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Abstract

We consider the existence of a minimizer for the best constant of the Hardy-Sobolev type
inequality in arbitrary bounded smooth domain with 0 ∈ ∂Ω. The Hardy-Sobolev inequality

states that
(∫

Ω
|u|2

∗

|x|s dx
) 2

2∗ 5 C
∫
Ω
|∇u|2dx holds for all u ∈ H1

0 (Ω), where n = 3, 0 < s < 2

and 2∗ = 2∗(s) = 2(n−s)
n−2 . N.Ghoussoub and F.Robert[4] showed that the negativity of the

mean curvature at 0 guarantees the attainability in the case n = 4. In this paper, we treat
the following minimizing problem, i.e.,

µ±λ
s,p (Ω) := inf


∫
Ω
|∇u|2dx ± λ

(∫
Ω
|u|pdx

) 2
p(∫

Ω
|u|2∗
|x|s dx

) 2
2∗

; u ∈ H1
0 (Ω) \ {0}

 ,

where 2 5 p < 2n
n−2 and λ is a nonnegative constant. Our purpose is to make sure that the

situation concerning the attainability is different between µ+λ
s,p(Ω) and µ−λ

s,p (Ω). In fact, the
attainability of µ+λ

s,p(Ω) depends on the geometric assumption for Ω. On the other hand,
µ−λ

s,p (Ω) can be achieved for any domain if 2n
n−1 < p < 2n

n−2 . These results are already
generalized in the paper [6] by the same authors. In [6], we gave relatively a simple proof
than the method by N.Ghoussoub and F.Robert[4]. However, in order to understand the
detailed proof in [4], we followed their method in this article with the more general setting.

1 Introduction and main theorems

In this paper, we consider the attainability of the Sobolev-Hardy type inequalities. Let
n = 3, s ∈ [0, 2] and 2∗ = 2∗(s) = 2(n−s)

n−2 . Then the Sobolev-Hardy inequality states that there
exists a constant C > 0 such that(∫

Rn

|u|2∗

|x|s
dx

) 2
2∗

5 C

∫
Rn

|∇u|2dx (1.1)
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holds for all u ∈ H1(Rn). In what follows, let Ω be a domain in Rn and let µs(Ω) be the sharp
constant of (1.1), i.e.,

µs(Ω) := inf


∫
Ω |∇u|2dx(∫
Ω

|u|2∗
|x|s dx

) 2
2∗

;u ∈ H1
0 (Ω) \ {0}

 .

Firstly, we mention the classical facts concerning µs(Rn). E.H.Lieb[5] and G.Talenti[8] gave the
exact values of µs(Rn), 0 5 s < 2 with minimizers of the form,

u(x) = (κ + |x|2−s)−
n−2
2−s for x ∈ Rn and κ > 0.

Then the sharp constant of the Hardy inequality (s = 2) is obtained by µ2(Rn) = lim
s↑2

µs(Rn).

However, H.Egnell[2] showed that µ2(Rn) is never attained. Next, it is well-known that in the
non-singular case s = 0, µ0(Ω) is never attained provided Ω ̸= Rn (see for example M.Struwe[7]).
The situation of the singular case 0 < s < 2 is more complicated. H.Egnell[2] investigated the
attainability of µs(Ω) in the case that Ω is a cone Γ, which is defined by

Γ := {x ∈ Rn ; x = rθ, θ ∈ D, r > 0},

where D is a domain in the unit sphere Sn−1 in Rn. Then it was proved that µs(Γ) can be
achieved even if Γ ̸= Rn. The result of H.Egnell would make the motivation to consider µs(Ω)
with 0 ∈ ∂Ω for general domains. In such a viewpoint, we refer to N.Ghoussoub and X.S.Kang[3].
Let Ω be a C2-smooth domain in Rn, n = 3 with 0 ∈ ∂Ω. In [3], it was shown that µs(Ω) is never
attained provided Ω can be put into the half space Rn

− up to some rotation except for Ω = Rn
−.

On the other hand, when n = 4, the negativity of all principal curvatures of ∂Ω at 0 guarantees
the attainability for µs(Ω). Recently, the latter assertion was improved in N.Ghoussoub and
F.Robert[4] so that the negativity of the mean curvature of ∂Ω at 0 implies the attainability
under the slightly stronger assumption concerning the regularity for Ω.

Our purpose in this paper is to investigate the results in [3] and [4] with a lower perturbation,
which means that we consider the following infimum,

µ±λ
s,p (Ω) := inf


∫
Ω |∇u|2dx ± λ

(∫
Ω |u|pdx

) 2
p(∫

Ω
|u|2∗
|x|s dx

) 2
2∗

; u ∈ H1
0 (Ω) \ {0}

 ,

where n = 3, 2 5 p < 2n
n−2 and let Ω be a bounded (As for µ+λ

s,p (Ω), we necessarily need not
assume the boundedness of Ω) domain with 0 ∈ ∂Ω. In addition, λ is a nonnegative constant
such that {

λ = 0 in µ+λ
s,p (Ω),

0 < λ < Λp in µ−λ
s,p (Ω),

(1.2)

where Λp denotes the best constant of the Sobolev embedding, i.e.,

Λp := inf


∫
Ω |∇u|2dx(∫
Ω |u|pdx

) 2
p

; u ∈ H1
0 (Ω) \ {0}

 .
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We state our main results, which clarify the difference between µ+λ
s,p (Ω) and µ−λ

s,p (Ω) as for
the minimizing problem. First, concerning µ+λ

s,p (Ω), we shall show the following.

Theorem 1.1. (i) Let n = 3, s ∈ (0, 2), 2 5 p < 2n
n−2 , λ = 0 and let Ω be a C1-smooth

domain with 0 ∈ ∂Ω. In addition, assume that Ω can be put into the half space Rn
−. Then

µ+λ
s,p (Ω) = µs(Rn

−) holds and µ+λ
s,p (Ω) is never attained provided Ω ̸= Rn

−.

(ii) Let n = 4, s ∈ (0, 2), 2 5 p < 2n
n−1 , λ = 0 and let Ω be a smooth bounded domain with 0 ∈ ∂Ω.

In addition, assume that the mean curvature of ∂Ω at 0 is negative. Then µ+λ
s,p (Ω) is attained.

Remark 1.2. (i) With some technical reason, we cannot obtain the similar result for n = 3 and
for the region 2n

n−1 5 p < 2n
n−2 in Theorem 1.1 (ii). Theorem 1.1 implies that the attainability

depends on the geometric assumption for the domain Ω at least for n = 4 and for 2 5 p < 2n
n−1 .

(ii) The case λ = 0 in Theorem 1.1 (ii) coincides with the result in N.Ghoussoub and F.Robert[4]
and our generalization is basically based on the strategy of them.

Next, we state the results concerning the attainability for µ−λ
s,p (Ω).

Theorem 1.3. Let n = 3, s ∈ (0, 2), 2n
n−1 < p < 2n

n−2 , 0 < λ < Λp and let Ω be a C2-smooth
bounded domain with 0 ∈ ∂Ω. Then the infimum µ−λ

s,p (Ω) is achieved.

Remark 1.4. Theorem 1.3 implies that we no longer require the geometric assumption for the
domain Ω provided p is big enough. Moreover, Theorem 1.1 implies that the condition λ > 0
cannot be removed in general. In the end, we note that the case n = 3 is also allowed in our
statement.

Theorem 1.5. Let s ∈ (0, 2), {
2 < p < 2n

n−2 if n = 4,

2 5 p < 2n
n−2 if n = 5,

0 < λ < Λp and let Ω be a C2-smooth bounded domain with 0 ∈ ∂Ω. In addition, assume that Ω
is flat near the origin. Then the infimum µ−λ

s,p (Ω) is achieved.

Remark 1.6. The assumption that the domain Ω is flat near the origin allows us to obtain the
attainability of µ−λ

s,p (Ω) for all 2 5 p < 2n
n−2 , though p = 2 is excluded if n = 4. Unfortunately,

we cannot obtain the corresponding fact in n = 3 because of the technical reason. Furthermore,
as is mentioned in the previous remark, the case λ = 0 is still excluded under the situation in
Theorem 1.5.

For the proofs of main theorems, we first investigate the minimizing problem in the subcritical
case, i.e.,

µ±λ,ε
s,p (Ω) := inf


∫
Ω |∇u|2dx ± λ

(∫
Ω |u|pdx

) 2
p(∫

Ω
|u|2∗−ε

|x|s dx
) 2

2∗−ε

; u ∈ H1
0 (Ω) \ {0}

 , (1.3)
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where ε ∈ (0, 2∗ − 2). Then the compactness can be recovered and then the infimum µ±λ,ε
s,p (Ω)

is achieved by a positive function u±
ε ∈ H1

0 (Ω), see Proposition 2.1. The fact that u±
ε is a

minimizer for µ±λ,ε
s,p (Ω) and the corresponding Euler-Lagrange equation satisfied by u±

ε tell us
the boundedness of the norm ∥∇u±

ε ∥L2(Ω) as ε → 0. Then up to a subsequence, u±
ε converges to

some function u±
0 weakly in H1

0 (Ω) as ε → 0. We shall show that u±
0 is a minimizer for µ±λ

s,p (Ω)
provided u±

0 ̸= 0, respectively, see Proposition 2.2. On the other hand, section 3 is devoted to
discuss the blow-up case u±

0 = 0. The goal of section 3 is to prove that the equality

µ±λ
s,p (Ω) = µs(Rn

−)

holds if the blow-up case occurs, see Proposition 3.1. In section 4, we shall show main theorems.
However, the proof of Theorem 1.1 and those of Theorems 1.3 and 1.5 are different. In the case
of µ+λ

s,p (Ω), we prove that the blow-up case never occurs by using the negativity of the mean
curvature at 0. On the other hand, we complete the proofs of of Theorems 1.3 and 1.5 by proving
the strict inequality µ−λ

s,p (Ω) < µs(Rn
−).

2 Non blow-up case

We first note that a Cm-smooth domain Ω,m ∈ N is expressed as the following which will
be used throughout the paper. Let x0 ∈ ∂Ω. Then there exist an open interval I ⊂ R, an open
set U ′ ⊂ Rn−1, an open set V ⊂ Rn, a Cm-diffeomorphism φ ∈ Cm(U, V ), U = I × U ′ and a
function φ0 ∈ Cm(U ′) such that

(i) 0 ∈ U, x0 ∈ V and φ(0) = x0 ;
(ii)φ(U ∩ {x1 < 0}) = V ∩ Ω and φ(U ∩ {x1 = 0}) = V ∩ ∂Ω ;
(iii)φ(x) = x0 + (x1 + φ0(x′), x′) for x = (x1, x

′) ∈ I × U ′ = U ;
(iv)φ0(0) = 0 and ∇′φ0(0) = 0,∇′ = (∂2, · · · ∂n).

Lemma 2.1. Let 2 5 p < 2n
n−2 , 0 < s < 2, λ as in (1.2) and let Ω be a C1-smooth domain with

0 ∈ ∂Ω (As for µ−λ
s,p (Ω), we assume the boundedness for Ω). Then it follows

µ±λ
s,p (Ω) 5 µs(Rn

−).

Proof. The proof of Lemma 2.1 will be done in a quite similar way as in Ghoussoub-Robert[4,
Proposition 3.1] without any modification. Hence, we omit it here.

Since the minimizing problem for µ±λ,ε
s,p (Ω) does not include any noncompact term. Thus

by virtue of the compactness, the following proposition is elemental, and we give the statement
without the proof.

Proposition 2.1. Let 2 5 p < 2n
n−2 , 0 < s < 2, λ as in (1.2) and let Ω be a C0,1-smooth bounded

domain with 0 ∈ Ω. In addition, for arbitrary ε ∈ (0, 2∗ − 2), define µ±λ,ε
s,p (Ω) as in (1.3). Then

the infimum µ±λ,ε
s,p (Ω) is achieved by a nonnegative function u±

ε ∈ H1
0 (Ω) ∩ C(Ω) ∩ C2(Ω \ {0})

satisfying the following equation,

−∆u±
ε = ∓λ ∥u±

ε ∥
−(p−2)
Lp(Ω) (u±

ε )p−1 +
(u±

ε )2
∗−1−ε

|x|s
in Ω. (2.1)
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Furthermore, the strong maximum principle yields that u−
ε > 0 in Ω.

Next, we prove that a minimizer of µ±λ
s,p (Ω) can be obtained as a limit-function of the mini-

mizers u±
ε for µ±λ,ε

s,p (Ω) in the non blow-up case. It is easy to prove the continuity of µ±λ,ε
s,p (Ω)

as ε → 0, i.e., we have the following lemma. Its proof will be omitted here.

Lemma 2.2. Let 2 5 p < 2n
n−2 , 0 < s < 2, λ as in (1.2) and let Ω be a bounded domain with

0 ∈ Ω. Then it follows lim
ε→0

µ±λ,ε
s,p (Ω) = µ±λ

s,p (Ω), respectively.

Next, let u−
ε be a minimizer of µ−λ,ε

s,p (Ω) given by Proposition 2.1. Taking u−
ε as a test

function in the equation (2.1), we have∫
Ω
|∇u−

ε |2dx − λ

(∫
Ω
(u−

ε )pdx

) 2
p

=
∫

Ω

(u−
ε )2

∗−ε

|x|s
dx. (2.2)

Then with (2.2) and the fact that u−
ε is a minimizer, we see that

µ−λ,ε
s,p (Ω) =

∫
Ω |∇u−

ε |2dx − λ
(∫

Ω(u−
ε )pdx

) 2
p(∫

Ω
(u−

ε )2∗−ε

|x|s dx
) 2

2∗−ε

=
(∫

Ω

(u−
ε )2

∗−ε

|x|s
dx

) 2∗−2−ε
2∗−ε

. (2.3)

Hence, from (2.2), (2.3) and Lemma 2.2 it follows that∫
Ω
|∇u−

ε |2dx 5 Λp

Λp − λ

(∫
Ω
|∇u−

ε |2dx − λ

(∫
Ω
(u−

ε )pdx

) 2
p

)
=

Λp

Λp − λ

∫
Ω

(u−
ε )2

∗−ε

|x|s
dx

=
Λp

Λp − λ
µ−λ,ε

s,p (Ω)
2∗−ε

2∗−2−ε → Λp

Λp − λ
µ−λ

s,p (Ω)
2∗

2∗−2

as ε → 0. Therefore, we see that there exist {εj}j∈N ⊂ (0, 2∗ − 2) with εj → 0 as j → ∞ and
u−

0 ∈ H1
0 (Ω) such that 

u−
εj

→ u−
0 weakly in H1

0 (Ω),
u−

εj
→ u−

0 strongly in Lp(Ω),
u−

εj
→ u−

0 a.e. in Ω

(2.4)

as j → ∞. The following proposition shows that µ−λ
s,p (Ω) is achieved in the non blow-up case.

Obviously, the same manner as above works for µ+λ
s,p (Ω) and we see that

u+
εj

→ u+
0 weakly in H1

0 (Ω),
u+

εj
→ u+

0 strongly in Lp(Ω),
u+

εj
→ u+

0 a.e. in Ω.

Proposition 2.2. Let u±
0 be a function in H1

0 (Ω) constructed in the previous way. Then u±
0 is

a minimizer for µ±λ
s,p (Ω) provided u±

0 ̸= 0, respectively.

5



Proof. We shall show Proposition 2.2 only for µ−λ
s,p (Ω) since the proof is quite similar. The

equation (2.1) satisfied by u−
εj

with u−
0 as a test function yields that∫

Ω
∇u−

εj
· ∇u−

0 dx − λ∥u−
εj
∥−(p−2)

Lp(Ω)

∫
Ω
(u−

εj
)p−1u−

0 dx =
∫

Ω

(u−
εj

)2
∗−1−εju−

0

|x|s
dx. (2.5)

By using weak convergences, we have as j → ∞,
∫
Ω

(u−
εj

)2
∗−1−εj u−

0

|x|s dx →
∫
Ω

(u−
0 )2

∗

|x|s dx,∫
Ω ∇u−

εj
· ∇u−

0 dx →
∫
Ω |∇u−

0 |2dx,∫
Ω(u−

εj
)p−1u−

0 dx →
∫
Ω(u−

0 )pdx.

(2.6)

Thus recalling u−
0 ̸= 0 and letting j → ∞ in (2.5),∫

Ω
|∇u−

0 |
2dx − λ

(∫
Ω
(u−

0 )pdx

) 2
p

=
∫

Ω

(u−
0 )2

∗

|x|s
dx.

Then we see that

µ−λ
s,p (Ω) 5

∫
Ω |∇u−

0 |2dx − λ
(∫

Ω(u−
0 )pdx

) 2
p(∫

Ω
(u−

0 )2∗

|x|s dx
) 2

2∗
=
(∫

Ω

(u−
0 )2

∗

|x|s
dx

) 2∗−2
2∗

,

and we have

µ−λ
s,p (Ω)

2∗
2∗−2 5

∫
Ω

(u−
0 )2

∗

|x|s
dx. (2.7)

Therefore, from (2.3), (2.7), Lemma 2.2 and Fatou’s lemma, we obtain that

µ−λ
s,p (Ω)

2∗
2∗−2 5

∫
Ω

(u−
0 )2

∗

|x|s
dx 5 lim inf

j→∞

∫
Ω

(u−
εj

)2
∗−εj

|x|s
dx = lim inf

j→∞
µ−λ,ε

s,p (Ω)
2∗−εj

2∗−2−εj = µ−λ
s,p (Ω)

2∗
2∗−2 .

Consequently, we have∫
Ω
|∇u−

0 |
2dx − λ

(∫
Ω
(u−

0 )pdx

) 2
p

=
∫

Ω

(u−
0 )2

∗

|x|s
dx = µ−λ

s,p (Ω)
2∗

2∗−2 . (2.8)

In the end, we see that∫
Ω
|∇u−

εj
−∇u−

0 |
2dx =

∫
Ω
|∇u−

εj
|2dx − λ

(∫
Ω
(u−

εj
)pdx

) 2
p

+ λ

(∫
Ω
(u−

εj
)pdx

) 2
p

− 2
∫

Ω
∇u−

εj
· ∇u−

0 dx +
∫

Ω
|∇u−

0 |
2dx.

Then by (2.2), (2.3), (2.4), (2.6), (2.8) and Lemma 2.2, we have∫
Ω
|∇u−

εj
−∇u−

0 |
2dx → 0

as j → ∞. As easily checked, u−
0 is a minimizer of µ−λ

s,p (Ω).
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3 Blow-up case

In this section, we investigate the blow-up case where the minimizers {u±
εj
}j∈N given by

Proposition 2.1 converges to 0 weakly in H1
0 (Ω) as j → ∞.

Let Ω be a C2-smooth bounded domain with 0 ∈ ∂Ω. Recall that the minimizers u±
ε ∈

H1
0 (Ω) \ {0} are solutions to{

−∆u±
ε = ∓λ∥u±

ε ∥
−(p−2)
Lp(Ω) (u±

ε )p−1 + (u±
ε )2

∗−1−ε

|x|s in Ω,

u±
ε > 0 in Ω,

(3.1)

where 2 5 p < 2n
n−2 , 0 < s < 2, λ as in (1.2) and ε ∈ (0, 2∗−2). For the regularity of the solutions

uε, we can prove u±
ε ∈ Cα(Ω) for some α ∈ (0, 1) depending only on s by the iteration method,

see N.Ghoussoub and F.Robert[4, Proposition 8.1] for instance. Thus from the standard elliptic
theory and the strong maximum principle, we obtain u±

ε ∈ C2(Ω \ {0}) ∩ C1(Ω) and u−
ε > 0 in

Ω. Furthermore, u±
ε satisfies ∫

Ω

(u±
ε )2

∗−ε

|x|s
dx = µλ

s,p(Ω)
2∗

2∗−2 + o(1)

as ε → 0. Then in the quite same argument in section 2, we have that there exist {εj}j∈N ⊂
(0, 2∗ − 2) with εj → 0 as j → ∞ and u±

0 ∈ H1
0 (Ω) such that

u±
εj

→ u±
0 weakly in H1

0 (Ω),
u±

εj
→ u±

0 strongly in Lp(Ω),
u±

εj
→ u±

0 a.e. in Ω

as j → ∞. In addition, we assume that the blow-up occurs, i.e., the limit-function u±
0 = 0. Our

goal in this section is to prove the following proposition.

Proposition 3.1. Assume that the blow-up case occurs as above. Then we have the equality

µ±λ
s,p (Ω) = µs(Rn

−).

In the rest of this section, we treat only the case µ−λ
s,p (Ω) since the proof of Proposition 3.1 is

quite same as in the case of µ+λ
s,p (Ω). We mainly follow the strategy developed by N.Ghoussoub

and F.Robert[4] who treated the case λ = 0 or the case p = 2. However, note that the term
∥u±

ε ∥
−(p−2)
Lp(Ω) (u±

ε )p−1 in the equation (3.1) is no longer linear in the case p > 2 and the coefficient
depends on ε which make some difficulty to show the attainability. We prepare several lemmas.

Let xεj ∈ Ω be a maximum point of u−
εj

, that is, 0 < max
Ω

u−
εj

= u−
εj

(xεj ) holds, and we define

positive constants νεj > 0 and κεj > 0 by

νεj := u−
εj

(xεj )
− 2

n−2 and κεj := ν
2∗−2−εj

2∗−2
εj . (3.2)

Lemmas 3.1-3.4 below will be proved in the quite same way as in N.Ghoussoub and F.Robert[4].
Hence, we will omit them here.
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Lemma 3.1. Up to a subsequence, it follows lim
j→∞

νεj = 0.

Lemma 3.2. It follows that |xεj | = O(κεj ) as j → ∞.

Let φ be a local chart at 0 ∈ ∂Ω introduced in section 2 and define

vεj (x) :=
(u−

εj
◦ φ)(κεjx)

u−
εj (xεj )

for x ∈ U
κεj

∩ {x1 5 0}. Since κεj → 0 as j → ∞, for any η ∈ C∞
c (Rn), we see that supp η ⊂ U

κεj

for all j ∈ N large enough, and then it follows ηvεj ∈ Ḣ1
0 (Rn

−), where Ḣ1
0 (Rn

−) denotes the closure
of C∞

c (Rn
−) in the Sobolev space endowed with the norm ∥∇ · ∥L2(Rn

−) + ∥ · ∥
L

2n
n−2 (Rn

−)
.

Lemma 3.3. There exists v ∈ Ḣ1
0 (Rn

−)\{0} such that for any η ∈ C∞
c (Rn), up to a subsequence,

ηvεj converges to ηv weakly in Ḣ1
0 (Rn

−) as j → ∞. In addition, there exists α ∈ (0, 1) such that
v ∈ Cα

loc(Rn
−) and for any K > 0, up to a subsequence, vεj converges to v in Cα

loc(BK(0)∩{x1 5
0}) as j → ∞.

Lemma 3.4. v ∈ Ḣ1
0 (Rn

−) constructed in Lemma 3.3 satisfies

−∆v =
v2∗−1

|x|s
in Rn

−.

We are now in a position to prove Proposition 3.1.

Proof of Proposition 3.1. Lemma 3.4 says that v ∈ Ḣ1
0 (Rn

−) satisfies

−∆v =
v2∗−1

|x|s
in Rn

−.

Taking v as a test function, ∫
Rn
−

|∇v|2dx =
∫
Rn
−

v2∗

|x|s
dx.

From the definition of µs(Rn
−), we obtain

µs(Rn
−) 5

∫
Rn
−
|∇v|2dx(∫

Rn
−

v2∗

|x|s dx
) 2

2∗
=

(∫
Rn
−

|∇v|2dx

) 2∗−2
2∗

,

and then we have
µs(Rn

−)
2∗

2∗−2 5
∫
Rn
−

|∇v|2dx. (3.3)

The direct computation yields that∫
Rn
−

|∇(ηRvεj )|2dx 5 Cδ∥∇ηR∥2
Ln(Rn)∥vεj∥2

L
2n

n−2 (supp |∇ηR| ∩ {x1<0})
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+ (1 + δ) ν
(n−2)εj
2∗−2

εj (1 + O(κεj ))∥ηR∥2
L∞(Rn)∥∇u−

εj
∥2

L2(Ω)

= Cδ∥∇η1∥2
Ln(Rn)∥vεj∥2

L
2n

n−2 (supp |∇ηR| ∩ {x1<0})
+ (1 + δ) ν

(n−2)εj
2∗−2

εj (1 + O(κεj ))∥∇u−
εj
∥2

L2(Ω).

(3.4)

Here, we give several remarks. Taking u−
εj

as a test function in (3.1), we have

∫
Ω
|∇u−

εj
|2dx − λ

(∫
Ω
(u−

εj
)pdx

) 2
p

=
∫

Ω

(u−
εj

)2
∗−εj

|x|s
dx = µλ

s,p(Ω)
2∗

2∗−2 + o(1)

as j → ∞. Since lim
j→∞

∥u−
εj
∥Lp(Ω) = 0, we then get

∫
Ω
|∇u−

εj
|2dx → µλ

s,p(Ω)
2∗

2∗−2

as j → ∞. Moreover, from Lemma 3.3, we obtain

∥vεj∥
L

2n
n−2 (supp |∇ηR| ∩ {x1<0})

= ∥vεj∥
L

2n
n−2 ((B2R(0)\BR(0))∩{x1<0})

→ ∥v∥
L

2n
n−2 ((B2R(0)\BR(0))∩{x1<0})

as j → ∞. In addition, since ηRvεj converges to vR weakly in Ḣ1
0 (Rn

−), taking the weak-limit
yields ∥∇vR∥L2(Rn

−) 5 lim inf
j→∞

∥∇(ηRvεj )∥L2(Rn
−). After all, letting j → ∞ in (3.4) shows that

∥∇vR∥2
L2(Rn

−) 5 Cδ∥∇η1∥2
Ln(Rn)∥v∥

2

L
2n

n−2 ((B2R(0)\BR(0))∩{x1<0})

+ (1 + δ)
(

lim inf
j→∞

ν
εj
εj

) n−2
2∗−2

µλ
s,p(Ω)

2∗
2∗−2 .

Here, v ∈ L
2n

n−2 (Rn
−) guarantees that ∥v∥

L
2n

n−2 ((B2R(0)\BR(0))∩{x1<0})
→ 0 as R → ∞. Since vRj

converges v weakly in Ḣ1
0 (Rn

−) as j → ∞ and δ is arbitrary, we get

∥∇v∥2
L2(Rn

−) 5
(

lim inf
j→∞

ν
εj
εj

) n−2
2∗−2

µλ
s,p(Ω)

2∗
2∗−2 . (3.5)

As a consequence, since νεj 5 1 for j ∈ N large enough, from Lemma 2.1, (3.3) and (3.5), we
have

∥∇v∥2
L2(Rn

−) 5
(

lim inf
j→∞

ν
εj
εj

) n−2
2∗−2

µλ
s,p(Ω)

2∗
2∗−2 5 µλ

s,p(Ω)
2∗

2∗−2 5 µs(Rn
−)

2∗
2∗−2 5 ∥∇v∥2

L2(Rn
−),

and then it follows that µλ
s,p(Ω) = µs(Rn

−). �
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4 Proof of theorems

This section is devoted to prove main theorems. We shall show the blow-up case argued
in section 3 never occurs under the assumption in theorems. First, we shall give the proofs of
Theorem 1.3 and Theorem 1.5. By virtue of Lemma 2.1, Proposition 2.2 and Proposition 3.1,
it suffices to prove the following.

Proposition 4.1. Let n = 3, s ∈ (0, 2), 2n
n−1 < p < 2n

n−2 , 0 < λ < Λp and let Ω be a C1-smooth
bounded domain. Then it follows

µ−λ
s,p (Ω) < µs(Rn

−).

Proposition 4.2. Let s ∈ (0, 2),{
2 < p < 2n

n−2 if n = 4,

2 5 p < 2n
n−2 if n = 5,

(4.1)

0 < λ < Λp, and let Ω be a bounded domain. Furthermore, assume that Ω is flat near the origin.
Then it follows

µ−λ
s,p (Ω) < µs(Rn

−).

Remark 4.1. Obviously, Proposition 4.1 and Proposition 4.2 show Theorem 1.3, Theorem 1.5,
respectively.

First, we prove Proposition 4.1.

Proof of Proposition 4.1. We make use of the minimizer v ∈ H1
0 (Rn

−) \ {0} for µs(Rn
−)

constructed by H.Egnell[2] satisfying the following properties. First, the minimizer v enjoys{
−∆v = v2∗−1

|x|s in Rn
−,

v > 0 in Rn
−.

(4.2)

In addition, the following pointwise estimates hold,

|v(x)| 5 C

|x|n−2
and |∇v(x)| 5 C

|x|n−1
(4.3)

for all x ∈ Rn
−. Furthermore, K.S.Chou and C.W.Chu[1, Proposition 4.4] showed that v ∈

L∞
loc(Rn

−). They considered this regularity problem in the whole space Rn. However, by imitating
the argument in [1], we get the regularity of v on the half space. Then the standard elliptic
theory yields v ∈ C1(Rn

−) ∩ C2(Rn
− \ {0}). Hence, with (4.3), we obtain

|v(x)| 5 C

(1 + |x|)n−2
and |∇v(x)| 5 C

(1 + |x|)n−1
(4.4)

for all x ∈ Rn
−. Next, we claim that the decay estimate for v is slightly improved, i.e.,

|v(x)| 5 C

(1 + |x|)n−1
(4.5)
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holds for all x ∈ Rn
−. Indeed, let ṽ be the Kelvin transform of v as follows,

ṽ(x) :=
1

|x|n−2
v

(
x

|x|2

)
for x ∈ Rn

− \ {0} and ṽ(0) := 0. We easily see that ṽ ∈ C2(Rn
− \ {0}). Moreover, by using (4.2)

and (4.4), we get {
−∆ṽ = ṽ2∗−1

|x|s in Rn
−,

ṽ(x) 5 C
(1+|x|)n−2 for x ∈ Rn

−.

Since ṽ vanishes on ∂Rn
−, the standard elliptic theory yields ṽ ∈ C1(Rn

−), and then it follows
that

ṽ(x) 5 ∥∇ṽ∥L∞(B1(0)∩{x1<0})|x|

for all x ∈ B1(0) ∩ {x1 < 0}, which implies (4.5).

Let φ be a local chart at 0 ∈ ∂Ω introduced in section 2. Take a ball BR0(0) with BR0(0) ⊂ V
and ζ ∈ C∞

c (V ) such that ζ ≡ 1 in BR0(0). For any δ > 0, define

wδ(x) := v

(
φ−1(x)

δ

)
for x ∈ Ω ∩ V . Then we easily see that ζwδ ∈ H1

0 (Ω) \ {0} for all δ small enough. From the
definition of µ−λ

s,p (Ω), we obtain that

µ−λ
s,p (Ω) 5

∫
Ω |∇(ζwδ)|2dx − λ

(∫
Ω |ζwδ|pdx

) 2
p(∫

Ω
|ζwδ |2∗
|x|s dx

) 2
2∗

5

∫
Ω∩V |∇(ζwδ)|2dx − λ

(∫
Ω∩BR0

(0) wp
δdx
) 2

p

(∫
Ω∩BR0

(0)

w2∗
δ

|x|s dx
) 2

2∗
.

(4.6)
for all δ > 0. We estimate the integrals in the right-hand side in (4.6). The direct calculation
yields that∫

Ω∩V
|∇(ζwδ)|2dx =

∫
Ω∩V

|wδ∇ζ|2dx + 2
∫

Ω∩V
wδ ζ ∇wδ · ∇ζdx +

∫
Ω∩V

|ζ∇wδ|2dx

=
∫

(Ω∩V )\BR0
(0)
|wδ∇ζ|2dx + 2

∫
(Ω∩V )\BR0

(0)
wδ ζ ∇wδ · ∇ζdx +

∫
(Ω∩V )\BR0

(0)
|ζ∇wδ|2dx +

∫
Ω∩BR0

(0)
|∇wδ|2dx

5 2
∫

(Ω∩V )\BR0
(0)

|wδ∇ζ|2dx + 2
∫

(Ω∩V )\BR0
(0)

|ζ∇wδ|2dx +
∫

Ω∩BR0
(0)

|∇wδ|2dx =: 2I1 + 2I2 + I3.

First, we estimate I1. By a change of the variable and (4.5), we have

I1 5 δn∥∇ζ∥2
L∞(V )

∫
{

x∈U∩{x1<0}
δ

; |φ(δx)|=R0

} v2dx 5 δn∥∇ζ∥2
L∞(V )

∫
{x∈Rn

− ; |δx|=C>0}
v2dx

5 δn∥∇ζ∥2
L∞(V )

∫
{x∈Rn ; |δx|=C}

|x|−2(n−1)dx = Cδ2(n−1).
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Therefore, we get I1 = O(δ2(n−1)) as δ → 0. Next, note that |∇wδ(x)| 5 Cδ−1
∣∣∣(∇v)

(
φ−1(x)

δ

)∣∣∣
holds for all x ∈ Ω ∩ V , and then with (4.4), I2 is estimated as follows,

I2 5 Cδ−2∥ζ∥2
L∞(V )

∫
(Ω∩V )\BR0

(0)

∣∣∣∣(∇v)
(

φ−1(x)
δ

)∣∣∣∣2 dx = Cδn−2

∫
{

x∈U∩{x1<0}
δ

; |φ(δx)|=R0

}|∇v|2dx

5 Cδn−2

∫
{x∈Rn

− ; |δx|=C>0}
|∇v|2dx 5 Cδn−2

∫
{x∈Rn ; |δx|=C}

|x|−2(n−1)dx = Cδ2(n−2).

Hence, we get I2 = O(δ2(n−2)) as δ → 0. Thirdly, it follows that

I3 = δ−2

∫
Ω∩BR0

(0)

∣∣∣∣(∇v)
(

φ−1(x)
δ

)∣∣∣∣2 dx

− 2δ−2

∫
Ω∩BR0

(0)
(∂1v)

(
φ−1(x)

δ

)
(∇′v)

(
φ−1(x)

δ

)
· ∇′φ0(x′)dx

+ δ−2

∫
Ω∩BR0

(0)
(∂1v)

(
φ−1(x)

δ

)2

|∇′φ0(x′)|2dx. (4.7)

Here, since 2n
n−1 < p, there exists α0 ∈ (0, 1) such that 2n

n−1 < 2n
n−2+α0

< p. With the fact
∇′φ0(0) = 0, we have that

|(∇′φ0)((φ(δx))′)| 5 C|(φ(δx))′|α0 5 Cδα0 |x|α0 (4.8)

for all x ∈ U∩{x1<0}
δ . From (4.4) and (4.8), we obtain that

δ−2

∫
Ω∩BR0

(0)

∣∣∣∣(∇v)
(

φ−1(x)
δ

)∣∣∣∣2 |∇′φ0(x′)|2dx

5 δ−2∥|∇′φ0|∥L∞(U ′)

∫
Ω∩BR0

(0)

∣∣∣∣(∇v)
(

φ−1(x)
δ

)∣∣∣∣2 |∇′φ0(x′)|dx

5 Cδn−2

∫
U∩{x1<0}

δ

|∇v(x)|2|(∇′φ0)((φ(δx))′)|dx 5 Cδn−2+α0

∫
Rn
−

|∇v|2|x|α0dx = Cδn−2+α0 .

(4.9)

Note that the last integral in the above estimate is finite by virtue of (4.4). Combining (4.7)
with (4.9), we get

I3 = δ−2

∫
Ω∩BR0

(0)

∣∣∣∣(∇v)
(

φ−1(x)
δ

)∣∣∣∣2 dx + O(δn−2+α0) = δn−2

∫
Ũ
δ

|∇v|2dx + O(δn−2+α0)

as δ → 0, where Ũ := {φ−1(x) ; x ∈ Ω ∩ BR0(0)}. As a consequence, it follows that∫
Ω∩V

|∇(ζwδ)|2dx 5 δn−2

∫
Ũ
δ

|∇v|2dx + O(δn−2+α0) (4.10)
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as δ → 0. Furthermore, by changing the variable, we have(∫
Ω∩BR0

(0)
wp

δdx

) 2
p

= δ
2n
p

(∫
Ũ
δ

vpdx

) 2
p

and
∫

Ω∩BR0
(0)

w2∗
δ

|x|s
dx = δn−s

∫
Ũ
δ

v2∗∣∣∣φ(δx)
δ

∣∣∣s dx.

(4.11)

After all, (4.6), (4.10) and (4.11) show that

µ−λ
s,p (Ω) 5

δn−2
∫

Ũ
δ

|∇v|2dx + O(δn−2+α0) − λδ
2n
p

(∫
Ũ
δ

vpdx

) 2
p

(
δn−s

∫
Ũ
δ

v2∗∣∣∣φ(δx)
δ

∣∣∣s dx

) 2
2∗

=

∫
Ũ
δ

|∇v|2dx + O(δα0) − λδ
2n
p
−(n−2)

(∫
Ũ
δ

vpdx

) 2
p

(∫
Ũ
δ

v2∗∣∣∣φ(δx)
δ

∣∣∣s dx

) 2
2∗

.

Hence, since v in a minimizer for µs(Rn
−), we see that

µ−λ
s,p (Ω) − µs(Rn

−)

5

(∫
Ũ
δ

|∇v|2dx+O(δα0)−λδ
2n
p
−(n−2)

(∫
Ũ
δ

vpdx

) 2
p

)(∫
Rn
−

v2∗

|x|s dx
) 2

2∗−
∫
Rn
−
|∇v|2dx

(∫
Ũ
δ

v2∗∣∣∣φ(δx)
δ

∣∣∣s dx

)2
2∗

(∫
Ũ
δ

v2∗∣∣∣φ(δx)
δ

∣∣∣s dx

) 2
2∗ (∫

Rn
−

v2∗

|x|s dx
) 2

2∗

.

(4.12)

Moreover, by virtue of (4.4) and (4.5), it follows that∫
Ũ
δ

|∇v|2dx =
∫
Rn
−

|∇v|2dx + O(δn−2) and
∫

Ũ
δ

|v|pdx =
∫
Rn
−

|v|pdx + O(δ(n−1)p−n) (4.13)

as δ → 0, respectively. In order to investigate the integral
∫

Ũ
δ

v2∗∣∣∣φ(δx)
δ

∣∣∣s dx, we use the elementary

inequality as follows. Let 0 < t1 5 t2 5 1. Then there exists a constant C such that

|at1 − bt1 | 5 C a−(t2−t1) |a − b|t2 (4.14)

holds for all a = 0 and b = 0. Now we set∫
Ũ
δ

v2∗∣∣∣φ(δx)
δ

∣∣∣s dx =
∫
Rn
−

v2∗

|x|s
dx + J1 − J2,
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where

J1 :=
∫

Ũ
δ

v2∗∣∣∣φ(δx)
δ

∣∣∣s dx −
∫

Ũ
δ

v2∗

|x|s
dx and J2 :=

∫
Rn
−\ Ũ

δ

v2∗

|x|s
dx.

We distinguish two cases.

Case 1. Let 0 < s 5 1. For any x ∈ Ũ
δ , there exists θ ∈ (0, 1) such that φ0(δx′) = (∇′φ0)(θδx′) ·

δx′, and then with (4.14), we get∣∣∣∣|x|s − ∣∣∣∣φ(δx)
δ

∣∣∣∣s∣∣∣∣ 5 C|x|−(1−s)

∣∣∣∣|x| − ∣∣∣∣φ(δx)
δ

∣∣∣∣∣∣∣∣ 5 C|x|−(1−s)

∣∣∣∣x − φ(δx)
δ

∣∣∣∣ = C|x|−(1−s) |φ0(δx′)|
δ

5 C|x|−(1−s)|x′||(∇′φ0)(θδx′)| 5 C|x|−(1−s)|x′|

(
n∑

i=2

∥∇[∂iφ0]∥2
L∞(U ′) |θδx

′|2
) 1

2

5 Cδ|x|−(1−s)|x′|2.

(4.15)

In addition, since the inequality |φ(δx)| = δ|x′| holds for all x ∈ Ũ
δ , J1 can be estimated as

follows,

|J1| 5
∫

Ũ
δ

∣∣∣|x|s − ∣∣∣φ(δx)
δ

∣∣∣s∣∣∣∣∣∣φ(δx)
δ

∣∣∣s |x|s v2∗dx 5 Cδ

∫
Ũ
δ

|x′|2−s

|x|
v2∗dx 5 Cδ

∫
Rn
−

|x|1−sv2∗dx = Cδ,

where (4.5) guarantees the boundedness of the last integral in the above estimate.

Case 2. Let 1 < s < 2. In this case, from (4.15) with s = 1, we see that∣∣∣∣|x|s − ∣∣∣∣φ(δx)
δ

∣∣∣∣s∣∣∣∣ 5 C

(
|x|s−1 +

∣∣∣∣φ(δx)
δ

∣∣∣∣s−1
)∣∣∣∣|x| − ∣∣∣∣φ(δx)

δ

∣∣∣∣∣∣∣∣ 5 Cδ|x|s−1|x′|2.

Then in the quite same manner as in Case 1, we get J1 = O(δ) as δ → 0.

In both cases, we have J1 = O(δ) as δ → 0. Furthermore, by (4.5), we easily see that

J2 = O(δ
n(n−s)

n−2 ) as δ → 0. Since 1 < n(n−s)
n−2 , it follows that∫

Ũ
δ

v2∗∣∣∣φ(δx)
δ

∣∣∣s dx =
∫
Rn
−

v2∗

|x|s
dx + O(δ), (4.16)

as δ → 0. After all, from (4.12), (4.13) and (4.16), we obtain that∫
Ũ
δ

|∇v|2dx + O(δα0) − λδ
2n
p
−(n−2)

(∫
Ũ
δ

vpdx

) 2
p

(∫
Rn
−

v2∗

|x|s
dx

) 2
2∗

−
∫
Rn
−

|∇v|2dx

∫
Ũ
δ

v2∗∣∣∣φ(δx)
δ

∣∣∣s dx

 2
2∗

=

∫
Rn
−

|∇v|2dx + O(δα0) − λδ
2n
p
−(n−2)

(∫
Rn
−

|v|pdx + O(δ(n−1)p−n)

) 2
p

(∫
Rn
−

v2∗

|x|s
dx

) 2
2∗
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−
∫
Rn
−

|∇v|2dx

(∫
Rn
−

v2∗

|x|s
dx + O(δ)

) 2
2∗

=

∫
Rn
−

|∇v|2dx + O(δα0) − λδ
2n
p
−(n−2)

(∫
Rn
−

|v|pdx

) 2
p

+ O(δ
2n
p
−(n−2)+(n−1)p−n)

(∫
Rn
−

v2∗

|x|s
dx

) 2
2∗

−
∫
Rn
−

|∇v|2dx

(∫
Rn
−

v2∗

|x|s
dx

) 2
2∗

+ O(δ)

= −λδ
2n
p
−(n−2)

(∫
Rn
−

|v|pdx

) 2
p
(∫
Rn
−

v2∗

|x|s
dx

) 2
2∗

+ O(δα0) < 0

for all δ > 0 small enough since we have 2n
n−2+α0

< p, which ends the proof. �
Next, we shall show Proposition 4.2 in which the basic strategy is the same as the proof of

Proposition 4.1.

Proof of Proposition 4.2. First, the condition that the domain Ω is flat near the origin
allows us to assume there exist an open interval I0 ⊂ R and a ball B(0) ⊂ Rn−1 such that
0 ∈ I0, B(0) ⊂ ∂Ω and U ∩ {x1 < 0} ⊂ Ω, where U := I0 × B(0). We again use the minimizer
v ∈ H1

0 (Rn
−) for µs(Rn

−) in the proof of Proposition 4.1. Take a ball B̃(0) ⊂ Rn with B̃(0) ⊂ U

and ζ ∈ C∞
c (U) such that ζ ≡ 1 in B̃(0). Define wδ(x) := v

(
x
δ

)
for δ > 0 and x ∈ U ∩{x1 5 0}.

Then we see that ζwδ ∈ H1
0 (Ω) \ {0} for all δ > 0 small enough since v ̸= 0. Hence, it follows

that

µ−λ
s,p (Ω) 5

∫
Ω |∇(ζwδ)|2dx − λ

(∫
Ω |ζwδ|pdx

) 2
p(∫

Ω
|ζwδ |2∗
|x|s dx

) 2
2∗

5

∫
U∩Ω |∇(ζwδ)|2dx − λ

(∫
B̃(0)∩Ω wp

δdx
) 2

p

(∫
B̃(0)∩Ω

w2∗
δ

|x|s dx
) 2

2∗
.

In the quite same way as in the proof of Proposition 4.1, we obtain that(∫
B̃(0)∩Ω

δ

v2∗

|x|s
dx

) 2
2∗
(∫
Rn
−

v2∗

|x|s
dx

) 2
2∗ (

µ−λ
s,p (Ω) − µs(Rn

−)
)

5

∫
B̃(0)∩Ω

δ

|∇v|2dx + O(δn−2) − λδ
2n
p
−(n−2)

(∫
B̃(0)∩Ω

δ

vpdx

) 2
p

(∫
Rn
−

v2∗

|x|s
dx

) 2
2∗

−
∫
Rn
−

|∇v|2dx

(∫
B̃(0)∩Ω

δ

v2∗

|x|s
dx

) 2
2∗

=

∫
Rn
−

|∇v|2dx + O(δn−2) − λδ
2n
p
−(n−2)

(∫
Rn
−

|v|pdx + O(δ(n−1)p−n)

) 2
p

(∫
Rn
−

v2∗

|x|s
dx

) 2
2∗

−
∫
Rn
−

|∇v|2dx

(∫
Rn
−

v2∗

|x|s
dx + O(δ

n(n−s)
n−2 )

) 2
2∗
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=

∫
Rn
−

|∇v|2dx + O(δn−2) − λδ
2n
p
−(n−2)

(∫
Rn
−

|v|pdx

) 2
p

+ O(δ
2n
p
−(n−2)+(n−1)p−n)

(∫
Rn
−

v2∗

|x|s
dx

) 2
2∗

−
∫
Rn
−

|∇v|2dx

(∫
Rn
−

v2∗

|x|s
dx

) 2
2∗

+ O(δ
n(n−s)

n−2 )

= −λδ
2n
p
−(n−2)

(∫
Rn
−

|v|pdx

) 2
p
(∫
Rn
−

v2∗

|x|s
dx

) 2
2∗

+ O(δn−2) + O(δ
2n
p
−(n−2)+(n−1)p−n)

as δ → 0. In the last equality, we used the fact n− 2 < n(n−s)
n−2 . Under the assumption (4.1), we

get 2n
p − (n− 2) < n− 2, and then taking δ > 0 small enough shows that µ−λ

s,p (Ω)− µs(Rn
−) < 0.

�
In what follows, we shall prove Theorem 1.1.

Proof of Theorem 1.1. First we give the proof of (i) which is a corollary of Lemma 2.1.
Indeed, since the infimum µ+λ

s,p (Ω) is invariant for the rotation, we have

µ+λ
s,p (Ω) = µ+λ

s,p (T (Ω)) = µ+0
s,p(T (Ω)) = µs(T (Ω)) = µs(Rn

−), (4.17)

where the last inequality in the above estimates is obtained by the facts that T (Ω) ⊂ Rn
− and

H1
0 (T (Ω)) ⊂ H1

0 (Rn
−). Then combining Lemma 2.1 with (4.17) implies that

µ+λ
s,p (Ω) = µs(Rn

−). (4.18)

Furthermore, we proceed to the contradiction argument, and assume that µ+λ
s,p (Ω) is achieved

by some nonnegative function u0 ∈ H1
0 (Ω) \ {0}. However, the equality (4.18) says that u0 is a

minimizer for µs(Rn
−) satisfying

−∆u0 =
u2∗−1

0

|x|s
in Rn

−.

Then by the standard elliptic theory and the strong maximum principle, we get u0 ∈ C1(Rn
−) ∩

C2(Rn
− \ 0) and u > 0 in Rn

−, which is a contradiction.

Next, we shall show Theorem 1.1(ii). However, in the case 2 5 p < 2n
n−1 , the quite same

strategy as in the case p = 2 shown by N.Ghoussoub and F.Robert[4] works. That is, if the
blow-up case occurs, then up to a subsequence, we eventually obtain the following equality,

lim
j→∞

εj

νεj

=
(n − s)H(0)

(n − 2)2µs(Rn
−)

n−s
2−s

∫
Rn
−

|x′|2|(∇v)(0, x′)|2dx′, (4.19)

where H(0) denotes the mean curvature of ∂Ω at 0, νεj is defined as in (3.2) and v ∈ Ḣ1
0 (Rn

−) is
a function constructed in Lemma 3.3. The equality (4.19) is a contradiction to H(0) < 0, which
implies that the blow-up case cannot happen, and then we have a minimizer for µ+λ

s,p (Ω). In the
end, we mention that the condition p < 2n

n−1 is necessary to get the regularity for v ∈ C1(Rn
−).�
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