

Particularly, ifN" ¢ S™1(1) is an oriented hypersurface®i"(1) with constant princi-
pal curvatures, then the Gauss ngapN" — Q,(C) is a minimal Lagrangian immersion.

4.3. Gauss images of isoparametric hypersurfacesSuppose thaN" «— S™(1) c
R™2 is a compact connected oriented isoparametric hypersurface embeddechia the (
dimensional unit standard sphere. In this subsection we use the same notations as in Sub-
section 3.1.

By Lemma 3.1, for eaclp € N" a normal geodesic (a great circle} y(0) defined by

Xg(P) := cosox(p) + sindn(p)

has intersection witth\" at 23 points as

2n(a — 1) 2n(a — 1)
9

YN N"={xg(p) | 6 = or 20; + forsomea =1,---,g}

For eachxg(p) € yn N, let p, € N" be a point oN" with the position vectoxy(p) = X(pg).

|fg=%(a=1’...,g)'then

G(pe) = X(po) A N(Pg) = X(P) A N(P) = G(P)-

2n(a — 1)

If 6 =20, + (@=1,---,0), then

G(Ps) = X(Ps) A n(p6) = X(P) A (=N(P)) = —x(p) A N(P) # G(P)-

e —1)

Conversely, ifG(p) = G(q) for p,q € N", thenq = py for somed = (@ =

1,---,0). Indeed, sinca(p) A n(p) = x(Q) A n(g), we can express as
x(a) = cosy x(p) + sing n(p),
n(a) = —siny x(p) + cosy n(p)

12



2n(a — 1) 2n(a — 1)

for some 0< ¢ < 2x, it follows thaty = r 20, + for some

@=1-,9 Ify = 291+$

2n(a — 1)

, thenG(p) # G(q), a contradiction. Hencg =

forsomea=1,---,g.

From these observations we can define the free action of a finite cyclic grpop
ordergonN". A map

4.2) v:N"s pr— cos(%r) x(p) + sin(%ﬂ) n(p) € N"

is a difeomorphism oN" onto itself of orderg. {Idy = V°,v,--- ,v91} is a finite cyclic

group of ordeig which acts freely oN". SetZg := {ldy =12, v,--- ,»971}.

Proposition 4.2. Let p g € N". Theng(p) = G(q) if and only if g= v(p) for somev € Z.
Therefore we obtain

Theorem 4.1([17]). The imageG(N") of the Gauss mag : N" — Q,(C) is difeo-
morphic to the quotient smooth manifold M 4 by the free action oZ 4, that is,G(N") =
N"/Z4. Henceg(N") is a compact connected minimal Lagrangian submanifold embedded

in Qn(C)

Problem. Investigate properties of compact minimal Lagrangian submanifolds embedded
in complex hyperquadrics obtained as Gauss images of isoparametric hypersurfaces in
spheres.

We shall compute the fierential of a dfeomorphismv € Zgatp e N". Let{g | i =
1,---,n} be an orthonormal basis ®,N" such thatA(e) = k, & and sek, = coté, with
0<89,< ’—é Then we have

(dv)p(&) = deXar = (cos(%ﬂ) - sin(%ﬂ) cotd,) e.

If g=1,then @v)p(e) = e(i=1,---,n).
If g=2,then@v)p(e) = - (i=1---,n).
Suppose thag > 3. Then

cos(z—ﬂ) —sin(%) cotd, < 0O
g g
= cot(%r) < coté,

— %>9&:91+((Z—1)g ((121,"',9)

B-a)r o

g 61 (@=1,---,0

and
2Eﬂ(azl) >g(a=2) >0, >0(=3) 2--~2—¥r(a=g).
Hence the number of negative eigenvaluesdej( : T,N — T, N is equal tom; + mp.

Lemma 4.2. Assume that g= 2. Then the dgfeomorphismv : N — N preserves the
orientation if and only if m+ m, is even.
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Remark. The Zg4-action onN" c S"™1(1) does not preserve the induced metric from
S™1(1) if g > 3. The metric (4.1) omN" induced fromQ,(C) by G is preserved by the
Zg-action. Itis possible to check it by a direct computation too.

From Lemma 3.1 we know
@ _{m1+mz if gis even
g 2m if gis odd
Hence by Lemma 4.2 the orientability G{N") is determined as follows:
Theorem 4.2.
Q) If % is even, then = G(N") = N"/Z is orientable.

2n . . .
(2) If En is odd, then L= G(N") = N"/Z is non-orientable.

Now the minimal Maslov number of the Gauss image of an isoparametric hypersurface
in a sphere can be determined as follows :

Theorem 4.3([19]). L = G(N") is a compact monotone and cyclic Lagrangian submani-
fold embedded in (JC) and its minimal Maslov numbéi; is given by

s - 2n  jm+mp ifgiseven
T g T l2m if g is odd

Proof. By Theorem 2.3 and minimality af(N"), G(N") is a monotone Lagrangian sub-
manifold in Q,(C). Moreover, by Theorem 2.&(N") is a cyclic Lagrangian submanifold
in Qn(C) and the formula (2.6). In cadd = Q,(C) we know thaty,, = nif n > 2 and
Yo, = 2i~f n = 1. We shall determine the numbmr.

Let N" be the Legendrian lift oN" to the unit tangent sphere bundlEs™(1) =
Vo(R™2) :

N" — G(N") = N"/Z,,.

n

V2(R™2)|n > V,(R™?)

\zg n|SQ2) 7|SQ2)=U()=Sst

G(N") G(N") = L" c Qu(C)

Lagr.

Then
7 VoR™)L — L = G(N")
is a flat principal fiber bundle with structure gro8g2) and the covering map
7:N"— G(N")
with Deck transformation grougy coincides with its holonomy subbundle with the holo-

nomy groupZ :
—sj 1 -1
Zy= c_ost sint t=0270. ... ’zﬂg
sint  cost g g

9-1

g }

1
={eﬁ‘|t:o,2na,--~,2n
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Let E denote the flat complex line bundle ov@(N") associated with the principal fiber
bundle
7 Vo (R™)L — G(N)
by the standard action &(Q2) = U(1) onC.
The tautological complex line bundi®’ over Q,(C) = Gr,(R™?) is defined by

W, := C(a+ V-1b)

for eachx = [a+ V=1b] € Q,(C) ThenE = W if n > 2 and®’E = ‘W if n = 1. Indeed,
c1(W)(CPY) = 1if n > 2. HereCP! := {W c U | 1-dimensional complex vector subspaces
andU is a complex 2-dimensional isotropic vector subspacg™f, namely,U L U.

Fork=1,2,---,q, the generatoe‘/jl%" of the holonomy grou@Zy on E|_ induces the

multiplication bye*/jl%k on & E|.. Thus the holonomy group @¥E|_ is generated by

eV 1% of Z4. Hence®YE|_ has trivial holonomy and fok = 1,2,---,g -1, ®XE|. has
non-trivial holonomy. Therefore we obtaim = gif n > 2 andn_ = 2if n= 1. Moreover,
2 (m .
—w=m1+mz if gis even
2n 9 2

EL:—:
9 |2 L
agml=2m1 if gis odd

(]

Remark.Theorems 4.1 and 4.3 are described in [17], [19] without detail of the proof.

Proposition 4.3 ([17]). An isoparametric hypersurface"Nn S"(1) is homogeneous if
and only if its Gauss imagg(N") is a compact homogeneous Lagrangian submanifold in

Qn(C).

In [17], we classified ALL compact homogeneous Lagrangian submanifolds in complex
hyperquadric€,(C).

Palmer ([35]) showed that the Gauss ngapN" — Qn(C) is Hamiltonian stable if and
only if g = 1. In [17], [19], we determined completely the (strict) Hamiltonian stability of
the Gauss imageg(N") of ALL compacthomogeneousoparametric hypersurfacé$'
in spheress™1(1).

Problem. Investigate the similar theory in the case of oriented hypersurfaces in a real
hyperbolic space form and semi-Riemannian space forms. J. Hahn's work ([10], [11]) will
be useful to provide homogeneous and non-homogeneous examples.

5. CoHOMOGENEITY 1 LAGRANGIAN SUBMANIFOLDS IN THE COTANGENT BUNDLE OF S™"1(1)

Let TS™(1) andT*S"™1(1) be the tangent and cotangent vector bundles oventhE){
dimensional unit standard sphe®&*1(1). The special orthogonal groi®Qn + 2) acts
effectively and transitively or8™1(1) c R™? as the identity component of its isometry
group and induces the group actionsT8™(1) andT*S"(1) in the natural way. Rela-
tive to the standard metric &*+1(1), we identify T S™1(1) with T*S"™1(1).

More generally, suppose thif" is anm-dimensional submanifold immersed in the unit
standard spher®™1(1). Letv}, denote the conormal bundle Bf" in S***(1) and the unit
conormal bundléJ (vy) := {£ € vy | lI€ll = 1} of N™in S™1(1). Itis a classical fact that the
conormal bundlery, is a Lagrangian submanifold in the cotangent vector bumeR1(1)
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of the unit standard sphe&"1(1). Notice that the unit cotangent bund)é¢T*S™(1)) is
diffeomorphic to the Stiefel manifold

(5.1) Vo(R™?):={(ab)|abeR™? |l = [bll =1, (& b) = 0} = SQn +2)/Sqn).

Furthermore, the unit cotangent bundl€T*S™(1)) is a circle bundle oveBr,(R™?2) =

Qn(C). HenceU(T*S™1(1)) carries the canonical contact structure and then the unit conor-
mal bundleU (v;,) of N is a Legendrian submanifold &f(T*S™(1)). Then the projection

of U(v}) via p» gives a Lagrangian submanifold immersedQp(C). In the case when

N™ = N is an oriented hypersurface 8f*1(1), (if we take a connected component of
U(vy), ) this construction coincides with the above Gauss map construction. We have the
following diagram :

149 , T*S™i(1)

Lag.

UGR) — = U S™(1)e Vo(R™?)

Leg.
po| St p1|S"
p2(U(vy) — n(C) S™H1) > N™
Lag. imm. submfd.

The unit cotangent bundlg (T*S™(1)) = V»(R™?) has the standard homogeneous
(SQn + 2)-invariant) Einstein-Sasakian manifold structure d8es(R™?2) = Q,(C) and
the corresponding cone metric on ¢8) x Vo(R™?) = CV,(R™?) x CU(T*S™1(1)) =
TS™1(1)\ {0} is an Ricci-flat Kahler metric (cf. [3]). Moreover, the cor@U(T*S™1(1))
overU(T*S™1(1)) is a Lagrangian submanifold @V,(R™?) relative to the Kahler cone
metric. Then it is a well-known fact that the following three conditions are equivalent each
other:

(1) p2(U(vy)) is a minimal Lagrangian submanifold @,(C) with respect to the stan-
dard Hermitian symmetric Einsteinaller metric.

(2) U(vy) is a minimal Legendrian submanifold d(T*S™(1)) = V,(R™?2) with
respect to the standard homogeneous Einstein-Sasakian metric.

(3) CU(vy) is a minimal Lagrangian submanifold, i.e. a special Lagrangian submani-
fold of some phase, i€ V»(R™?) with respect to the Ricci-flat &hler cone metric.

Therefore each isoparametric hypersurft®an S™(1) gives a special Lagrangian sub-
manifold in CV,(R™?) equipped with the Ricci-flat Ehler cone metric. In particular we
see that ifN" is a homogeneous isoparametric hypersurfac&€'rt(1), then the cone
CU(v;) is a cohomogeneity 1 special Lagrangian submanifol@€3(R™?) with the
Ricci-flat Kahler cone metric.

Stenzel ([36]) constructed a complete Ricci-fla@tHer metric on the (co)tangent vector
bundle of a compact rank one symmetric sp&y& invariant under the induced group
action of G, and thus of cohomogeneity 1. The metric is called$bhenzel metericThe
Stenzel metric o *S™%(1) = TS™(1) is a complete Ricci-flat Ehler metric invariant
under the standard group action®€(n + 2).
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S. Karigiannis and M. Min-Oo ([16]) showed thal™ is an austere submanifold in
S™1(1) if and only if its conormal bundles, is a special Lagrangian submanifold in
T*S™1(1) = TS™1(1) with respect to the Stenzel metric. Here a minimal submanifold
of a Riemannian manifold is callexlistereif for each normal vector, the eigenvalues of
the shape operatdk, are invariant under multiplication byl ([12, p.102]). Note that a
minimal isoparametric hypersurfadé' in S™1(1) is an austere submanifold 8f*(1) if
and only ifm, = m, (see Proposition 3.1).

On the other hand by Lemma 4.1 we see that if an oriented minimal hyperstitfface
S™1(1) is austere, then the Gauss ngp N" — Q,(C) is a minimal Lagrangian immer-
sion. Hence&CU(v},) is a special Lagrangian submanifold@V,(R™?) with the Ricci-flat
Kahler cone metric and at the same time its conormal burjglés a special Lagrangian
submanifold inT*S™1(1) = TS™(1) with the Stenzel metric. However we should no-
tice that if N" is an isoparametric hypersurface3i**(1) but not austere, the@U(vy.)
is a special Lagrangian submanifold@V,(R™?) with the Ricci-flat Kahler cone metric
and but by the result of Karigiannis and Min-Oo its conormal bungjeis not always a
special Lagrangian submanifold ¥ S™*(1) = TS™%(1) with the Stenzel metric. And
also we see that i" is an austere homogeneous isoparametric hypersurfa®# (i),
then its conormal bundley, is a cohomogeneity 1 special Lagrangian submanifold in
T*S™(1) = TS™(1) with the Stenzel metric.

Recently Kaname Hashimoto (Osaka City University, Ph.D. student) and Takashi Sakai
(Tokyo Metropolitan UniversitfOCAMI) ([13]) investigated a classification of cohomo-
geneity 1 special Lagrangian submanifoldsTinS™1(1) = TS™!(1) with the Stenzel
metric deformed from special Lagrangian com@d(vy,) in CV,(R™?) with the Ricci-
flat Kahler cone metric in the case whai is an isoparametric hypersurface (1)
with g = 1, 2. Their research is in progress at present.
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