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0. Introduction

In this paper, we consider the one dimensional case of the following nonlinear Schrödinger

equations:
− u′′ + (1 + b(x))u = f(u) in R,

u ∈ H1(R).
(∗)

Here, we assume that the potential b(x) ∈ C(R,R) satisfies the following assumptions:

(b.1) 1 + b(x) ≥ 0 for all x ∈ R.

(b.2) lim
|x|→∞

b(x) = 0.

(b.3) There exist β0 > 2 and C0 > 0 such that b(x) ≤ C0e
−β0|x| for all x ∈ R.

We set F (u) =
∫ u

0
f(τ) dτ and assume that the nonlinearity f(u) satisfies

(f.1) There exists η0 > 0 such that lim|u|→∞
f(u)

|u|1+η0
= 0.

(f.2) There exists u0 > 0 such that

F (u) <
1

2
u2 for all u ∈ (0, u0),

F (u0) =
1

2
u20, f(u0) > u0.

(f.3) There exists µ0 > 2 such that 0 < µ0F (u) ≤ uf(u) for all u ̸= 0.

The conditions (f.1) and (f.2) are sufficient conditions for the following equation to have

an unique positive solution:

−u′′ + u = f(u) in R, u ∈ H1(R). (0.1)
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From (b.2), the equation −u′′ + u = f(u) appears as a limit when |x| goes to ∞ in (∗).
The condition (f.3) is so called Ambrosetti-Rabinowitz condition, which guarantees the

boundedness of (PS)-sequences for the functional corresponding to the equation (∗) and

(0.1).

To state an our result about the existence of solutions for (∗), we also need the

following assumption for b(x).

(b.4) There exists x0 ∈ R such that

lim
r→∞

∫ r

−r

b(x− x0)e
2|x| dx ∈ [−∞, 2).

Our first theorem is the following.

Theorem 0.1. Assume that (b.1)–(b.4) and (f.1)–(f.3) hold. Then (∗) has at least a

positive solution.

When we prove Theorem 0.1, it is important to estimate interaction of ω(x − R)

and ω(x + R) for large R >> 1. Here, ω(x) is an unique solution of (0.1) with u(0) =

maxx∈R u(x). When we estimate interaction of ω(x− R) and ω(x+ R), we naturally get

the conditions (b.4) as a sufficient condition for (∗) to have a nontrivial solutions.

We must remark that, for the case function b(x) is contained in nonlinearity or higher

dimensional cases, there exist non-trivial solutions without conditions like (b.4). In fact,

Bahri-Li [BaL] showed that there exists a positive solution of

−∆u+ u = (1− b(x))|u|p−1u in R
N , u ∈ H1(R

N ), (0.2)

where N ≥ 3, 1 < p < N+2
N−2 and b(x) ∈ C(R,R) satisfies the following conditions:

(b.1)’ 1− b(x) ≥ 0 for all x ∈ RN .

(b.2)’ lim
|x|→∞

b(x) = 0.

(b.3)’ There exist β0 > 2 and C0 > 0 such that b(x) ≤ C0e
−β0|x| for all x ∈ RN .

For one dimensional case, Spradlin [Sp] proved that there exists a positive solution of the

equation

−u′′ + u = (1− b(x))f(u) in R, u ∈ H1(R). (0.3)

They assumed that b(x) ∈ C(R,R) satisfies 1 − b(x) ≥ 0 in R and (b.2)–(b.3) and f(u)

satisfies (f.1)–(f.3) and

(f.4) f(u)
u is an increasing function for all u > 0.
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Moreover, we can easily apply the computations in [BaL] to the following equation which

is a higher dimensional version of (∗).

−∆u+ (1 + b(x))u = |u|p−1u in R
N , u ∈ H1(R

N ). (0.4)

From this application, we see that (0.4) also has at least a positive solution when N ≥ 3,

1 < p < N+2
N−2 and b(x) satisfies 1 + b(x) ≥ 0 in RN and (b.2)’–(b.3)’.

From the above results, it seems that Theorem 0.1 holds without condition (b.4).

However (b.4) is an essential assumption for (∗) to have non-trivial solutions. In what

follows, we will show a result about the non-existence of nontrivial solutions for (∗).
In next our result, we will assume that b(x) satisfies the following condition:

(b.5) There exist µ > 0 and m2 ≥ m1 > 0 such that

m1µe
−µ|x| ≤ b(x) ≤ m2µe

−µ|x| for all x ∈ R .

Here, we remark that, if (b.5) holds for µ > 2, then b(x) satisfies (b.1)–(b.3) and

2µ

µ− 2
m1 ≤

∫ ∞

−∞
b(x)e2|x| dx ≤ 2µ

µ− 2
m2.

Thus, when m2 < 1 and µ is very large, the condition (b.4) also holds.

Our second result is the following:

Theorem 0.2. Assume that (b.5) holds and f(u) = |u|p−1u (p > 1).

(i) If m1 > 1, there exists µ1 > 0 such that (∗) does not have non-trivial solution for all

µ ≥ µ1.

(ii) If m2 < 1, there exists µ2 > 0 such that (∗) has at least a non-trivial solution for all

µ ≥ µ2.

(iii) There exists µ3 > 0 such that (∗) does not have sign-changing solutions for all µ ≥ µ3.

From Theorem 0.2, we see that Theorem 0.1 does not hold except for condition (b.4).

This is a drastically different situation from the higher dimensional cases. This is one of

the interesting points in our results.

We remark that the condition (b.4) implies limr→∞
∫ r

−r
b(x) dx < 2 and the assump-

tion of (ii) of Theorem 0.2 also means
∫∞
−∞ b(x) dx < 2. Thus we expect that the difference

from existence and non-existence of non-trivial solutions of (∗) depends on the quantity of

integrate of b(x).
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We can obtain this expectation from another viewpoint, which is a perturbation prob-

lem. Setting bµ(x) = mµe−µ|x|, bµ(x) satisfies (b.5) and, when µ→ ∞, bµ(x) converges to

the delta function 2mδ0 in distribution sense. Thus (∗) approaches to the equation

−u′′ + (1 + 2mδ0)u = |u|p−1u in R, u ∈ H1(R), (0.5)

in distribution sense. Here, if u is a solution of (0.5) in distribution sense, we can see that

u is of C2-function in R \{0} and continuous in R and u satisfies

u′(+0)− u′(−0) = 2mu(0). (0.6)

Moreover, since u is a homoclinic orbit of −u′′+u = f(u) in (−∞, 0) or (0,∞), respectively,

u satisfies

−1

2
u′(x)2 +

1

2
u(x)2 − 1

p+ 1
|u(x)|p+1 = 0 for x ̸= 0. (0.7)

When x→ ±0 in (0.7), from (f.1), we find

u′(−0) = −u′(+0), |u′(±0)| < |u(0)|. (0.8)

Thus, from (0.6) and (0.8), it easily see that (0.5) has an unique positive solution when

|m| < 1 and (0.5) has no non-trivial solutions when |m| ≥ 1. Therefore we can regard

Theorem 0.2 as results of a perturbation problem of (0.5).

To prove Theorem 0.2, we develop the shooting arguments which used in [BE]. Bianchi

and Egnell [BE] argued about the existence and non-existence of radial solutions for

−∆u = K(|x|)|u|
N+2
N−2 , u > 0 in R

N , u(x) = O(|x|2−N ) as |x| → ∞. (0.9)

Here N ≥ 3 and K(|x|) is a radial continuous function. Roughly speaking their approach,

by setting u(r) = u(|x|), they reduce (0.9) to an ordinary differential equation and con-

sidered solutions of two initial value problems of that ordinary differential equation which

have initial conditions u(0) = λ and limr→∞ rN−2u(r) = λ. And, examining whether

those solutions have suitable matchings at r = 1, they argued about the existence and

non-existence of radial solutions. In this paper, we also consider two initial value problems

for initial conditons limx→−∞ e−xu(x) = λ and limx→∞ exu(x) = λ. In order to prove

Theorem 0.2, we examine whether those solutions has suitable matchings at x = 0.

We devote the next three sections to proofs of our theorems. In Section 1, we give a

proof of Theorem 0.1. To prove it, we use a variational approach and it is important to

estimate interaction of ω(x − R) and ω(x + R) for large R >> 1. Since the computation
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of this estimate is slightly complicated, we compute it in Section 2. In Section 3, we prove

Theorem 0.2 by a shooting argument. (ii) of Theorem 0.2 directly follows from Theorem

0.1 but we can also get it as a by-product of our shooting argument.

1. The existence result

In this section, we state the proof of Theorem 0.1. We will developed a variational

approach which was used in [BaL] and [Sp].

In what follows, since we seek positive solutions of (∗), without loss of generalities, we
assume f(u) = 0 for u < 0. To prove Theorem 0.1, we seek non-trivial critical points of

the functional

I(u) =
1

2
||u||2H1(R) +

1

2

∫ ∞

−∞
b(x)u2 dx−

∫ ∞

−∞
F (u) dx ∈ C1(H1(R),R),

whose critical points are positive solutions of (∗). Here we use the following notations:

||u||2H1(R) = ||u′||2L2(R) + ||u||2L2(R),

||u||pLp(R) =

∫
R

|u|p dx for p > 1.

From (f.1)–(f.2), we can see that I(u) satisfies a mountain pass geometry, that is, I(u)

satisfies

(i) I(0) = 0.

(ii) There exist δ > 0 and ρ > 0 such that I(u) ≥ δ for all ||u||H1(R) = ρ.

(iii) There exists u0 ∈ H1(R) such that I(u0) < 0 and ||u0||H1(R) > ρ.

From the mountain pass geometry (i)–(iii), we can define a standard minimax value c > 0

by

c = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)), (1.1)

Γ = {γ(t) ∈ C([0, 1],H1(R)) | γ(0) = 0, I(γ(1)) < 0}.

And, by a standard way, we can construct (PS)c-sequence (un)
∞
n=1, that is, (un)

∞
n=1 sat-

isfies
I(un) → c (n→ ∞),

I ′(un) → 0 in H−1(R) (n→ ∞).

Moreover, since (un)
∞
n=1 is bounded in H1(R) from (f.3), (un)

∞
n=1 has a subsequence

(unj )
∞
j=1 which weakly converges to some u0 in H1(R). If (unj )

∞
j=1 strongly converges
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to u0 in H1(R), c is a non-trivial critical value of I(u) and our proof is completed. How-

ever, since the embedding Lp(R) ⊂ H1(R) (p > 1) is not compact, there may not exist a

subsequence (unj )
∞
j=1 which strongly converges in H1(R). Therefore, in our situation, we

don’t know c is a critical value.

In our situation, from the lack of the compactness mentioned the above, we must

use the concentration-compactness approach as [BaL] and [Sp]. In the concentration-

compactness approach, we examine in detail what happens in bounded (PS)-sequences.

When we state the concentration-compactness argument for the (PS)-sequences of I(u),

the limit problem (0.1) plays an important role. Setting

J(u) =
1

2
||u||2H1(R) −

∫ ∞

−∞
F (u) dx ∈ C1(H1(R),R),

the critical points of I0(u) correspond to the solutions of limit problem (0.1). The equation

(0.1) has an unique positive solution, identifying ones which obtain by translations. Thus

let ω(x) be an unique positive solution of (0.1) with maxx∈R ω(x) = ω(0) and we set

c0 = J(ω). Since J also satisfies the mountain pass geometry (i)–(iii), we see c0 > 0 and

c0 is an unique non-trivial critical value.

For the bounded (PS)-sequences of I(u), we have the following:

Proposition 1.1. Suppose (b.1)–(b.2) and (f.1)–(f.2) holds. If (un)
∞
n=1 is a bounded

(PS)-sequence of I(u), then there exist a subsequence nj → ∞, k ∈ N∪{0}, k-sequences
(x1j )

∞
j=1, · · · , (xkj )∞j=1 ⊂ R, and a critical point u0 of I(u) such that

I(unj ) → I(u0) + kc0 (j → ∞),∣∣∣∣∣
∣∣∣∣∣unj (x)− u0(x)−

k∑
ℓ=1

ω(x− xℓj)

∣∣∣∣∣
∣∣∣∣∣
H1(R)

→ 0 (j → ∞),

|xℓj − xℓ
′

j | → ∞ (j → ∞) (ℓ ̸= ℓ′),

|xℓj | → ∞ (j → ∞) (ℓ = 1, 2, · · · , k).
Proof. See [JT1].

If the minimax value c satisfies c ∈ (0, c0), from Proposition 1.1, we see that I(u) has

at least a non-trivial critical point. In fact, let (un)
∞
n=1 be a bounded (PS)c-sequence of

I(u), from Proposition 1.1, there exists a subsequence nj → ∞, k ∈ N∪{0} and a critical

point u0 of I(u) such that

I(unj ) → I(u0) + kc0 (j → ∞).

Here, if u0 = 0, we get I(unj ) → kc0 as j → ∞. However this contradicts to the fact that

I(un) → c ∈ (0, c0) as n → ∞. Thus u0 ̸= 0 and u0 is a non-trivial critical point of I(u).

From the above argument, we have the following corollary.

6



Corollary 1.2. Suppose I(u) has no non-trivial critical points and let (un)
∞
n=1 be a (PS)-

sequence of I(u). Then, only kc0’s (k ∈ N∪{0}) can be limit points of {I(un) |n ∈ N}.

Remark 1.3. Corollary 1.2 essentially depends on the uniqueness of the positive solution

of (0.1).

As mentioned the above, when c ∈ (0, c0), I(u) has at least a non-trivial critical

point. However, unfortunately, under the condition (b.1)–(b.4), it may be c = c0. Thus

we need consider another minimax value. To define another minimax value, we use a path

γ0(t) ∈ C(R,H1(R)) which is defined as follows: for small ϵ0 > 0, we set

h(x) =

ω(x) x ∈ [0,∞],
x4 + u0 x ∈ [−ϵ0, 0),
ϵ40 + u0 x ∈ (−∞,−ϵ0),

γ0(t)(x) =

{
h(x− t) x ≥ 0,
h(−x− t) x < 0.

Here, we remark that u0 was given in (f.2) and u0 = maxx∈R u(x) = u(0). This path γ0(t)

was introduced in [JT2]. Choosing a proper ϵ0 > 0 sufficiently small, γ0(t) achieves the

mountain pass value of I0(u) and satisfies the followings:

Lemma 1.4. Suppose (f.1)–(f.2) hold. Then γ0(t) satisfies

(i) γ0(0)(x) = ω(x).

(ii) J(γ0(t)) < J(ω) = c0 for all t ̸= 0.

(iii) lim
t→−∞

||γ0(t)||H1(R) = 0, lim
t→∞

||γ0(t)||H1(R) = ∞.

Proof. See [JT2].

Now, for R > 0, we consider a path γR ∈ C(R2,H1(R)) which is defined by

γR(s, t)(x) = max{γ0(s)(x+R), γ0(t)(x−R)}.

In our proof of Theorem 0.1, the following proposition is a key proposition.

Proposition 1.5. Suppose (b.1)–(b.3) and (f.1)–(f.2) hold. Then, for any L > 0, we have

lim
R→∞

e2R
{

max
(s,t)∈[−L,L]2

I(γR(s, t))− 2c0

}
≤ λ20

2

(
lim
r→∞

∫ r

−r

b(x)e2|x| dx− 2

)
. (1.2)

Here λ0 = lim|x|→∞ ω(x)e|x|.

We will give the proof of Proposition 1.5 in next Section 2. By using a translation,

without loss of generalities, we assume x0 = 0 in (b.4). If (b.4) with x0 = 0 holds, from

Proposition 1.5, for any L > 0, there exists R0 > 0 such that

max
(s,t)∈[−L,L]2

I(γR0(s, t)) < 2c0.
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To prove the Theorem 0.1, we also need a map m : H1(R)\{0} → R which is defined

by the following: for any u ∈ H1(R) \ {0}, a function

Tu(s) =

∫ ∞

−∞
tan−1(x− s)|u(x)|2 dx : R → R

is strictly decreasing and lim
s→∞

Tu(s) = −||u||2L2(R) < 0 and lim
s→−∞

Tu(s) = ||u||2L2(R) > 0.

Thus, from the theorem of the intermediate value, Tu(s) has an unique s = m(u) such that

Tu(m(u)) = 0. We also find that m(u) is of continuous by the implicit function theorem to

(u, s) 7→ Tu(s). The map m(u) was introduced in [Sp]. We remark that m(u) is regarded

as a kind of center of mass of |u(x)|2 and we can check the followings.

Lemma 1.6. We have

(i) m(γ0(t)) = 0 for all t ∈ R.

(ii) m(γR(s, t)) > 0 for all −R < s < t < R.

(iii) m(γR(s, t)) < 0 for all −R < t < s < R.

Proof. Since γ0(t)(x) is a even function, we have (i). We remark that

γR(s, t)(x) =

{
γ0(s)(x+R) for x ∈ (−∞, s−t

2 ],
γ0(t)(x−R) for x ∈ ( s−t

2 ,∞).
(1.3)

Since γR(s, s)(x) is also a even function, we have

m(γR(s, s)) = 0 for all s ∈ R,

and we get (ii)–(iii).

In what follows, we will complete the proof of Theorem 0.1.

Proof of Theorem 0.1. First of all, we defined a minimax value c1 > 0 by

c1 = inf
γ∈Γ1

max
t∈[0,1]

I(γ(t)),

Γ1 = {γ(t) ∈ C([0, 1],H1(R)) | γ(0) = 0, I(γ(1)) < 0, |m(γ(t))| < 1}.

Noting Γ1 ⊂ Γ, we have

0 < c ≤ c1.

Since Γ1 is not invariant by standard deformation flows of I(u), c1 may not be a critical

point of I(u). We will use c1 to divide the case. We divide the case into the following

three cases:

(i) c1 < c0.
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(ii) c1 = c0.

(iii) c1 > c0.

Proof of Theorem 0.1 for the case (i). Since the inequality c1 < c0 implies 0 < c < c0,

from Corollary 1.2, we can see I(u) has at least a non-trivial critical point.

Proof of Theorem 0.1 for the case (ii). In this case, if c < c1 = c0, then I(u) has

at least a non-trivial critical point from Corollary 1.2. Thus we may consider the case

c = c1 = c0. In this case, for any ϵ > 0, there exists γϵ(t) ∈ Γ1 such that

c ≤ max
t∈[0,1]

I(γϵ(t)) < c+ ϵ.

Since γϵ ∈ Γ1 ⊂ Γ and Γ is an invariant set by standard deformation flows of I(u), by a

standard Ekland principle, there exists uϵ ∈ H1(R) such that

c ≤ I(uϵ) ≤ max
t∈[0,1]

I(γϵ(t)) < c+ ϵ,

||I ′(uϵ)|| < 2
√
ϵ,

inf
t∈[0,1]

||uϵ − γϵ(t)||H1(R) < ϵ. (1.4)

Then, from Proposition 1.1, there exist a subsequence ϵj → 0, k ∈ N∪{0}, k-sequences
(x1j )

∞
j=1, · · · , (xkj )∞j=1 ⊂ R, and a critical point u0 of I(u) such that

I(uϵj ) → I(u0) + kc0 (j → ∞), (1.5)∣∣∣∣∣
∣∣∣∣∣uϵj (x)− u0(x)−

k∑
ℓ=1

ω(x− xℓj)

∣∣∣∣∣
∣∣∣∣∣
H1(R)

→ 0 (j → ∞),

|xℓj − xℓ
′

j | → ∞ (j → ∞) (ℓ ̸= ℓ′),

|xℓj | → ∞ (j → ∞) (ℓ = 1, 2, · · · , k).

Now, if u0 ̸= 0, our proof is completed. So we suppose u0 = 0. Then, from (1.5), it must

be k = 1. Thus, we have∣∣∣∣uϵj (x)− ω(x− x1j )
∣∣∣∣
H1(R)

→ 0 (j → ∞). (1.6)

|x1j | → ∞ (j → ∞).

On the other hand, we remark that, since m(ω) = 0 and m is of continuous, there exists

δ > 0 such that

|m(u)| < 1 for all u ∈ Bδ(ω) = {v ∈ H1(R) | ||v − ω||H1(R) < δ}.
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Thus, from (1.4) and (1.6), for some ϵ0 ∈ (0, δ2 ) and t0 ∈ [0, 1], we have

|m(γϵ0(t0))− x1j | < 1.

This contradicts to γϵ0 ∈ Γ1. Therefore u0 ̸= 0 and I(u) has at least a non-trivial critical

point.

Proof of the Theorem 0.1 for the case (iii). First of all, we set δ = c1−c0
2 > 0 and

choose L0 > 0 such that

max
(s,t)∈D2L0

\DL0

I(γR(s, t)) < c0 + δ < c1 for all R > 3L0. (1.7)

Here we setDL = [L,L]×[L,L] ⊂ R2. Next, from Proposition 1.5, we can choose R0 > 3L0

such that

max
(s,t)∈DL0

I(γR0(s, t)) < 2c0. (1.8)

Here we fix γR0(s, t) and define the following minimax value:

c2 = inf
γ∈Γ2

max
(s,t)∈D2L0

I(γ(s, t)),

Γ2 = {γ(s, t) ∈ C(D2L0 ,H
1(R)) | γ(s, t) = γR0(s, t) for all (s, t) ∈ D2L0 \DL0}.

Then we have the following lemma.

Lemma 1.7. We have

0 < c0 < c1 ≤ c2 < 2c0.

We postpone the proof of Lemma 1.7 to end of this section. If Lemma 1.7 is true, then

Γ2 is an invariant set by the deformation flows of I(u). Thus I(u) has a (PS)-sequence

(un)
∞
n=1 such that

I(un) → c2 ∈ (c0, 2c0) (n→ ∞).

From Corollary 1.2, we can see that I(u) must have at least a non-trivial critical point.

Combining the proofs of the cases (i)–(iii), we complete a proof of Theorem 0.1.

Finally we show Lemma 1.7.

Proof of Lemma 1.7. The inequality c0 < c1 is an assumption of the case (iii). From

γR0 ∈ Γ2 and (1.7)–(1.8), c2 < 2c0 is obvious. Thus we show c1 ≤ c2. For any γ(s, t) ∈ Γ2,

we have

m(γ(s, t)) > 0 for all (s, t) ∈ D1, (1.9)

m(γ(s, t)) < 0 for all (s, t) ∈ D2. (1.10)
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Here we set D1 = {(s, t) ∈ D2L0 \ DL0 | s < t} and D2 = {(s, t) ∈ D2L0 \ DL0 | s > t}.
From (1.9)–(1.10), a set {(s, t) ∈ D2L0 | |m(γ(s, t))| < 1} have a connected component

which contains a path joining two points γR0(−2L0,−2L0) and γR0(2L0, 2L0). Thus we

construct a path γ1(t) ∈ Γ1 such that

{γ1(t) | t ∈ [1/3, 2/3]} ⊂ {γ(s, t) | (s, t) ∈ D2L0},

max
t∈[0,1/3]∪[2/3,1]

I(γ1(t)) ≤ c0.

Thus we see

c1 ≤ max
t∈[0,1]

I(γ1(t))

≤ max
(s,t)∈D2L0

I(γ(s, t)). (1.11)

Since γ(s, t) ∈ Γ2 is arbitrary, from (1.11), we have

c1 ≤ c2.

Thus we get Lemma 1.7.

2. The proof of Proposition 1.5.

In this section, we fix a L > 0 and give a proof of Proposition 1.5. To prove Proposition

1.5, we need estimate I(γR(s, t)) for (s, t) ∈ [−L,L]2 and large R > 0. We use the following

notation: for an interval (a, b) ⊂ R, we set

J(a,b)(u) =
1

2
||u||2H1(a,b) −

∫ b

a

F (u) dx.

Then, we note that

I(u) = J(u) +
1

2

∫ ∞

−∞
b(x)u2 dx, (2.1)

J(−∞,ℓ)(γ0(s)(x+R)) = J(−∞,R+ℓ)(γ0(s)) = J(γ0(s))− J(R+ℓ−s,∞)(ω)

for all (s, ℓ) ∈ [−L,L]2 and R > 2L. (2.2)

Now, from (2.1)–(2.2) and (1.3), I(γR(s, t)) is written as follows:

I(γR(s, t)) = J(γR(s, t)) +
1

2

∫ ∞

−∞
b(x)γR(s, t)

2 dx

= J(−∞, s−t
2 )(γ0(s)(x+R)) + J( s−t

2 ,∞)(γ0(t)(x−R))

+
1

2

∫ s−t
2

−∞
b(x)γ0(s)(x+R)2 dx+

1

2

∫ ∞

s−t
2

b(x)γ0(t)(x−R)2 dx

= J(γ0(s)) + J(γ0(t))− 2J(R− s+t
2 ,∞)(ω)

+
1

2

∫ s−t
2

−∞
b(x)γ0(s)(x+R)2 dx+

1

2

∫ ∞

s−t
2

b(x)γ0(t)(x−R)2 dx. (2.3)
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Thus Proposition 1.5 can be obtained from the following three lemmas.

Lemma 2.1. There exists a1 > 0 such that

J(γ0(t)) ≤ c0 − a1|t|5 for all |t| ≤ 1.

Proof. We set g(t) = J(γ0(t)). From Lemma 1.4, we remark that g(t) < c0 (t ̸= 0) and

g(t) =

{
c0 −

∫ −t

t
1
2 |ω

′|2 + 1
2 |ω|

2 − F (ω) dx −1 ≪ t < 0,

c0 +
∫ t

−t
1
2 |4x

3|2 + 1
2 |u0 + x4|2 − F (u0 + x4) dx 0 < t≪ 1.

When −1 ≪ t < 0, by directly differentiating g(t), we see that

lim
t→−0

g′(t) = lim
t→−0

g′′(t) = 0 and lim
t→−0

g′′′(t) = 4(u0 − f(u0))
2 > 0. (2.4)

When 0 < t≪ 1, from the mean value theorem, for some θ = θx ∈ (0, 1), we have

g(t) = c0 +

∫ t

−t

8x6 +
1

2
x8 + x4(u0 − f(u0 + θx4)) dx. (2.5)

Noting f(u0) > u0, from (2.4)–(2.5), we obtain Lemma 2.1.

For the unique solution ω(x) of (0.1), we set

λ0 = lim
|x|→∞

ω(x)e|x|. (2.6)

Then λ0 > 0 and we also have

±λ0 = lim
x→±∞

ω′(x)e|x|. (2.7)

Lemma 2.2. For ℓ ∈ [−L,L], we have

lim
R→∞

e2RJ(R+ℓ,∞)(ω) =
λ20
2
e−2ℓ. (2.8)

Moreover, the convergence as R→ ∞ in (2.8) is uniformly with respect to ℓ ∈ [−L,L].

Proof. Firstly, we show

lim
R→∞

e2R
∫ ∞

R+ℓ

ω(x)2 dx =
λ20
2
e−2ℓ. (2.9)

From (2.6), for any ϵ > 0, there exists Rϵ > 0 such that

(λ0 − ϵ)2e−2x ≤ ω(x)2 ≤ (λ0 + ϵ)2e−2x for all x ≥ Rϵ.
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Thus, for R > Rϵ + L, integrating the above inequality from R+ ℓ to ∞, we have

1

2
(λ0 − ϵ)2e−2(R+ℓ) ≤

∫ ∞

R+ℓ

ω(x)2 dx ≤ 1

2
(λ0 + ϵ)2e−2(R+ℓ).

Since ϵ > 0 is arbitrary, we get (2.9). By similar computations, we find

lim
R→∞

e2R
∫ ∞

R+ℓ

|ω′(x)|2 dx =
λ20
2
e−2ℓ, (2.10)

lim
R→∞

e2R
∫ ∞

R+ℓ

F (ω(x)) dx = 0. (2.11)

Combining (2.9)–(2.11), we get Lemma 2.2.

Lemma 2.3. For (s, ℓ) ∈ [−L,L]2, we have

lim
R→∞

e2R
∫ ℓ

−∞
b(x)γ0(s)(x+R)2 dx = λ20e

2s lim
r→∞

∫ ℓ

−r

b(x)e−2x dx. (2.12)

Moreover, the convergence as R → ∞ in (2.12) is uniformly with respect to (s, ℓ) ∈
[−L,L]2.

We postpone the proof of Lemma 2.3 to end of this section. By using the above three

lemmas, we can prove Proposition 1.5.

Proof of Proposition 1.5. From (2.3) and Lemma 2.1, for any (s, t) ∈ [−L,L]2 and

R > 2L, we have

I(γR(s, t))− 2c0 ≤ −a1(|s|5 + |t|5)− 2J(R− s+t
2 ,∞)(ω)

+
1

2

∫ s−t
2

−∞
b(x)γ0(s)(x+R)2 dx+

1

2

∫ ∞

s−t
2

b(x)γ0(t)(x−R)2 dx. (2.13)

Here, let (sR, tR) ∈ [−L,L]2 be a maximum point of (s, t) 7→ I(γR(s, t)). If limR→∞(|sR|+
|tR|) > 0, then, from Lemma 2.2, Lemma 2.3 and (2.13), we get

lim
R→∞

e2R {I(γR(sR, tR))− 2c0} = −∞.

Thus (1.2) holds. On the other hand, if limR→∞(|sR|+ |tR|) = 0, then, we get

lim
R→∞

e2R {I(γR(sR, tR))− 2c0} ≤ λ20
2

(
lim
r→∞

∫ r

−r

b(x)e2|x| dx− 2

)
.

Therefore (1.2) holds and we completed a proof of Proposition 1.5.
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Finally we show Lemma 2.3.

Proof of Lemma 2.3. We fix a r ∈ [L,∞). From (2.6), for any ϵ > 0, there exists Rϵ > 0

such that ∣∣∣ω(x)2e2|x| − λ20

∣∣∣ < ϵ for all |x| ≥ Rϵ. (2.14)

For R > Rϵ+L+r and (s, ℓ) ∈ [−L,L]2, we divide the integration into two ones as follows:

e2R
∫ ℓ

−∞
b(x)γ0(s)(x+R)2 dx

= e2R
∫ ℓ

−r

b(x)ω(x+R− s)2 dx+ e2R
∫ −r

−∞
b(x)γ0(s)(x+R)2 dx

= (I) + (II).

For (I), from (2.14), we have∣∣∣∣∣(I)− λ20e
2s

∫ ℓ

−r

b(x)e−2x dx

∣∣∣∣∣ =
∣∣∣∣∣
∫ ℓ

−r

b(x)
[
(ω(x+R− s)2e2x+2R−2s − λ20

]
e−2x+2s dx

∣∣∣∣∣
≤ ϵe4L||b||L1(−r,ℓ). (2.15)

We remark that, from the definition of γ0(s) and (2.6), there exists C1 > 0 such that

|γ0(s)(x)| ≤ C1e
−|x| for all x ∈ R, s ∈ [−L,L]. (2.16)

For (II), from (2.16) and (b.3), we find

|(II)| ≤ e2R
∫ −r

−∞
C0e

β0xC2
1e

−2x−2R dx

=
C0C

2
1

β0 − 2
e−(β0−2)r. (2.17)

Thus, from (2.15) and (2.17), we get∣∣∣∣∣ limR→∞
e2R

∫ ℓ

−∞
b(x)γ0(s)(x+R)2 dx− λ20e

2s

∫ ℓ

−r

b(x)e−2x dx

∣∣∣∣∣ ≤ C0C
2
1

β0 − 2
e−(β0−2)r. (2.18)

Since (2.18) holds for any r ∈ [L,∞), we obtain Lemma 2.3 as r → ∞.

3. The non-existence result.

In this section, we assume f(u) = |u|p−1u (p > 1) and give a proof of Theorem 0.2. To

prove Theorem 0.2, we develop a shooting argument which used in [BE]. We remark that

(ii) of Theorem 0.2 directly follows from Theorem 0.1. Thus we may show only (i) and

(iii) of Theorem 0.2 but we can get (ii) as a by-product of our shooting argument. The

framework of our shooting argument is available if b(x) satisfies the following condition.

(b.6) There exists δ > 0 such that lim
|x|→∞

b(x)eδ|x| = 0.

First of all, to consider our shooting argument, we show the following propositon.
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Proposition 3.1. Suppose (b.6) holds and let u(x) be a solution of (∗). Then there exist

λ−, λ+ > 0 such that

lim
x→−∞

u(x)e−x = λ−, lim
x→∞

u(x)ex = λ+, (3.1)

lim
x→−∞

u′(x)e−x = λ−, lim
x→∞

u′(x)ex = −λ+. (3.2)

Proof. Firstly we show (3.1). For any β1 ∈ (max{ 1
1+η0

, 1 − δ}, 1), by the comparison

theorem, we see that, for some C1 > 0, u(x) satisfies

|u(x)| ≤ C1e
−β1|x| for all x ∈ R .

Thus, for β2 = min{(1 + η0)β1, δ + β1} > 1 and some C2 > 0, u(x) satisfies

− u′′ + u = f(u)− b(x)u inR,

|f(u)− b(x)u| ≤ C2e
−β2|x| for all x ∈ R .

Therefore, using again the comparison theorem, we get (3.1). Next we show (3.2). We

remark that the solution u(x) of (∗) satisfies

−1

2
u′(x)2 +

1

2
u(x)2 − F (u(x)) = −

∫ x

−∞
b(t)u(t)u′(t) dx =

∫ ∞

x

b(t)u(t)u′(t) dx. (3.3)

Noting u ∈ H1(R), from (3.1) and (3.3), for β3 = min{1 + δ, 2} ∈ (1, 2] and some C3 > 0,

u′(x) satisfies

|u′(x)|2 ≤ C3e
−β3|x| for all ∈ R . (3.4)

Again using (3.1), (3.3) and (3.4), for β4 = min{1 + δ + β3

2 , 2} ∈ (1, 2] and some C4 > 0,

u′(x) satisfies

|u′(x)|2 ≤ C4e
−β4|x| for all ∈ R .

Thus by a iteration argument, for some C5 > 0, u′(x) satisfies

|u′(x)| ≤ C5e
−|x| for all ∈ R . (3.5)

Now (3.2) follows from (3.1), (3.3) and (3.5). Therefore we get Proposition 3.1.

In what follows, for λ ∈ R, we would like to consider the following two initial value

problems:
− u′′ + (1 + b(x))u− = |u|p−1u,

lim
x→−∞

e−xu(x) = lim
x→−∞

e−xu′(x) = λ,
(3.6)
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and
− u′′ + (1 + b(x))u = |u|p−1u,

lim
x→∞

exu(x) = − lim
x→∞

exu(x) = λ.
(3.7)

To justify the above initial value problems, we need the existence and uniqueness of solu-

tions of (3.6) and (3.7). Moerover, to use a shooting argument, we need the continuity of

solutions with respect to initial value λ. Since we are not used to treating the problems

for the initial condition of (3.6) or (3.7), we change (3.6) and (3.7) into another problems.

For (3.6), setting

w(y) =
1

y
u(log y), (3.8)

then (3.6) becomes to the following initial value problem:

− y3w′′ − 3y2w′ + b−(y)yw = yp|w|p−1w±,

w(0) = λ, lim
y→+0

yw′(y) = 0.
(3.9)

Here we set b−(y) = b(log y). By a similar way, for (3.7), setting w(y) = 1
yu(− log y), the

problem (3.7) changes to the initial value problem

− y3w′′ − 3y2w′ + b+(y)yw = yp|w|p−1w,

w(0) = λ, lim
y→+0

yw′(y) = 0.
(3.10)

Here we set b+(y) = b(− log y). We remark that (b.6) implies

lim
y→+0

y−δb±(y) = 0. (3.11)

Remarking (3.11), if (b.6) holds, then we can easily find that the initial values problem

(3.9) and (3.11) are equivalent to the following integral equations respectively:

w(y) = T±(w)(y) = λ+

∫ y

0

1

s3

∫ s

0

b±(t)tw(t)− tp|w|p−1w dtds. (3.12)

Then, by the following proposition, we can use a suitable shooting argument.

Proposition 3.2. Suppose (b.6) holds. Then for any λ ∈ R, (3.9) and (3.10) have an

unique solution w−(y;λ) and w+(y;λ) in [0, 1] respectively. Moreover λ 7→ w±(x;λ) : R →
C([0, 1]) ∩ C1((0, 1]) are of continuous.

Proof. We set

X = {w ∈ C([0, ϵ]) | |w(y)− λ| ≤ 1 for all y ∈ [0, ϵ]}.

Then, for sufficient small ϵ > 0, T± are contraction maps on X. Thus (3.9) and (3.10) have

an unique solution in [0, ϵ]. By a standard way, we can extend those solutions to [0, 1] and

get the continuity with respect to initial values.

From Proposition 3.2, we have the following corollary.
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Corollary 3.3. Suppose (b.6) holds. Then for any λ ∈ R, (3.6) and (3.7) have an unique

solution u−(x;λ) in (−∞, 0] and u+(x;λ) in [0,∞) respectively. Moreover

(i) The maps λ 7→ u−(x;λ) : R → C1((−∞, 0]) and λ 7→ u+(x;λ) : R → C1([0,∞)) are

of continuous.

(ii) For λ ∈ R, we have

u−(0;λ) = w−(1;λ), u′−(0;λ) = w′
−(1;λ) + w−(1;λ), (3.13)

u+(0;λ) = w+(1;λ), u′+(0;λ) = −w′
+(1;λ)− w+(1;λ). (3.14)

Proof. Remarking that (3.6) and (3.7) are equivalent to (3.9) and (3.10) respectively,

Corollary 3.3 follows from Proposition 3.2.

Now, we can construct a shooting argument. We set

Γ− = {(u−(0;λ), u′−(0;λ)) ∈ R
2 |λ ̸= 0},

Γ+ = {(u+(0;λ), u′+(0;λ)) ∈ R
2 |λ ̸= 0}.

Then whether Γ− and Γ+ have intersections is equivalent to whether (∗) has non-trivial

solutions. Thus to prove Theorem 0.2, we may investigate intersections of Γ− and Γ+.

Remark 3.4. When b(x) ≡ 0, we can explicitly write the solution ω(x) of (0.1) with

maxx∈R ω(x) = ω(0) by

ω(x) = [2(p+ 1)]
1

p−1

[
e

p−1
2 x + e−

p−1
2 x

]− 2
p−2

.

Thus, letting u0−(x;λ) and u0+(x;λ) be solutions of (3.6) and (3.7) with b(x) ≡ 0 respec-

tively, we can also explicitly write as follows:

u0−(x;λ) = u0+(−x;λ) = λex
[

λp−1

2(p+ 1)
e(p−1)x + 1

]− 2
p−1

for all x ∈ R, λ > 0.

Here we setting
φ(λ) = u0−(0;λ) = u0+(0;λ),

ψ(λ) = u′0−(0;λ) = −u′0+(0;λ),
we also see that

Γ− = Γ+ =
{
(φ(λ), ψ(λ)) ∈ R

2 |λ ̸= 0
}

=

{
(u, v) ∈ R

2 \{(0, 0)}
∣∣∣∣−1

2
v2 +

1

2
u2 − 1

p+ 1
|u|p+1 = 0

}
.

We remark that Γ− = Γ+ corresponds to the fact that (0.1) has infinite many solution

{ω(x+ ℓ) | ℓ ∈ R}.

To investigate Γ− ∩ Γ+, the following propositon is a key.
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Proposition 3.5. Assume that (b.5) holds. Then for any ϵ > 0 there exists µ3 > 0 such

that for all µ ≥ µ3, λ > 0 and σ ∈ {−,+} we have

φ(λ) ≤ uσ(0;λ) ≤ (1− ϵ)φ(λ) (3.15)

(m1 − ϵ)φ(λ) + ψ(λ) ≤ −σu′σ(0;λ) ≤ ψ(λ) + (m2 − ϵ)φ(λ) (3.16)

Here φ(λ) and ψ(λ) were given in Remark 3.4.

From Proposition 3.5, we immediately get the following corollary.

Corollary 3.6. Assume that (b.5) holds.

(i) If m1 > 1, there exists µ1 > 0 such that Γ− ∩ Γ+ = ∅ for all µ ≥ µ1.

(ii) If m2 < 1, there exists µ2 > 0 such that Γ− ∩ Γ+ ̸= ∅ for all µ ≥ µ2.

Proof. Firsty, we show (i). We remark that by direct caluculations, we have

ψ(λ) = φ(λ)
2(p+ 1)− λp−1

2(p+ 1) + λp−1
for all λ > 0. (3.17)

If m1 > 0, from (3.17) and Proposition 3.5, there exists µ1 > 0 such that for all µ ≥ µ1,

we have

u−(0;λ) > 0, u′−(0;λ) > 0 for all λ > 0

u+(0;λ) > 0, u′+(0;λ) < 0 for all λ > 0

Noting uσ(x;−λ) = −uσ(x;λ) (σ ∈ {−,+}), this implies Γ− ∩ Γ+ = ∅. Next we show (ii).

We remark that

lim
λ→+0

(φ(λ), ψ(λ)) = (+0,+0), lim
λ→∞

(φ(λ), ψ(λ)) = (+0,−0). (3.18)

and

lim
λ→+0

ψ(λ)

φ(λ)
= 1, lim

λ→∞

ψ(λ)

φ(λ)
= −1. (3.19)

If m2 < 1, from (3.18)–(3.19) and Proposition 3.5, there exists µ2 > 0 such that for all

µ ≥ µ2, we have

lim inf
λ→+0

u′−(0;λ)

u−(0;λ)
∈ (1,∞) lim sup

λ→∞

u′−(0;λ)

u−(0;λ)
∈ (−1, 0),

lim sup
λ→+0

u′+(0;λ)

u+(0;λ)
∈ (−∞,−1) lim inf

λ→∞

u′−(0;λ)

u−(0;λ)
∈ (0, 1).

These imply Γ− ∩ Γ+ ̸= ∅.
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We remark that (i)–(ii) of Theorem 0.2 are directly conclutions of Corollary 3.6. In

the remaining parts of this section, we give proofs of Proposition 3.5. (iii) of Theorem 0.2

will also immediately follow from those proofs. We will show (3.15)–(3.16) for u−(0;λ),

because we can show it for u+(0;λ) by a similar way. We use the following function:

w0(y;λ) = λ

[
λp−1

2(p+ 1)
yp−1 + 1

]− 2
p−1

for y ∈ [0, 1], λ > 0. (3.20)

The w0(y;λ) satisfies the initial value problem

− y3w′′ − 3y2w′ = yp|w|p−1w,

w(0) = λ, lim
y→+0

yw′(y) = 0.
(3.21)

We remark that (3.21) comes from (3.9) when b(x) = 0.

Lemma 3.7. w0(y;λ) satisfies

(i) 0 < y2w0(y;λ) ≤ w0(1;λ) ≤ w0(y;λ) for all y ∈ [0, 1], λ > 0.

(ii) yw0(y;λ) ≤
(
p+1
2

) 1
p−1 for all y ∈ [0, 1], λ > 0.

(iii) w0(1;λ) = φ(λ) and w′
0(1;λ) = ψ(λ)− φ(λ) for all λ > 0.

Proof. These are conclusions from direct calculations for (3.20).

Here we set

h(y;λ) = w−(y;λ)− w0(y;λ) (3.22)

and show the following lemma.

Lemma 3.8. Assume that (b.5) holds. Then for any ϵ > 0, there exists µ3 > 0 such that

for all µ ≥ µ3 and λ > 0 we have

0 <h(1;λ) ≤ ϵφ(λ), (3.23)

(m1 − ϵ)φ(λ) ≤h′(1;λ) ≤ (m2 + ϵ)φ(λ). (3.24)

We can get (3.15) from Lemma 3.8.

Proof of Proposition 3.5. We will show only for u−(0;λ). From (3.13)–(3.14) and

(3.22), we have

u−(0;λ) = w0(1;λ) + h(1;λ)

u′−(0;λ) = w′
0(1;λ) + w0(1;λ) + h(1;λ) + h′(1;λ).
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Thus (3.15)–(3.16) follow from (3.23)–(3.24) and (iii) of Lemma 3.7. Therefore Proposition

3.5 holds from Lemma 3.8.

Now, we show Lemma 3.8.

Proof of Lemma 3.8. Since w−(y;λ) and w0(y;λ) satisfy (3.9) and (3.21) respectively,

h(y;λ) satisfies

−y3h′′ − 3y2h′ + b−(y)(h+ w0) = yp|h+ w0|p−1(h+ w0)− ypwp
0 in (0, 1],

h(0) = 0, lim
y→+0

yh′(y) = 0.
(3.25)

The differential equation (3.25) is equivalent to the integral equation

h(x) = S(h)(y) =

∫ y

0

1

s3

∫ s

0

b−(t)t(h+ w0)− tp
[
|h+ w0|p−1(h+ w0)− wp

0

]
dtds. (3.26)

We remark that, from Proposition 3.2, (3.26) has an unique solution h(y;λ) in (0, 1]. For

ϵ > 0, we set

X =
{
h ∈ C([0, 1])

∣∣ |h(y)| ≤ ϵφ(λ)yµ−2
}
,

Xϵ =
{
h ∈ C1([0, 1])

∣∣ 0 < h(y) ≤ ϵφ(λ)yµ−2, (m1 − ϵ)φ(λ) ≤ h′(1) ≤ (m2 + ϵ)φ(λ)
}
.

Since X is a closed convex set and S is a compact operator on X, if S is a operator from

X to Xϵ ⊂ X, then by the Schauder’s fix point theorem we see that h(y;λ) ∈ Xϵ which

implies (3.23)–(3.24). Thus we may show that, for large µ > 0, S(h) ∈ Xϵ for all h ∈ X.

We remark that (b.5) means

µm1y
µ ≤ b−(y) ≤ µm2y

µ for all y ∈ [0, 1]. (3.27)

From (i), (iii) of Lemma 3.7 and (3.27), we have

φ(λ)
m1

µ+ 2
yµ ≤

∫ y

0

1

s3

∫ s

0

b−(t)tw0 dtds ≤ φ(λ)
m2

µ− 2
yµ−2. (3.28)

From (3.27), there exists M1 > 0 such that for h ∈ X, we have∣∣∣∣∫ y

0

1

s3

∫ s

0

b−(t)th dtds

∣∣∣∣ ≤ ϵφ(λ)
M1

µ2
y2µ−2. (3.29)

From (ii) of Lemma 3.7 and (3.27), there exists M2 > 0 such that for h ∈ X, we have∣∣∣∣∫ x

0

1

s3

∫ s

0

tp
[
|h+ w0|p−1(h+ w0)− wp

0

]
dtds

∣∣∣∣
≤ p2p−1

∫ y

0

1

s3

∫ s

0

tp
[
|h|p−1 + |w0|p−1

]
h dtds

≤ ϵφ(λ)
M2

µ2
yµ. (3.30)
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From (3.28)–(3.30), we see that

φ(λ)

[
m1

µ+ 2
− ϵ(M1 +M2)

µ2

]
yµ ≤ S(h)(y) ≤ φ(λ)

[
m2

µ− 2
+
ϵ(M1 +M2)

µ2

]
yµ−2. (3.31)

Next we remark that

S(h)′(y) =
1

y3

∫ y

0

b−(t)t(h+ w0)− tp
[
|h+ w0|p−1(h+ w0)− wp

0

]
dtds.

By a similar computation, for some M3 > 0, we get

φ(λ)

[
µm1

µ+ 2
− ϵM3

µ

]
yµ−1 ≤ S(h)′(y) ≤ φ(λ)

[
m2 +

ϵM3

µ

]
yµ−3. (3.32)

From (3.31)–(3.32), for large µ > 0 we see that S(h) ∈ Xϵ for all h ∈ X. Therefore we

completed a proof of Lemma 3.8.

Proof of Theorem 0.2. Firstly, (i)–(ii) follow from Corollary 3.6. In the above proof in

Lemma 3.8, h(y) ∈ Xϵ implies uσ(x;λ) > 0 for all λ > 0, x ∈ R and σ ∈ {−,+}. Thus we
also see that (iii) holds.
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