# Existence and non-existence for nonlinear Schrödinger equations 

Yohei Sato<br>Osaka City University Adavanced Mathematical Institute, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Smiyoshi-ku, Osaka 558-8585 JAPAN<br>e-mail : y-sato@sci.osaka-cu.ac.jp

## 0. Introduction

In this report, we will introduce the results of my paper $[\mathbf{S}]$. In $[\mathbf{S}]$, we consider the one dimensional case of the following nonlinear Schrödinger equations:

$$
\begin{gather*}
-u^{\prime \prime}+(1+b(x)) u=f(u) \quad \text { in } \mathbf{R} \\
u \in H^{1}(\mathbf{R}) \tag{*}
\end{gather*}
$$

Here, we assume that the potential $b(x) \in C(\mathbf{R}, \mathbf{R})$ satisfies the following assumptions:
(b.1) $1+b(x) \geq 0$ for all $x \in \mathbf{R}$.
(b.2) $\lim _{|x| \rightarrow \infty} b(x)=0$.
(b.3) There exist $\beta_{0}>2$ and $C_{0}>0$ such that $b(x) \leq C_{0} e^{-\beta_{0}|x|}$ for all $x \in \mathbf{R}$.

We set $F(u)=\int_{0}^{u} f(\tau) d \tau$ and assume that the nonlinearity $f(u)$ satisfies
(f.1) There exists $\eta_{0}>0$ such that $\lim _{|u| \rightarrow \infty} \frac{f(u)}{|u|^{1+\eta_{0}}}=0$.
(f.2) There exists $u_{0}>0$ such that

$$
\begin{aligned}
& F(u)<\frac{1}{2} u^{2} \quad \text { for all } u \in\left(0, u_{0}\right) \\
& F\left(u_{0}\right)=\frac{1}{2} u_{0}^{2}, \quad f\left(u_{0}\right)>u_{0}
\end{aligned}
$$

(f.3) There exists $\mu_{0}>2$ such that $0<\mu_{0} F(u) \leq u f(u)$ for all $u \neq 0$.

The conditions (f.1) and (f.2) are sufficient conditions for the following equation to have an unique positive solution:

$$
\begin{equation*}
-u^{\prime \prime}+u=f(u) \quad \text { in } \mathbf{R}, \quad u \in H^{1}(\mathbf{R}) . \tag{0.1}
\end{equation*}
$$

From (b.2), the equation $-u^{\prime \prime}+u=f(u)$ appears as a limit when $|x|$ goes to $\infty$ in (*). The condition (f.3) is so called Ambrosetti-Rabinowitz condition, which guarantees the boundedness of (PS)-sequences for the functional corresponding to the equation (*) and (0.1).

To state an our result about the existence of solutions for $(*)$, we also need the following assumption for $b(x)$.
(b.4) There exists $x_{0} \in \mathbf{R}$ such that

$$
\varlimsup_{r \rightarrow \infty} \int_{-r}^{r} b\left(x-x_{0}\right) e^{2|x|} d x \in[-\infty, 2)
$$

Our first theorem is the following.
Theorem 0.1. Assume that (b.1)-(b.4) and (f.1)-(f.3) hold. Then (*) has at least a positive solution.

When we prove Theorem 0.1 in $[\mathbf{S}]$, it is important to estimate interaction of $\omega(x-R)$ and $\omega(x+R)$ for large $R \gg 1$. Here, $\omega(x)$ is an unique solution of (0.1) with $u(0)=$ $\max _{x \in \mathbf{R}} u(x)$. When we estimate interaction of $\omega(x-R)$ and $\omega(x+R)$, we naturally get the conditions (b.4) as a sufficient condition for $(*)$ to have a nontrivial solutions.

In next section, we will mainly give the outline of the proof of Theorem 0.1. In respect to details of the proof of Theorem 0.1 , see $[\mathbf{S}]$.

We must remark that, for the case function $b(x)$ is contained in nonlinearity or higher dimensional cases, there exist non-trivial solutions without conditions like (b.4). In fact, Bahri-Li [BaL] showed that there exists a positive solution of

$$
\begin{equation*}
-\Delta u+u=(1-b(x))|u|^{p-1} u \quad \text { in } \mathbf{R}^{N}, \quad u \in H^{1}\left(\mathbf{R}^{N}\right) \tag{0.2}
\end{equation*}
$$

where $N \geq 3,1<p<\frac{N+2}{N-2}$ and $b(x) \in C(\mathbf{R}, \mathbf{R})$ satisfies the following conditions:
(b.1)' $1-b(x) \geq 0$ for all $x \in \mathbf{R}^{N}$.
(b.2)' $\lim _{|x| \rightarrow \infty} b(x)=0$.
(b.3)' There exist $\beta_{0}>2$ and $C_{0}>0$ such that $b(x) \leq C_{0} e^{-\beta_{0}|x|}$ for all $x \in \mathbf{R}^{N}$.

For one dimensional case, Spradlin $[\mathbf{S p}]$ proved that there exists a positive solution of the equation

$$
\begin{equation*}
-u^{\prime \prime}+u=(1-b(x)) f(u) \quad \text { in } \mathbf{R}, \quad u \in H^{1}(\mathbf{R}) \tag{0.3}
\end{equation*}
$$

They assumed that $b(x) \in C(\mathbf{R}, \mathbf{R})$ satisfies $1-b(x) \geq 0$ in $\mathbf{R}$ and (b.2)-(b.3) and $f(u)$ satisfies (f.1)-(f.3) and
(f.4) $\frac{f(u)}{u}$ is an increasing function for all $u>0$.

Moreover, we can easily apply the computations in $[\mathbf{B a L}]$ to the following equation which is a higher dimensional version of $(*)$.

$$
\begin{equation*}
-\Delta u+(1+b(x)) u=|u|^{p-1} u \quad \text { in } \mathbf{R}^{N}, \quad u \in H^{1}\left(\mathbf{R}^{N}\right) \tag{0.4}
\end{equation*}
$$

From this application, we see that (0.4) also has at least a positive solution when $N \geq 3$, $1<p<\frac{N+2}{N-2}$ and $b(x)$ satisfies $1+b(x) \geq 0$ in $\mathbf{R}^{N}$ and (b.2)'-(b.3)'.

From the above results, it seems that Theorem 0.1 holds without condition (b.4). However (b.4) is an essential assumption for (*) to have non-trivial solutions. In what follows, we will show a result about the non-existence of nontrivial solutions for $(*)$.

In next our result, we will assume that $b(x)$ satisfies the following condition:
(b.5) There exist $\mu>0$ and $m_{2} \geq m_{1}>0$ such that

$$
m_{1} \mu e^{-\mu|x|} \leq b(x) \leq m_{2} \mu e^{-\mu|x|} \quad \text { for all } x \in \mathbf{R}
$$

Here, we remark that, if (b.5) holds for $\mu>2$, then $b(x)$ satisfies (b.1)-(b.3) and

$$
\frac{2 \mu}{\mu-2} m_{1} \leq \int_{-\infty}^{\infty} b(x) e^{2|x|} d x \leq \frac{2 \mu}{\mu-2} m_{2}
$$

Thus, when $m_{2}<1$ and $\mu$ is very large, the condition (b.4) also holds.
Our second result is the following:
Theorem 0.2. Assume that (b.5) holds and $f(u)=|u|^{p-1} u(p>1)$.
(i) If $m_{1}>1$, there exists $\mu_{1}>0$ such that ( $*$ ) does not have non-trivial solution for all $\mu \geq \mu_{1}$.
(ii) If $m_{2}<1$, there exists $\mu_{2}>0$ such that ( $*$ ) has at least a non-trivial solution for all $\mu \geq \mu_{2}$.

From Theorem 0.2, we see that Theorem 0.1 does not hold except for condition (b.4). This is a drastically different situation from the higher dimensional cases. This is one of the interesting points in our results.

We remark that the condition (b.4) implies $\overline{\lim }_{r \rightarrow \infty} \int_{-r}^{r} b(x) d x<2$ and the assumption of (ii) of Theorem 0.2 also means $\int_{-\infty}^{\infty} b(x) d x<2$. Thus we expect that the difference from existence and non-existence of non-trivial solutions of $(*)$ depends on the quantity of integrate of $b(x)$.

We can obtain this expectation from another viewpoint, which is a perturbation problem. Setting $b_{\mu}(x)=m \mu e^{-\mu|x|}, b_{\mu}(x)$ satisfies (b.5) and, when $\mu \rightarrow \infty, b_{\mu}(x)$ converges to the delta function $2 m \delta_{0}$ in distribution sense. Thus (*) approaches to the equation

$$
\begin{equation*}
-u^{\prime \prime}+\left(1+2 m \delta_{0}\right) u=|u|^{p-1} u \quad \text { in } \mathbf{R}, \quad u \in H^{1}(\mathbf{R}), \tag{0.5}
\end{equation*}
$$

in distribution sense. Here, if $u$ is a solution of (0.5) in distribution sense, we can see that $u$ is of $C^{2}$-function in $\mathbf{R} \backslash\{0\}$ and continuous in $\mathbf{R}$ and $u$ satisfies

$$
\begin{equation*}
u^{\prime}(+0)-u^{\prime}(-0)=2 m u(0) \tag{0.6}
\end{equation*}
$$

Moreover, since $u$ is a homoclinic orbit of $-u^{\prime \prime}+u=f(u)$ in $(-\infty, 0)$ or $(0, \infty)$, respectively, $u$ satisfies

$$
\begin{equation*}
-\frac{1}{2} u^{\prime}(x)^{2}+\frac{1}{2} u(x)^{2}-\frac{1}{p+1}|u(x)|^{p+1}=0 \quad \text { for } \quad x \neq 0 . \tag{0.7}
\end{equation*}
$$

When $x \rightarrow \pm 0$ in (0.7), from (f.1), we find

$$
\begin{equation*}
u^{\prime}(-0)=-u^{\prime}(+0), \quad\left|u^{\prime}( \pm 0)\right|<|u(0)| . \tag{0.8}
\end{equation*}
$$

Thus, from (0.6) and (0.8), it easily see that (0.5) has an unique positive solution when $|m|<1$ and (0.5) has no non-trivial solutions when $|m| \geq 1$. Therefore we can regard Theorem 0.2 as results of a perturbation problem of (0.5).

To prove Theorem 0.2 , we develop the shooting arguments which used in $[\mathbf{B E}]$. Bianchi and Egnell $[\mathbf{B E}]$ argued about the existence and non-existence of radial solutions for

$$
\begin{equation*}
-\Delta u=K(|x|)|u|^{\frac{N+2}{N-2}}, \quad u>0 \quad \text { in } \mathbf{R}^{N}, \quad u(x)=O\left(|x|^{2-N}\right) \quad \text { as }|x| \rightarrow \infty . \tag{0.9}
\end{equation*}
$$

Here $N \geq 3$ and $K(|x|)$ is a radial continuous function. Roughly speaking, they reduce (0.9) to an ordinary differential equation and considered two solutions for two initial value problems of that ordinary differential equation from $-\infty$ and 0 . And, examining whether those solutions has suitable matchings at $r=1$, they argued about the existence and non-existence of radial solutions.

In $[\mathbf{S}]$, to prove Theorem 0.2 , we also consider two initial value problems from $\pm \infty$, that is, for $\lambda_{1}, \lambda_{2}>0$, we consider the following two problems:

$$
\begin{align*}
& -u^{\prime \prime}+(1+b(x)) u=f(u), \\
& \lim _{x \rightarrow-\infty} e^{-x} u(x)=\lim _{x \rightarrow-\infty} e^{-x} u^{\prime}(x)=\lambda_{1}, \tag{0.10}
\end{align*}
$$

and

$$
\begin{align*}
& -u^{\prime \prime}+(1+b(x)) u=f(u), \\
& \lim _{x \rightarrow \infty} e^{x} u(x)=-\lim _{x \rightarrow \infty} e^{x} u(x)=\lambda_{2} . \tag{0.11}
\end{align*}
$$

We can prove ( 0.10 ) and (0.11) have an unique solution respectively and write those unique solutions as $u_{1}\left(x ; \lambda_{1}\right)$ and $u_{2}\left(x ; \lambda_{2}\right)$ respectively. We set

$$
\begin{aligned}
& \Gamma_{1}=\left\{\left(u_{1}\left(0 ; \lambda_{1}\right), u_{1}^{\prime}\left(0 ; \lambda_{1}\right)\right) \in \mathbf{R}^{2} \mid \lambda_{1}>0\right\}, \\
& \Gamma_{2}=\left\{\left(u_{2}\left(0 ; \lambda_{2}\right), u_{1}^{\prime}\left(0 ; \lambda_{2}\right)\right) \in \mathbf{R}^{2} \mid \lambda_{2}>0\right\} .
\end{aligned}
$$

Then, $\Gamma_{1} \cap \Gamma_{2}=\emptyset$ is equivalent to the non-existence of solutions for (*). Thus it is important to study shapes of $\Gamma_{1}$ and $\Gamma_{2}$. In respect to the details of proofs of Theorem 0.2 , see $[\mathbf{S}]$.

In next section, we state about the outline of the proof of Theorem 0.1 in [ $\mathbf{S}]$.

## 1. The outline of the proof of Theorem 0.1

In this section, we state the outline of the proof of Theorem 0.1. We will developed a variational approach which was used in $[\mathbf{B a L}]$ and $[\mathbf{S p}]$.

In what follows, since we seek positive solutions of $(*)$, without loss of generalities, we assume $f(u)=0$ for $u<0$. To prove Theorem 0.1, we seek non-trivial critical points of the functional

$$
I(u)=\frac{1}{2}\|u\|_{H^{1}(\mathbf{R})}^{2}+\frac{1}{2} \int_{-\infty}^{\infty} b(x) u^{2} d x-\int_{-\infty}^{\infty} F(u) d x \in C^{1}\left(H^{1}(\mathbf{R}), \mathbf{R}\right),
$$

whose critical points are positive solutions of $(*)$. Here we use the following notations:

$$
\begin{aligned}
\|u\|_{H^{1}(\mathbf{R})}^{2} & =\left\|u^{\prime}\right\|_{L^{2}(\mathbf{R})}^{2}+\|u\|_{L^{2}(\mathbf{R})}^{2} \\
\|u\|_{L^{p}(\mathbf{R})}^{p} & =\int_{\mathbf{R}}|u|^{p} d x \quad \text { for } \quad p>1 .
\end{aligned}
$$

From (f.1)-(f.2), we can see that $I(u)$ satisfies a mountain pass geometry, that is, $I(u)$ satisfies
(i) $I(0)=0$.
(ii) There exist $\delta>0$ and $\rho>0$ such that $I(u) \geq \delta$ for all $\|u\|_{H^{1}(\mathbf{R})}=\rho$.
(iii) There exists $u_{0} \in H^{1}(\mathbf{R})$ such that $I\left(u_{0}\right)<0$ and $\left\|u_{0}\right\|_{H^{1}(\mathbf{R})}>\rho$.

From the mountain pass geometry (i)-(iii), we can define a standard minimax value $c>0$ by

$$
\begin{align*}
& c=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} I(\gamma(t))  \tag{1.1}\\
& \Gamma=\left\{\gamma(t) \in C\left([0,1], H^{1}(\mathbf{R})\right) \mid \gamma(0)=0, I(\gamma(1))<0\right\}
\end{align*}
$$

And, by a standard way, we can construct $(P S)_{c}$-sequence $\left(u_{n}\right)_{n=1}^{\infty}$, that is, $\left(u_{n}\right)_{n=1}^{\infty}$ satisfies

$$
\begin{aligned}
& I\left(u_{n}\right) \rightarrow c \\
& I^{\prime}\left(u_{n}\right) \rightarrow 0 \quad \text { in } \quad H^{-1}(\mathbf{R}) \quad(n \rightarrow \infty)
\end{aligned}
$$

Moreover, since $\left(u_{n}\right)_{n=1}^{\infty}$ is bounded in $H^{1}(\mathbf{R})$ from (f.3), $\left(u_{n}\right)_{n=1}^{\infty}$ has a subsequence $\left(u_{n_{j}}\right)_{j=1}^{\infty}$ which weakly converges to some $u_{0}$ in $H^{1}(\mathbf{R})$. If $\left(u_{n_{j}}\right)_{j=1}^{\infty}$ strongly converges to $u_{0}$ in $H^{1}(\mathbf{R}), c$ is a non-trivial critical value of $I(u)$ and our proof is completed. However, since the embedding $L^{p}(\mathbf{R}) \subset H^{1}(\mathbf{R})(p>1)$ is not compact, there may not exist a subsequence $\left(u_{n_{j}}\right)_{j=1}^{\infty}$ which strongly converges in $H^{1}(\mathbf{R})$. Therefore, in our situation, we don't know $c$ is a critical value.

In our situation, from the lack of the compactness mentioned the above, we must use the concentration-compactness approach as $[\mathbf{B a L}]$ and $[\mathbf{S p}]$. In the concentrationcompactness approach, we examine in detail what happens in bounded (PS)-sequence. When we state the concentration-compactness argument for the (PS)-sequences of $I(u)$, the limit problem (0.1) plays an important role. Setting

$$
I_{0}(u)=\frac{1}{2}\|u\|_{H^{1}(\mathbf{R})}^{2}-\int_{-\infty}^{\infty} F(u) d x \in C^{1}\left(H^{1}(\mathbf{R}), \mathbf{R}\right)
$$

the critical points of $I_{0}(u)$ correspond to the solutions of limit problem (0.1). The equation (0.1) has an unique positive solution, identifying ones which obtain by translations. Thus let $\omega(x)$ be an unique positive solution of (0.1) with $\max _{x \in \mathbf{R}} \omega(x)=\omega(0)$ and we set $c_{0}=I_{0}(\omega)$. Since $I_{0}$ also satisfies the mountain pass geometry (i)-(iii), we see $c_{0}>0$ and $c_{0}$ is an unique non-trivial critical value.

For the bounded (PS)-sequences of $I(u)$, we have the following:
Proposition 1.1. Suppose (b.1)-(b.2) and (f.1)-(f.2) holds. If $\left(u_{n}\right)_{n=1}^{\infty}$ is a bounded (PS)-sequence of $I(u)$, then there exist a subsequence $n_{j} \rightarrow \infty, k \in \mathbf{N} \cup\{0\}$, $k$-sequences $\left(x_{j}^{1}\right)_{j=1}^{\infty}, \cdots,\left(x_{j}^{k}\right)_{j=1}^{\infty} \subset \mathbf{R}$, and a critical point $u_{0}$ of $I(u)$ such that

$$
\begin{aligned}
& I\left(u_{n_{j}}\right) \rightarrow I\left(u_{0}\right)+k c_{0} \quad(j \rightarrow \infty) \\
& \left\|u_{n_{j}}(x)-u_{0}(x)-\sum_{\ell=1}^{k} \omega\left(x-x_{j}^{\ell}\right)\right\|_{H^{1}(\mathbf{R})} \rightarrow 0 \quad(j \rightarrow \infty), \\
& \left|x_{j}^{\ell}-x_{j}^{\ell^{\prime}}\right| \rightarrow \infty \quad(j \rightarrow \infty) \quad\left(\ell \neq \ell^{\prime}\right) \\
& \left|x_{j}^{\ell}\right| \rightarrow \infty \quad(j \rightarrow \infty) \quad(\ell=1,2, \cdots, k) .
\end{aligned}
$$

Proof. See [JT1].

If the minimax value $c$ satisfies $c \in\left(0, c_{0}\right)$, from Proposition 1.1, we see that $I(u)$ has at least a non-trivial critical point. In fact, let $\left(u_{n}\right)_{n=1}^{\infty}$ be a bounded (PS) $)_{c}$-sequence of $I(u)$, from Proposition 1.1, there exists a subsequence $n_{j} \rightarrow \infty, k \in \mathbf{N} \cup\{0\}$ and a critical point $u_{0}$ of $I(u)$ such that

$$
I\left(u_{n_{j}}\right) \rightarrow I\left(u_{0}\right)+k c_{0} \quad(j \rightarrow \infty)
$$

Here, if $u_{0}=0$, we get $I\left(u_{n_{j}}\right) \rightarrow k c_{0}$ as $j \rightarrow \infty$. However this contradicts to the fact that $I\left(u_{n}\right) \rightarrow c \in\left(0, c_{0}\right)$ as $n \rightarrow \infty$. Thus $u_{0} \neq 0$ and $u_{0}$ is a non-trivial critical point of $I(u)$. From the above argument, we have the following corollary.

Corollary 1.2. Suppose $I(u)$ has no non-trivial critical points and let $\left(u_{n}\right)_{n=1}^{\infty}$ be a (PS)sequence of $I(u)$. Then, only $k c_{0}$ 's $(k \in \mathbf{N} \cup\{0\})$ can be limit points of $\left\{I\left(u_{n}\right) \mid n \in \mathbf{N}\right\}$.

Remark 1.3. Corollary 1.2 essentially depends on the uniqueness of the positive solution of (0.1).

As mentioned the above, when $c \in\left(0, c_{0}\right), I(u)$ has at least a non-trivial critical point. However, unfortunately, under the condition (b.1)-(b.4), it may be $c=c_{0}$. Thus we need consider another minimax value. To define another minimax value, we use a path $\gamma_{0}(t) \in C\left(\mathbf{R}, H^{1}(\mathbf{R})\right)$ which is defined as follows: for small $\epsilon_{0}>0$, we set

$$
\begin{aligned}
& h(x)= \begin{cases}\omega(x) & x \in[0, \infty], \\
x^{4}+u_{0} & x \in\left[-\epsilon_{0}, 0\right), \\
\epsilon_{0}^{4}+u_{0} & x \in\left(-\infty,-\epsilon_{0}\right),\end{cases} \\
& \gamma_{0}(t)(x)= \begin{cases}h(x-t) & x \geq 0 \\
h(-x-t) & x<0\end{cases}
\end{aligned}
$$

Here, we remark that $u_{0}$ was given in (f.2). This path $\gamma_{0}(t)$ was introduced in [JT2]. Choosing a proper $\epsilon_{0}>0$ sufficiently small, $\gamma_{0}(t)$ achieves the mountain pass value of $I_{0}(u)$ and satisfies the followings:

Lemma 1.4. Suppose (f.1)-(f.2) hold. Then $\gamma_{0}(t)$ satisfies
(i) $\gamma_{0}(0)(x)=\omega(x)$.
(ii) $I_{0}\left(\gamma_{0}(t)\right)<I_{0}(\omega)=c_{0}$ for all $t \neq 0$.
(iii) $\lim _{t \rightarrow-\infty}\left\|\gamma_{0}(t)\right\|_{H^{1}(\mathbf{R})}=0, \lim _{t \rightarrow \infty}\left\|\gamma_{0}(t)\right\|_{H^{1}(\mathbf{R})}=\infty$.

Proof. See [JT2].
Now, for $R>0$, we consider a path $\gamma_{R} \in C\left(\mathbf{R}^{2}, H^{1}(\mathbf{R})\right)$ which is defined by

$$
\gamma_{R}(s, t)(x)=\max \left\{\gamma_{0}(s)(x+R), \gamma_{0}(t)(x-R)\right\}
$$

In our proof of Theorem 0.1 in $[\mathbf{S}]$, the following proposition is a key proposition.

Proposition 1.5. Suppose (b.1)-(b.3) and (f.1)-(f.2) hold. Then, for any $L>0$, we have

$$
\lim _{R \rightarrow \infty} e^{2 R}\left\{\max _{(s, t) \in[-L, L]^{2}} I\left(\gamma_{R}(s, t)\right)-2 c_{0}\right\}=\frac{\lambda_{0}^{2}}{2}\left(\varlimsup_{r \rightarrow \infty} \int_{-r}^{r} b(x) e^{2|x|} d x-2\right)
$$

Here $\lambda_{0}=\lim _{x \rightarrow \pm \infty} \omega(x) e^{|x|}$.
Proof. See [S].
By using a translation, without loss of generalities, we assume $x_{0}=0$ in (b.4). If (b.4) with $x_{0}=0$ holds, from Proposition 1.5, for any $L>0$, there exists $R_{0}>0$ such that

$$
\max _{(s, t) \in[-L, L]^{2}} I\left(\gamma_{R_{0}}(s, t)\right)<2 c_{0}
$$

To prove the Theorem 0.1, we also need a map $m: H^{1}(\mathbf{R}) \backslash\{0\} \rightarrow \mathbf{R}$ which is defined by the following: for any $u \in H^{1}(\mathbf{R}) \backslash\{0\}$, a function

$$
T_{u}(s)=\int_{-\infty}^{\infty} \tan ^{-1}(x-s)|u(x)|^{2} d x: \mathbf{R} \rightarrow \mathbf{R}
$$

is strictly decreasing and $\lim _{s \rightarrow \infty} T_{u}(s)=-\|u\|_{L^{2}(\mathbf{R})}^{2}<0$ and $\lim _{s \rightarrow-\infty} T_{u}(s)=\|u\|_{L^{2}(\mathbf{R})}^{2}>0$. Thus, from the theorem of the intermediate value, $T_{u}(s)$ has an unique $s=m(u)$ such that $T_{u}(m(u))=0$. We also find that $m(u)$ is of continuous by the implicit function theorem to $(u, s) \mapsto T_{u}(s)$. The map $m(u)$ was introduced in $[\mathbf{S}]$. We remark that $m(u)$ is regarded as a kind of center of mass of $|u(x)|^{2}$ and we can check the followings.

Lemma 1.6. We have
(i) $m\left(\gamma_{0}(t)\right)=0$ for all $t \in \mathbf{R}$.
(ii) $m\left(\gamma_{R}(s, t)\right)>0$ for all $-R<s<t<R$.
(iii) $m\left(\gamma_{R}(s, t)\right)<0$ for all $-R<t<s<R$.

Proof. Since $\gamma_{0}(t)(x)$ is a even function, we have (i). We Note that

$$
\gamma_{R}(s, t)(x)= \begin{cases}\gamma_{0}(s)(x+R) & \text { for } x \in\left(-\infty, \frac{s-t}{2}\right] \\ \gamma_{0}(t)(x-R) & \text { for } x \in\left(\frac{s-t}{2}, \infty\right)\end{cases}
$$

Since $\gamma_{R}(s, s)(x)$ is also a even function, we have

$$
m\left(\gamma_{R}(s, s)\right)=0 \quad \text { for all } \quad s \in \mathbf{R}
$$

and we get (ii)-(iii).
In what follows, we will complete the proof of Theorem 0.1.

Proof of Theorem 0.1. First of all, we defined a minimax value $c_{1}>0$ by

$$
\begin{aligned}
& c_{1}=\inf _{\gamma \in \Gamma_{1}} \max _{t \in[0,1]} I(\gamma(t)) \\
& \Gamma_{1}=\left\{\gamma(t) \in C\left([0,1], H^{1}(\mathbf{R})\right)|\gamma(0)=0, I(\gamma(1))<0,|m(\gamma(t))|<1\} .\right.
\end{aligned}
$$

Noting $\Gamma_{1} \subset \Gamma$, we have

$$
0<c \leq c_{1} .
$$

Since $\Gamma_{1}$ is not invariant by standard deformation flows of $I(u), c_{1}$ may not be a critical point of $I(u)$. We will use $c_{1}$ to divide the case. We divide the case into the following three cases:
(i) $c_{1}<c_{0}$.
(ii) $c_{1}=c_{0}$.
(iii) $c_{1}>c_{0}$.

Proof of Theorem $\mathbf{0 . 1}$ for the case (i). Since the inequality $c_{1}<c_{0}$ implies $0<c<c_{0}$, from Corollary 1.2, we can see $I(u)$ has at least a non-trivial critical point.

Proof of Theorem 0.1 for the case (ii). In this case, if $c<c_{1}=c_{0}$, then $I(u)$ has at least a non-trivial critical point from Corollary 1.2. Thus we may consider the case $c=c_{1}=c_{0}$. In this case, for any $\epsilon>0$, there exists $\gamma_{\epsilon}(t) \in \Gamma_{1}$ such that

$$
c \leq \max _{t \in[0,1]} I\left(\gamma_{\epsilon}(t)\right)<c+\epsilon .
$$

Since $\gamma_{\epsilon} \in \Gamma_{1} \subset \Gamma$ and $\Gamma$ is an invariant set by standard deformation flows of $I(u)$, by a standard Ekland principle, there exists $u_{\epsilon} \in H^{1}(\mathbf{R})$ such that

$$
\begin{align*}
& c \leq I\left(u_{\epsilon}\right) \leq \max _{t \in[0,1]} I\left(\gamma_{\epsilon}(t)\right)<c+\epsilon, \\
& \left\|I^{\prime}\left(u_{\epsilon}\right)\right\|<2 \sqrt{\epsilon}, \\
& \inf _{t \in[0,1]}\left\|u_{\epsilon}-\gamma_{\epsilon}(t)\right\|_{H^{1}(\mathbf{R})}<\epsilon . \tag{1.2}
\end{align*}
$$

Then, from Proposition 1.1, there exist a subsequence $\epsilon_{j} \rightarrow 0, k \in \mathbf{N} \cup\{0\}, k$-sequences $\left(x_{j}^{1}\right)_{j=1}^{\infty}, \cdots,\left(x_{j}^{k}\right)_{j=1}^{\infty} \subset \mathbf{R}$, and a critical point $u_{0}$ of $I(u)$ such that

$$
\begin{align*}
& I\left(u_{\epsilon_{j}}\right) \rightarrow I\left(u_{0}\right)+k c_{0} \quad(j \rightarrow \infty),  \tag{1.3}\\
& \left\|u_{\epsilon_{j}}(x)-u_{0}(x)-\sum_{\ell=1}^{k} \omega\left(x-x_{j}^{\ell}\right)\right\|_{H^{1}(\mathbf{R})} \rightarrow 0 \quad(j \rightarrow \infty), \\
& \left|x_{j}^{\ell}-x_{j}^{\ell^{\prime}}\right| \rightarrow \infty \quad(j \rightarrow \infty) \quad\left(\ell \neq \ell^{\prime}\right), \\
& \left|x_{j}^{\ell}\right| \rightarrow \infty \quad(j \rightarrow \infty) \quad(\ell=1,2, \cdots, k) .
\end{align*}
$$

Now, if $u_{0} \neq 0$, our proof is completed. So we suppose $u_{0}=0$. Then, from (1.3), it must be $k=1$. Thus, we have

$$
\begin{align*}
& \left\|u_{\epsilon_{j}}(x)-\omega\left(x-x_{j}^{1}\right)\right\|_{H^{1}(\mathbf{R})} \rightarrow 0 \quad(j \rightarrow \infty) .  \tag{1.4}\\
& \left|x_{j}^{1}\right| \rightarrow \infty \quad(j \rightarrow \infty) .
\end{align*}
$$

On the other hand, we remark that, since $m(\omega)=0$ and $m$ is of continuous, there exists $\delta>0$ such that

$$
|m(u)|<1 \quad \text { for all } \quad u \in B_{\delta}(\omega)=\left\{v \in H^{1}(\mathbf{R}) \mid\|v-\omega\|_{H^{1}(\mathbf{R})}<\delta\right\}
$$

Thus, from (1.2) and (1.4), for some $\epsilon_{0} \in\left(0, \frac{\delta}{2}\right)$ and $t_{0} \in[0,1]$, we have

$$
\left|m\left(\gamma_{\epsilon_{0}}\left(t_{0}\right)\right)-x_{j}^{1}\right|<1 .
$$

This contradicts to $\gamma_{\epsilon_{0}} \in \Gamma_{1}$. Therefore $u_{0} \neq 0$ and $I(u)$ has at least a non-trivial critical point.

Proof of the Theorem 0.1 for the case (iii). First of all, we set $\delta=\frac{c_{1}-c_{0}}{2}>0$ and choose $L_{0}>0$ such that

$$
\begin{equation*}
\max _{(s, t) \in \overline{D_{2 L_{0}} \backslash D_{L_{0}}}} I\left(\gamma_{R}(s, t)\right)<c_{0}+\delta<c_{1} \quad \text { for all } \quad R>3 L_{0} . \tag{1.5}
\end{equation*}
$$

Here we set $D_{L}=[L, L] \times[L, L] \subset \mathbf{R}^{2}$. Next, from Proposition 1.5, we can choose $R_{0}>3 L_{0}$ such that

$$
\begin{equation*}
\max _{(s, t) \in D_{L_{0}}} I\left(\gamma_{R_{0}}(s, t)\right)<2 c_{0} \tag{1.6}
\end{equation*}
$$

Here we fix $\gamma_{R_{0}}(s, t)$ and define the following minimax value:

$$
\begin{aligned}
& c_{2}=\inf _{\gamma \in \Gamma_{2}} \max _{(s, t) \in D_{2 L_{0}}} I(\gamma(s, t)), \\
& \Gamma_{2}=\left\{\gamma(s, t) \in C\left(D_{2 L_{0}}, H^{1}(\mathbf{R})\right) \mid \gamma(s, t)=\gamma_{R_{0}}(s, t) \text { for all }(s, t) \in D_{2 L_{0}} \backslash D_{L_{0}}\right\} .
\end{aligned}
$$

Then we have the following lemma.
Lemma 1.7. We have

$$
0<c_{0}<c_{1} \leq c_{2}<2 c_{0}
$$

We postpone the proof of Lemma 1.7 to end of this section. If Lemma 1.7 is true, then $\Gamma_{2}$ is an invariant set by the deformation flows of $I(u)$. Thus $I(u)$ has a (PS)-sequence $\left(u_{n}\right)_{n=1}^{\infty}$ such that

$$
I\left(u_{n}\right) \rightarrow c_{2} \in\left(c_{0}, 2 c_{0}\right) \quad(n \rightarrow \infty) .
$$

From Corollary 1.2, we can see that $I(u)$ must have at least a non-trivial critical point. Combining the proofs of the cases (i)-(iii), we complete a proof of Theorem 0.1.

Finally we show Lemma 1.7.
Proof of Lemma 1.7. The inequality $c_{0}<c_{1}$ is an assumption of the case (iii). From $\gamma_{R_{0}} \in \Gamma_{2}$ and (1.5)-(1.6), $c_{2}<2 c_{0}$ is obvious. Thus we show $c_{1} \leq c_{2}$. For any $\gamma(s, t) \in \Gamma_{2}$, we have

$$
\begin{array}{ll}
m(\gamma(s, t))>0 & \text { for all } \\
m(\gamma, t) \in D_{1}  \tag{1.8}\\
m(s, t))<0 & \text { for all } \\
(s, t) \in D_{2}
\end{array}
$$

Here we set $D_{1}=\left\{(s, t) \in D_{2 L_{0}} \backslash D_{L_{0}} \mid s<t\right\}$ and $D_{2}=\left\{(s, t) \in D_{2 L_{0}} \backslash D_{L_{0}} \mid s>t\right\}$. From (1.7)-(1.8), a set $\left\{(s, t) \in D_{2 L_{0}}| | m(\gamma(s, t)) \mid<1\right\}$ have a connected component which contains a path joining two points $\gamma_{R_{0}}\left(-2 L_{0},-2 L_{0}\right)$ and $\gamma_{R_{0}}\left(2 L_{0}, 2 L_{0}\right)$. Thus we construct a path $\gamma_{1}(t) \in \Gamma_{1}$ such that

$$
\begin{aligned}
& \left\{\gamma_{1}(t) \mid t \in[1 / 3,2 / 3]\right\} \subset\left\{\gamma(s, t) \mid(s, t) \in D_{2 L_{0}}\right\}, \\
& \max _{t \in[0,1 / 3] \cup[2 / 3,1]} I\left(\gamma_{1}(t)\right) \leq c_{0} .
\end{aligned}
$$

Thus we see

$$
\begin{align*}
c_{1} & \leq \max _{t \in[0,1]} I\left(\gamma_{1}(t)\right) \\
& \leq \max _{(s, t) \in D_{2 L_{0}}} I(\gamma(s, t)) . \tag{1.9}
\end{align*}
$$

Since $\gamma(s, t) \in \Gamma_{2}$ is arbitrary, from (1.9), we have

$$
c_{1} \leq c_{2} .
$$

Thus we get Lemma 1.7.

## References

[BaL] A. Bahri, Y. Y. Li, On a min-max procedure for the existence of a positive solution for certain scalar field equations in $\mathbf{R}^{N}$. Rev. Mat. Iberoamericana 6, (1990) no. 1-2, 1-15.
[BeL1] H. Berestycki, P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state. Arch. Rational Mech. Anal. 82 (1983), no. 4, 313-345
[BeL2] H. Berestycki, P.-L. Lions, Nonlinear scalar field equations. II. Existence of infinitely many solutions. Arch. Rational Mech. Anal. 82 (1983), no. 4, 347-375.
$[B E]$ G. Bianchi, H. Egnell, An ODE Approach to rhe Equation $-\Delta u=K|u|^{\frac{N+2}{N-2}}$, in $\mathbf{R}^{N}$. Math. Z. 210 (1992) 137-166.
[JT1] L. Jeanjean, K. Tanaka, A positive solution for an asymptotically linear elliptic problem on $\mathbf{R}^{N}$ autonomous at infinity. ESAIM Control Optim. Calc. Var. 7 (2002), 597-614
[JT2] L. Jeanjean, K. Tanaka, A note on a mountain pass characterization of least energy solutions. Adv. Nonlinear Stud. 3 (2003), no. 4, 445-455.
[S] Y. Sato, The existence and non-existence of positive solutions of the nonlinear Schrödinger equations in one dimensional case. in preparation,
[Sp] G. Spradlin Interfering solutions of a nonhomogeneous Hamiltonian systems. Electronic Journal of Differential Equations 2001, (2001) no. 47, 1-10.

