
RIBBON TORUS KNOTS PRESENTED BY
VIRTUAL KNOTS WITH UP TO 4 CROSSINGS

ATSUSHI ICHIMORI AND TAIZO KANENOBU

Abstract. A ribbon torus knot embedded in the 4-space is presented by a welded
virtual knot through the Tube operation due to Shin Satoh. We make an attempt of
classification of ribbon torus knots presented by virtual knots with up to 4 crossings,
where we use the list of virtual knots enumerated by Jeremy Green. We mainly
investigate the groups of virtual knots.

1. Introduction

A ribbon torus knot is an embedded torus in the 4-space R4 that is the result of piping
together standardly embedded, separated 2-spheres in R4. Shin Satoh [26] has defined
a Tube operation, which gives a map from a welded virtual knot K to a ribbon torus
knot Tube(K); a welded virtual knot is an equivalence class of virtual knot allowing one
of the forbidden moves Φt (Fig. 6). Satoh has also shown that this map is surjective.
For a virtual knot K the group G(K) (see Subsec. 2.4) is an invariant for a welded
virtual knot, which is isomorphic to the group of Tube(K); G(K) ∼= π1(R

4−Tube(K)).
In particular, if K is a classical knot, G(K) is the fundamental group of the complement
of K, and so G(K) ∼= G(K∗), where K∗ is the mirror image of K, that is, a diagram
of K∗ is obtained from that of K by switching the positive to negative crossings, and
vice versa. However, if K is not a classical knot, then G(K) ∼= G(K∗) does not always
hold. This means that Tube(K) and Tube(K∗) generally represent different ribbon
torus knots.

On the other hand, Jeremy Green [5] has enumerated virtual knots with up to 6 real
crossings. The first author [9] has calculated the groups of virtual knots with up to 4
crossings in Green’s table, and has shown that each of them is isomorphic to either the
infinite cyclic group or 9 groups Gi, i = 1, . . . , 9 given in Sec. 4. In Green’s table there
are 9 knots with up to 3 real crossings and 108 knots with 4 real crossings, where we
treat the mirror images and reversions as the same knot. However, in order to examine
the group of a virtual knot we should calculate the groups of both the original knot and
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its mirror image. In this paper, we only investigate the ribbon torus knots represented
by virtual knots with up to 4 crossings whose group are not infinite cyclic. Notice that
it is conjectured that a knotted torus in the 4-space whose group is infinite cyclic is
unknotted. The result is summarized in Table 1; at most nontrivial 13 ribbon torus
knots arise from virtual knots with up to 4 crossings. For each group Gi, we examine all
the ribbon torus knots Tube(K), where K is a virtual knot with up to 4 crossings with
group Gi. In many cases, the Gauss diagrams are useful for proving the equivalence as
oriented welded virtual knots (Example 2.4, Proposition 3.4). Eventually, we see there
are two pairs of ribbon torus knots with the same group {T31, T42}, {T43, T44}, which
are distinguished by the peripheral structure, and also there are two pairs we cannot
decide whether they are equivalent or not; {T48, T49}, {T410, T411}.

It is known that a ribbon torus knot is (−)amphicheiral, that is, the mirror image
of a ribbon torus knot is equivalent to its reversion (Proposition 3.2), and so we call a
ribbon torus knot symmetric if it is reversible or (+)amphicheiral (Definition 1). For
each ribbon torus knot in Table 1 we examine if it is symmetric or not.

This paper is organized as follows: In Sec. 2, we give definitions of a virtual knot, a
Gauss diagram, a welded virtual knot, and the group of a virtual knot. In Sec. 3, we
review Satoh’s Tube operation. In Sec. 4, we give our main result (Theorem 4.1), the
classification of ribbon torus knots arising from virtual knots with up to 4 crossings,
which is summarized in Table 1. In Secs. 5–12, we examine each ribbon torus knot
given in Table 1. Sec. 13 contains some remarks and questions.

2. Virtual knot and Gauss diagram

2.1. Virtual knot. A virtual knot diagram is a knot diagram which may have virtual
crossings as well as classical crossings. A virtual knot is an equivalence class of virtual
knot diagrams under the classical Reidemeister moves Ω1, Ω2, Ω3 (Fig. 1) together with
virtual Reidemeister moves Ω′

1, Ω′
2, Ω′

3, Ω′
4 (Fig. 2). By a generalized Reidemeister move

we mean either a classical or virtual Reidemeister move. Two oriented virtual knot
diagrams D and D′ are oriented equivalent, denoted by D∼D′, if they are related by
a finite sequence of generalized Reidemeister moves.

Ω1 Ω2 Ω3

Figure 1. Classical Reidemeister moves.

Let D be a diagram of an oriented virtual knot K. There are two mirror images:
the vertical mirror image D∗ and horizontal mirror image D†; the former is obtained
from D by switching positive to negative crossings, and vice versa, and leaving virtual
crossings unchanged, and the latter by reflecting the diagram across a vertical plane.
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Figure 2. Virtual Reidemeister moves.

We denote the orientation-reversion of D by −D. We also denote by K∗, K†, and −K
the virtual knots presented by the diagrams D∗, D†, and −D, respectively. We say
a virtual knot K is reversible if K = −K. If K is a classical knot, then K∗ = K†.
However, for a virtual knot it is not always the case:

Example 2.1. In Fig. 3 we give eight oriented virtual knot diagrams, where D is a
diagram of the virtual knot 3.1 in Green’s notation [5]. Kishino and Satoh [20, Sec. 5]
have shown that these eight virtual knot diagrams are mutually inequivalent.

!
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−D −D∗ −D† −D∗†

Figure 3. Diagrams of the virtual knot 3.1 and its relatives.
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Remark 2.2. The terminology of vertical and horizontal mirror images follows Green
[5]. The notations D∗ and D† are different from those used in [8, 20, 27, 30].

2.2. Gauss diagram. A Gauss diagram for an oriented virtual diagram D consists of
the oriented circle together with chords, each of which connecting the preimages of each
classical crossing point; each chord is oriented from the preimage of the overcrossing
to that of the undercrossing, and further equipped with the sign of the corresponding
crossing point. We assume that the circle of a Gauss diagram is oriented anticlock-
wise. It is known [4, Theorem 1.A] that a virtual knot is uniquely defined by the
Gauss diagram. A Gauss diagram is considered up to orientation preserving homeo-
morphism of the underlying circle. This means that a virtual knot is equivalent to the
corresponding Gauss diagram considered up to moves which are the counter-parts of
Reidemeister moves for Gauss diagrams [4, Fig. 6]; we denote the corresponding moves
of the Gauss diagrams by the same symbols Ω1, Ω2, Ω3. In particular, we will use the
move corresponding to the Reidemeister move Ω1, see Fig. 4.

ε

ε′

Figure 4. Moves of Gauss diagrams corresponding to Reidemeister
move Ω1, where ε, ε′ = + or −.

For an oriented virtual knot diagram D, we denote its Gauss diagram by Gauß(D).
Then the Gauss diagrams of D∗, D†, −D are obtained from that of D in the following
manner: Gauß(D∗) is obtained by changing both the orientation and the sign of each
chord; Gauß(D†) is obtained by changing the sign of each chord; Gauß(−D) is obtained
by turning over the whole Gauss diagram, respectively. Similarly, for a Gauss diagram
Γ we denote by Γ∗, Γ†, −Γ the Gauss diagrams obtained from Γ by transforming in
the same way as above: Γ∗ is obtained by changing both the orientation and the sign
of each chord; Γ† is obtained by changing the sign of each chord; −Γ is obtained by
turning over the whole Gauss diagram, respectively. Thus, if Γ = Gauß(D), then
Γ∗ = Gauß(D∗), Γ† = Gauß(D†), −Γ = Gauß(−D).

Example 2.3. In Fig. 5 we give Gauss diagrams of the eight knot diagrams given in
Example 2.1, where Gauß(D) is a Gauss diagram for the knot diagram D of the knot
3.1; the Gauss code of this knot is O1−O2− U1−O3 + U2− U3 + ; see [5].

Green [5] has enumerated virtual knots with up to 6 classical crossings by using
a computer under the supervision of Dror Bar-Natan; the program generates a list of
Gauss codes, and then determined which are equivalent. For each oriented virtual knot
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Gauß(D) Gauß(D∗) Gauß(D†) Gauß(D∗†)

Gauß(−D) Gauß(−D∗) Gauß(−D†) Gauß(−D∗†)

Figure 5. Gauss diagrams of the virtual knot diagrams given in Fig. 3.

K, it is also indicated whether K = K∗, K = K†, K∗ = K†, K = −K or not. In the
following we use Green’s notation for oriented virtual knots with up to 4 crossings.

2.3. Welded virtual knot. There are also the so-called forbidden moves Φt, Φh as
shown in Fig. 6. It is known [12, 24] that if we allow both of these moves, any virtual
knot becomes a trivial knot.

Φt Φh

Figure 6. Forbidden moves.

A welded virtual knot [2, 26] is an equivalence class of virtual knot diagrams under
the generalized Reidemeister moves, as well as one of the forbidden moves Φt. Let K,
K ′ be oriented virtual knots with diagrams D, D′, respectively. Then K and K ′ are
oriented welded-equivalent, denoted by K

ow∼K ′, if the diagrams D and D′are related by
a finite sequence of generalized Reidemeister moves and the move Φt. There are moves
of Gauss diagrams corresponding to the forbidden moves Φt, Φh; see [24, Figure 4]. In
Fig. 7 we give the move corresponding to Φt, which moves an arrowtail of either sign
past an adjacent arrowtail with either sign without conditions on the relative positions
of the heads of these arrows. We also denote this move on Gauss diagrams by the same
symbol Φt. Thus if Gauss diagrams Gauß(D) and Gauß(D′) are related by a finite

sequence of the moves Ω1, Ω2, Ω3, Φt, then K
ow∼K ′.
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ε ε

ε′ ε′

Figure 7. The move of Gauss diagrams corresponding to the forbidden
move Φt, where ε, ε′ = + or −.

Example 2.4. The knot 3.1 given in Fig. 3 is oriented welded-equivalent to the trivial
knot. In fact, using the moves Φt and Ω1, we may deform the Gauss diagram of 3.1
given in Fig. 5 into that of the trivial knot as shown in Fig. 8.

+ +

+ +

Φt Ω1 Φt Ω1

Figure 8. Deformation of the Gauss diagram of the knot 3.1.

2.4. Group of a virtual knot. For a virtual knot diagram D of an oriented virtual
knot K, the group of D, G(D), is given by a generalization of Wirtinger’s algorithm
[15, 16]: one associates a generator to each arc in the diagram. The relations are
determined by the classical crossings as shown in Fig. 9. The group of a virtual knot
is invariant under all the generalized Reidemeister moves and also the forbidden move
Φt, and hence is an invariant of welded virtual knots, and so we also denote by G(K)
the group of the (welded) virtual knot K presented by the diagram D.

!

"

!"

!

"

#$#$"!"#$#$!$$"!
!"

z = x−1yx z = xyx−1

x x

y y

Figure 9. Generators and relations for the group of a virtual knot.
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Figure 10. Virtual knot presentation.

3. Virtual knot presentation of a ribbon torus knot

A surface knot is an embedded surface in the 4-space R4. In this paper, we consider
either a sphere knot (i.e., a 2-knot) or a torus knot (or a T 2 knot). For an oriented
surface knot F , we denote by −F and F ∗ the surface knots obtained by reversing the
orientation and taking the mirror image, respectively. Two oriented surface knots F

and F ′ are oriented equivalent, denoted by F
o
≈F ′, if there exists an ambient isotopy of

R4 which maps F to F ′ preserving the orientation, and equivalent, denoted by F ≈ F ′,

if F
o
≈F ′ or −F ′.

A ribbon surface knot is an embedded surface in R4 obtained by adding q 1-handles
to a trivial 2-link with p components for some p and q. Thus for a ribbon 2-knot
p = q + 1 and for a ribbon torus knot p = q; cf. [18, p. 178].

A ribbon handlebody is a 2-dimensional handlebody in R3 consisting of p 0-handles
∆ = D1 ∪ · · · ∪ Dp and q 1-handles B = B1 ∪ · · · ∪ Bq for some p and q, which has
only ribbon singularities; the preimage of each ribbon singularity consists of an arc in
the interior of a 0-handle and a cocore of a 1-handle. In order to present a ribbon
handlebody we use a ribbon regular projection as in [10, Sect. 1] or [11, Sect. 3]. We
define the associated ribbon surface knot in R4 = R3 ×R as the ribbon surface knot
that bounds the immersed 3-disk ∆× [−2, 2]∪B× [−1, 1]. Conversely, for any ribbon
surface knot K, there exists a ribbon handlebody whose associated ribbon surface knot
is K; see [13, 32]. Thus we may represent a ribbon surface knot by a ribbon regular
projection of a ribbon handlebody.

Given an oriented virtual knot diagram of a virtual knot K, we can construct a
ribbon regular projection of a ribbon handlebody as shown in Fig. 10; note that a
classical crossing corresponds to a 0-handle. From this we obtain an associated ribbon
torus knot, which we denote by Tube(K). Satoh has shown [26, Proposition 3.3] that
an oriented welded virtual knot determines a ribbon torus knot by this operation.
Conversely, he has shown [26, Theorem 3.1] that for any ribbon torus knot T , there
exists an oriented virtual knot K such that Tube(K) = T . Then the group of the
virtual knot K is isomorphic to the fundamental group of the complement of Tube(K);
G(K) ∼= π1(R

4 − Tube(K)) [26, Proposition 3.4]. For a surface knot F in R4 we also
denote by G(F ) the fundamental group π1(R

4 − F ), and thus G(K) ∼= G(Tube(K)).
7



Example 3.1. From the diagram of the knot 3.1 given in the first diagram in Fig. 3
we obtain the ribbon regular projection of a ribbon handlebody as shown in Fig. 11,
which consists of three 0-handles D1 ∪ D2 ∪ D3 and three 1-handles B1 ∪ B2 ∪ B3;
each 0-handle Di corresponds to the real crossing assigned as i, i = 1, 2, 3, in the
first diagram in Fig. 11, and the 1-handle Bi connects the two 0-handles Di−1 and Di,
where the subscripts are taken modulo 3.

D2

D1

B3

B1

B2

D3

Figure 11. Ribbon handlebody constructed from the knot 3.1.

For a ribbon surface knot we have the following property due to Yoshihiko Marumoto;
see [29, Theorem 2.18], [26, Proposition 4.1].

Proposition 3.2. A ribbon surface knot is (−)amphicheiral, that is, if F is a ribbon
surface knot, then

F
o
≈ − F ∗. (3.1)

However, it is not always the case that a ribbon surface knot is reversible, F
o
≈ −F ,

or equivalently (+)amphicheiral, F
o
≈F ∗.

Definition 1. A ribbon torus knot F is symmetric if it is reversible or (+)amphicheiral;

F
o
≈ − F

o
≈F ∗, and asymmetric otherwise.

For an oriented virtual knot K, Satoh [26, Corollary 4.2] has shown:

Tube(−K)
o
≈ − Tube(K), (3.2)

and Winter [30, Theorem 3.6] has shown:

Tube(K)∗
o
≈Tube(−K†). (3.3)
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As we have seen in Example 2.1, in general eight oriented virtual knots K, K∗, K†,
K∗†, −K, −K∗, −K†, −K∗† are mutually distinct. However, using Eqs. (3.1)–(3.3),
we obtain the following; cf. [30, 31].

Proposition 3.3. For an oriented virtual knot K,

Tube(K†)
o
≈Tube(K); (3.4)

Tube(−K)
o
≈Tube(−K†)

o
≈ − Tube(K); (3.5)

Tube(K∗†)
o
≈Tube(K∗); (3.6)

Tube(−K∗)
o
≈Tube(−K∗†)

o
≈ − Tube(K∗), (3.7)

and thus, we have

Tube(K) ≈ Tube(K†) ≈ Tube(−K) ≈ Tube(−K†); (3.8)

Tube(K∗) ≈ Tube(K∗†) ≈ Tube(−K∗) ≈ Tube(−K∗†). (3.9)

This proposition immediately implies the following:

Proposition 3.4. Suppose that Γ1 and Γ2 are the Gauss diagrams of diagrams for
oriented virtual knots K1 and K2, respectively. Then:

(i) If either Γ1
ow∼ Γ2 or Γ1

ow∼ Γ2
†, then Tube(K1)

o
≈Tube(K2).

(ii) If either Γ1
ow∼ − Γ2 or Γ1

ow∼ − Γ2
†, then Tube(K1)

o
≈ − Tube(K2).

In particular, if an oriented virtual knot K is reversible, or equivalently the Gauss

diagram Γ for K satisfies Γ = −Γ, then Tube(K) is symmetric; Tube(K)
o
≈−Tube(K).

Let F be a torus knot in R4 and X its exterior. The peripheral subgroup of F is
the image of π1(∂X) by the map i∗ induced by the inclusion i : ∂X → X. So it is
isomorphic to the direct sum of Z, which is generated by a meridian, and some quotient
of π1(F ) ∼= Z⊕Z. If F is a ribbon torus knot given by Tube(K) for some virtual knot
K, then the peripheral subgroup is generated by the meridian and the longitude, which
is obtained as an element of the knot group of K corresponding to circling the knot
exactly once in the direction of the orientation of the knot without algebraic linking;
cf. [4, 19, 30].

4. Statement of the result

The first author [9] has calculated the groups of virtual knots with up to 4 crossings
in Green’s table, and has shown that each of them is isomorphic to either the infinite
cyclic group or one of the following 9 groups. The first author showed that they are
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mutually distinct by using the elementary ideals.

G1 =
〈

x, y
∣∣ xyx = yxy

〉
, (4.1)

G2 =
〈

x, y
∣∣ xyx = yxy, y = x−2yx2

〉
, (4.2)

G3 =
〈

x, y
∣∣ xyx = yxy, y = x−3yx3

〉
, (4.3)

G4 =
〈

x, y
∣∣ x−1yxy−1x = yx−1yxy−1

〉
, (4.4)

G5 =
〈

x, a
∣∣ x−1ax = a−1, a5 = 1

〉
, (4.5)

G6 =
〈

x, a
∣∣ x−1ax = a2, a5 = 1

〉
, (4.6)

G7 =
〈

x, y
∣∣ x−1yx = y−1xy

〉
, (4.7)

G8 =
〈

x, a
∣∣ x−1ax = a2, a7 = 1

〉
, (4.8)

G9 =
〈

x, y
∣∣ xyxy−1x−1 = yx−1yxy−1, x−1y−1xyx = y−1x−1yxy

〉
. (4.9)

The group G1 is the trefoil knot group, and G2 and G3 are the groups of the 2- and
3-twist spun trefoil knot, respectively; see [34]. The group G4 is the figure-eight knot
group, and G5 is the group of the 2-twist spun of either the figure-eight knot or (2,5)
torus knot. The group G7 is the group of a ribbon 2-knot given by Fox [3, Example 11].
The commutator subgroups of G6 and G8 are cyclic of order 5 and 7, respectively, which
have been given as the groups of some ribbon torus knots in [1, 7]; it is known that
these groups are of some 3-knots but not of any 2-knots (Remarks 9.2, 12.3). We prove
that the commutator subgroup of G9 is abelian (Proposition 10.2), and using a result
of Hillman, we can see it is not a 2-knot group (Remark 10.3).

Our main result is the following:

Theorem 4.1. Let K be a virtual knot with up to 4 classical crossings. If the group of
K is not infinite cyclic, then the corresponding ribbon torus knot Tube(K) is equivalent
to one of the 13 knots listed in Table 1, which are mutually inequivalent except for the
two paris {T48, T49} and {T410, T411}. (We do not know whether these pairs are
equivalent or not.)

Proof. The first author [9] has calculated the groups of the virtual knots with up to 4
crossings. So, for each group Gi we will examine the ribbon torus knots represented by
virtual knots with up to 4 crossings with group Gi in Secs. 5–12 to obtain Table 1. �

Table 1 summarizes our result: We define 13 ribbon torus knots T31, T32, T4i,
i = 1, 2, . . . , 11, obtained from the virtual knots with up to 4 crossings through the
Tube operation as in the first and second columns in Table 1, where the Gauss diagrams
for the virtual knots in the second column are shown in Fig. 12. The third column in
Table 1 indicates the symmetry of the ribbon torus knots, where the symbols “s”, “a”,
“?” mean that it is symmetric, asymmetric, or unknown whether symmetric or not,
respectively. In the last column we give other virtual knots representing the ribbon
torus knots. So the groups of the remaining virtual knots are infinite cyclic.
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Table 1. Ribbon torus knots represented by virtual knots with up to 4 crossings.

Tube(K) K Group Symmetry Other knots representing Tube(K)
T31 3.6(∼ 3.6∗†) G1 s 4.61, 4.68, 4.69∗, 4.73∗.
T32 3.7(∼ 3.7∗†) G2 s 4.62–4.67, 4.98, 4.70∗, 4.74∗, 4.76∗.
T41 4.108(∼ 4.108∗) G4 s
T42 4.71∗ G1 s 4.75∗, 4.98∗.
T43 4.65∗ G3 s 4.96.
T44 4.102(∼ 4.102∗†) G3 s 4.104 (∼ 4.104∗†).
T45 4.99(∼ 4.99∗) G7 a 4.72∗, 4.77∗.
T46 4.62∗ G8 a 4.95, 4.95∗.
T47 4.105 G9 a 4.105∗.
T48 4.106 (∼ 4.106∗†) G5 s
T49 4.107 G5 ? 4.107∗.
T410 4.66∗ G6 a 4.97.
T411 4.101∗ (∼ 4.101†) G6 a 4.103 (∼ 4.103∗†).
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3.6 3.7 4.108 3.71∗ 4.65∗

4.102 4.99 4.62∗ 4.105 4.106

4.107 4.66∗ 4.101∗

Figure 12. Gauss diagrams for the virtual knots defining ribbon torus
knots in Table 1.
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5. Ribbon torus knots with groups G1 or G4; T31, T41, T42

The groups G1, G4 are the trefoil knot group, figure-eight knot group, respectively.
Given a classical knot K, we can construct ribbon torus knots whose groups are iso-
morphic to that of K in two ways; one is the spun torus knot, and the other is adding
a trivial 1-handle to the spun 2-knot of K. These ribbon torus knots are inequivalent
because they have different peripheral subgroups; see [26, Page 541]. In Subsec. 5.1, we
consider T31 and T41, which are spun torus knots of the trefoil and figure-eight knots,
respectively. In Subsec. 5.2, we consider the ribbon torus knot T42, which is obtained
from the spun trefoil knot by adding a trivial 1-handle.

5.1. Spun torus knots; T31, T41. A spun torus knot of a classical knot K is defined
as follows: Put K in the half 3-space R3

+, and then rotate R3
+ about R2, we obtain

the spun torus knot of K in the 4-space. Satoh [26, Theorem 4.3] has shown that if
K is a classical knot, then Tube(K) is a spun torus knot of K. So the group of the
spun torus knot of K is isomorphic to that of K; cf. [22, Proposition 3.1(a)]. We define
T31 = Tube(3.6) and T41 = Tube(4.108), where the knots 3.6, 4.108 are the left-hand
trefoil knot and figure-eight knot, respectively. Then we have the following.

Lemma 5.1. (i) The ribbon torus knots T31 and T41 are symmetric.
(ii) G(T31) ∼= G(3.6) ∼= G1; G(T41) ∼= G(4.108) ∼= G4.

(iii) For K = 3.6∗, 4.61, 4.68, 4.69∗, 4.73∗, Tube(K)
o
≈T31.

Proof. (i) Since the trefoil knot 3.6 and figure-eight knot 4.108 are reversible, T31 and
T41 are symmetric by Proposition 3.4. The claim (ii) is obvious.

(iii) From the Gauss diagrams as shown in Figs. 12 and 13, we have 3.6
ow∼ 4.61,

3.6∗
ow∼ 4.68, and 4.69∗

ow∼ 4.73∗. Figure 14 shows that 4.69∗
ow∼ 3.6∗. Since 3.6∗ = 3.6†, by

Eq. (3.4) we have the result. This completes the proof. �

+
+

+ + +

+ + +

+
+

+
4.61 4.68 4.69* 4.73*

+
+

+ + +

+ + +

+
+

+
4.61 4.68 4.69∗ 4.73∗

Figure 13. Gauss diagrams for virtual knots representing T31.

5.2. Ribbon torus knot T42. We define T42 = Tube(4.71∗).

Lemma 5.2. (i) The ribbon torus knot T42 is obtained from the spun trefoil knot by
adding a trivial 1-handle.

(ii) G(T42) ∼= G(4.71∗) ∼= G1.
12



y
x

D

BII

4.71!

Φt Ω′
2

4.69∗

Figure 14. The knot 4.69∗ is oriented welded-equivalent to the right-
hand trefoil knot 3.6∗.

(iii) For K = 4.75∗, 4.98∗, Tube(K)
o
≈T42.

(iv) T42 is symmetric.

Proof. In Example 5.10 in [26] it is shown that a ribbon torus knot obtained from the
spun trefoil knot by adding a trivial 1-handle is represented by a virtual knot diagram
as shown in Fig. 15; cf. [17, Sec. 3.4]. Its Gauss diagram is the same as that of 4.71∗

(Fig. 12), and so we obtain (i). The claim (ii) is also remarked there.

From the Gauss diagrams in Figs. 12 and 16, we have 4.71∗
ow∼ 4.75∗

ow∼ 4.98∗, giv-
ing (iii). Since −Gauß(4.75∗) = Gauß(4.75∗), by Proposition 3.4 we have (iv). This
completes the proof. �

4.71!

Figure 15. A diagram of the knot 4.71∗.

+

+

+

+

+

+

4.71! 4.75! 4.98!4.75∗ 4.98∗

Figure 16. Gauss diagrams of virtual knots representing T42.
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6. Ribbon torus knot with group G2; T32

We difine T32 = Tube(3.7). Note that the knot 3.7 is the 2-braid virtual knot
B(−2, 1) as shown in Fig. 17.

x y

z u

x y

z

Figure 17. The knot 3.7 is the virtual 2-braid knot B(−2, 1).

Lemma 6.1. (i) The ribbon torus knot T32 is symmetric.
(ii) G(T32) ∼= G(3.7) ∼= G2.

(iii) For K = 3.7∗, 4.62–4.67, 4.70∗, 4.74∗, 4.76∗, 4.98, Tube(K)
o
≈T32.

Proof. (i) Green [5] mentions that the knot 3.7 is reversible, which implies the result. In
fact, from the diagram shown in Fig. 17 it is easy to see that the knot 3.7 is reversible.
This also follows from Gauß(3.7) = −Gauß(3.7).

(ii) Using the Wirtinger generators x, y, z in Fig. 17, we have

G(3.7) =
〈

x, y, z,
∣∣ zy = yx, xz = zy, xy = zx

〉
. (6.1)

Removing z, we obtain the presentation G2. Putting a = yx−1, we have

G2
∼=

〈
x, a

∣∣ x−1ax = a−1, a3 = 1
〉
, (6.2)

showing the commutator subgroup is isomorphic to the cyclic group of order 3; see [28,
Example 1.1], [14, Sec. 6].

(iii) We give the Gauss diagrams for the the knots 3.7, 3.7∗, and 4.62, . . . , 4.67 in
Fig. 18, where the third diagram gives the Gauss diagrams for the knots 4.62, . . . , 4.67
with signs indicated in Table 2. Since Gauß(3.7∗) = Gauß(3.7)†, by Proposition 3.4 we

have Tube(3.7∗)
o
≈T32 = Tube(3.7). Indeed, Green [5] mentions that 3.7∗∼ 3.7†.

The third Gauss diagram in Fig. 18 is oriented welded-equivalent to the fourth one,

which is the Gauss diagram for either 3.7 or 3.7∗, and so Tube(K)
o
≈T32 for K = 4.62,

. . . , 4.67.
Now we consider the remaining knots. In Fig. 19 we give the Gauss diagrams for

the knots 4.70∗, 4.74∗, 4.76∗, 4.98∗, which implies 4.70∗
ow∼ − 4.74∗, 4.76∗

ow∼ 4.98∗, and

so Tube(4.70∗)
o
≈ − Tube(4.74∗), Tube(4.76∗)

o
≈Tube(4.98∗).

Then, we show that 4.74∗ and 4.76∗ are oriented welded-equivalent to 3.7. The moves
as shown in Fig. 20 are realized by the generalized Reidemeister moves. Applying them
to the diagram of the knot 3.7 in Fig. 21(a), we have two diagrams Figs. 21(b) and (c),
both of which are oriented equivalent to the first diagram of 3.7. The Gauss diagrams
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+

2

3

4.62-673.7

+ +

3.7*

+++++

++

4.70* 4.76!

+

+

+

4.74*4.98

1

4

23

4.62-67

4

3.7 3.7∗ 4.62–4.67

Figure 18. Gauss diagram for the knots 3.7, 3.7∗ and 4.62, . . . , 4.67.

Table 2. Signs of the Gauss diagrams of the knots 4.62, . . . , 4.67.

knot ε1 ε2 ε3 ε4

4.62 − − − +
4.63 − − + −
4.64 − − + +
4.65 − + − −
4.66 − + − +
4.67 + + − −

++

4.70* 4.76!4.74*

4.74*

4.98

+++++ ++

++ +

+

+
4.76*

4.74* 4.76*

++

+

+

4.70∗ 4.74∗ 4.76∗ 4.98

Figure 19. Gauss diagram for the knots 4.70∗, 4.74∗, 4.76∗, 4.98.

for them are given in Fig. 22; the first one is oriented welded-equivalent to the Gauss
diagram Γ†, where Γ is the Gauss diagram for 4.74∗ given in Fig. 19, and the second
one is oriented welded-equivalent to the Gauss diagram for 4.76∗ given in Fig. 19. This
completes the proof. �

7. Ribbon torus knots with group G3; T43, T44

There are two ribbon torus knots with group G3 represented by virtual knots with
up to 4 crossings; T43, T44.

7.1. Ribbon torus knot T43. We define T43 = Tube(4.65∗).

Lemma 7.1. (i) The ribbon torus knot T43 is symmetric.
(ii) G(T43) ∼= G(4.65∗) ∼= G3.

15



Figure 20. Moves realized by a finite sequence of generalized Reide-
meister moves.

4.74* 4.76*(a) (b) (c)

Figure 21. Three diagrams of the knot 3.7.

++

4.70* 4.76!4.74*

4.74*

4.98

+++++ ++

++ +

+

+
4.76*

4.74* 4.76*

++

+

+

Figure 22. Gauss diagrams for the knot diagrams in Figs. 21(b), (c).

(iii) The longitude of T43 is the unit element in G(T43).

(iv) Tube(4.96)
o
≈T43.

Proof. (i) Green [5] mentions that the virtual knot 4.65 is reversible, and so is 4.65∗,
which implies that T43 is symmetric. In fact, in Fig. 23 a sequence of deformations of
the knot 4.65∗ into a diagram which indicates the reversibility of 4.65∗; rotating the
whole diagram 180 degrees, we obtain the reversion.

16



z y

x

u

Figure 23. A sequence of a deformation of the knot 4.65∗.

(ii) Using the generators given in the first diagram in Fig. 23, we have:

G(4.65∗) =
〈
x, y, z, u

∣∣ yx = xz = zy, yu = xy, xu = zx
〉

∼=
〈
x, y, z

∣∣ yx = xz = zy, y−1xy = x−1zx
〉

∼=
〈
x, y

∣∣ yx = x2y−1xyx−1 = xy−1xyx−1y
〉
, (7.1)

where we eliminate the generators u and z. From the relations yx = x2(y−1xy)x−1 and
yx = x(y−1xy)x−1y, we obtain

y−1xy = x−2yx2 = x−1yxy−1x. (7.2)

Then from the last equality we obtain x−1yx = yxy−1, that is, xyx = yxy, or also
y−1xy = xyx−1. Combining this and the first equality of Eq. (7.2), we have y−1xy =
x−2yx2 = xyx−1, which yields y = x−3yx3, and so we see that G(4.65∗) is isomorphic
to G3.

(ii) First, we give a presentation of the commutator subgroup G′
3 of G3 by the

Reidemeister-Schreier method. Putting a = yx−1 and ak = x−kaxk, we have

G′
3
∼=

〈
ak (k ∈ Z)

∣∣ ak = ak+1ak−1, ak = ak+3 (k ∈ Z)
〉

(7.3)

∼=
〈

a, b
∣∣ a = bab, b = aba

〉
, (7.4)

where b = a1 = x−1y. This is the quaternion group of order 8. Thus we have

G3
∼=

〈
x, a, b

∣∣ b = x−1ax, ab = x−1bx, a = bab, b = aba
〉
; (7.5)

see Example 1.1 and Sec. 6 in [14].
17



Let l be the longitude corresponding to the meridian x. Then

l = z · x · x · y−1 · x−2 = x−1yx · x2y−1x−2. (7.6)

Since the commutator subgroup is also presented by (7.3) or (7.4) in the same words,
we have

l = x−1axx · x2(ax)−1x−2 = (x−1ax)(x2a−1x−2)a1a
−1
−2 = 1, (7.7)

where a = yx−1 and ak = x−kaxk.
(iv) From Figs. 12 and 24 we have Gauß(4.65∗)

ow∼ −Gauß(4.96)†, and so by Proposi-

tion 3.4 Tube(4.65∗)
o
≈ −Tube(4.96) Since T43 is symmetric we obtain the result. �

+

++

+

4.102

4.96

4.96 4.104

4.65*Figure 24. Gauss diagram for the knot 4.96.

Remark 7.2. The ribbon torus knot T43 is equivalent to the ribbon torus knot F1 in
Example 3.8 of [7], in the form of successive cross-sections.

7.2. Ribbon torus knot T44. We define T44 = Tube(4.102∗). The knot 4.102∗ is the
2-braid virtual knot B(−2, 1, 1) as shown in Fig. 25.

x y

z u

x y

z u

Figure 25. A diagram of the knot 4.102∗, the virtual 2-braid knot B(−2, 1, 1).

+ +
+ + + +

+ +

4.102* 4.102

4.1024.96

4.104

4.1044.65*

+ +
+

++

+

4.102 4.104

Figure 26. Gauss diagrams for the knots 4.102, 4.104.
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Lemma 7.3. (i) The ribbon torus knot T44 is symmetric.
(ii) G(T44) ∼= G(4.102∗) ∼= G3.
(iii) The longitude of T44 has order 2 in G(T44).

(iv) For K = 4.102, 4.104, 4.104∗, Tube(K)
o
≈T44.

Proof. (i) Green [5] mentions that the virtual knot 4.102 is reversible, and so is 4.102∗,
which implies that T44 is symmetric by Proposition 3.4. In fact, from the diagram
in Fig. 25 or the Gauss diagram for 4.102∗ (Fig. 26) we see that the knot 4.102∗ is
reversible.

(ii) Using the Wirtinger generators x, y, z, u given in Fig. 25 we have

G(4.102∗) =
〈

x, y, z, u
∣∣ z = yxy−1, x = zyz−1, u = x−1zx, y = x−1ux

〉
∼=

〈
x, y, z

∣∣ z = yxy−1, x = zyz−1, y = x−2zx2
〉

∼=
〈

x, y
∣∣ x = yxyx−1y−1, y = x−2yxy−1x2

〉
, (7.8)

where we eliminate the generators u, z. Then it is easy to see that G(4.102∗) is
isomorphic to G3.

(iii) Let l be the longitude corresponding to the meridian x. Then

l = y−1 · x · x · z−1 = (x−1a−1x)(xax−1)a−1 = a−1
1 a−1a

−1 = b2, (7.9)

where we use the relation in Eq. (7.3). Then the longitude l has order 2, which is the
generator of the center of the quaternion group presented by Eq. (7.4).

(iv) From Fig. 26 we have: Gauß(4.102)
ow∼Gauß(4.104), Gauß(4.102∗) = Gauß(4.102†),

and Gauß(4.104∗) = Gauß(4.104†), and thus by Proposition 3.4 we obtain the re-
sult. �

8. Ribbon torus knot with group G7; T45

We define T45 = Tube(4.99). Let J be a ribbon 2-knot given by Fox in [3, Example
10]. Note that the orientation of the meridian is taken left-handed. Then we have the
following:

Lemma 8.1. (i) G(T45) ∼= G(4.99) ∼= G7.
(ii) T45 is asymmetric.

(iii) For K = 72∗, 77∗, Tube(K)
o
≈T45.

(iv) The ribbon torus knot T45 is obtained from Fox’s ribbon 2-knot J by adding a
trivial 1-handle.

Proof. (i) Using the generators given in Fig. 27, we have:

G(4.99) =
〈
x, y, z, u

∣∣ u = z = x−1yx = y−1xy
〉
, (8.1)

which is isomorphic to G7.
(ii) Assuming T45 is embedded in the 4-sphere S4, let X̃ be the infinite cyclic covering

space of the complement S4−T45. Then the Alexander invariant H∗(X̃) has a Λ-module
19



structure, where Λ is the Laurent polynomial ring Z[t, t−1]; see [25, Chapter 7]. From
the group presentation (4.7) of G7, we obtain H1(X̃) = Λ/ (t− 2). Since (t−1 − 2) 6=
(t− 2) in Λ, T45 is assymetric; cf. [29, Proposition 3.20].

(iii) From Figs. 12 and 28 we have: Gauß(4.99)
ow∼Gauß(4.72∗)

ow∼Gauß(4.77∗), and
so by Proposition 3.4 we obtain the result.

(iv) The virtual arc diagram given in Fig. 29(a) (Fig. 13 in [26]) presents Fox’s
2-knot J . Then applying Theorem 5.8 in [26], we obtain the virtual knot diagram
given in Fig. 29(b), which presents a ribbon torus knot obtained from J by adding
a trivial 1-handle. Since its Gauss diagram is the same as that of 4.77∗, the proof is
complete. �

4.106 4.105

4.99

4.107

u
x

z y

Figure 27. A diagram of the knot 4.99.

4.72* 4.77*

+ + +

+ + +

4.99

+

+

4.72∗ 4.77∗

Figure 28. Gauss diagrams for the knots 4.72∗, 4.77∗.

4.77!

(a) (b)

Figure 29. The virtual arc diagram presenting Fox’s 2-knot J yields
the knot 4.77∗.
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Remark 8.2. Putting y = ax in the presentation (4.7), we have

G7
∼=

〈
x, a

∣∣ xax−1 = a2
〉
. (8.2)

Putting ak = x−kaxk, by the Reidemeister-Schreier method we have the presentation
of the commutator subgroup G′

7 of G7.

G′
7 =

〈
ak (k ∈ Z)

∣∣ ak = a2
k+1 (k ∈ Z)

〉
. (8.3)

which is the additive group of the dyadic rationals Z[1/2].

9. Ribbon torus knot with group G8; T46

We define T46 = Tube(4.62∗).

Lemma 9.1. (i) G(T46) ∼= G(4.62∗) ∼= G8.
(ii) T46 is asymmetric.

(iii) −Tube(4.95)
o
≈Tube(4.95∗)

o
≈T46.

Proof. (i) The group of the knot 4.62∗ as shown in Fig. 30 has the presentation:

G(4.62∗) =
〈

x, y, z, u
∣∣ zx = xu = uy, uz = xy = yu

〉
∼=

〈
x, y

∣∣ xy−1x = y−1xy, y−1x−1yxyx = xy−1xy
〉
. (9.1)

Putting a = yx−1 and ak = x−kaxk, by the Reidemeister-Schreier method we obtain
the presentation of the commutator subgroup:〈

ak (k ∈ Z)
∣∣ a2

k = ak+1, akak−2 = ak−2ak−3 (k ∈ Z)
〉

(9.2)

∼=
〈

a0

∣∣ a7
0 = 1

〉 ∼= Z/7Z, (9.3)

Since x−1ax = a1 = a2, we obtain the presentation (4.8) of G8.
(ii) As in the proof of Lemma 8.1(iii), assuming T46 is embedded in the 4-sphere S4,

let X̃ be the infinite cyclic covering space of the complement S4−T46. Then from the
group presentation (4.8) of G8, we obtain H1(X̃) = Λ/ (t− 2, 7). Regarding this as a
Λ7-module, we have H1(X̃) = Λ7/(t − 2), where Λ7 = Λ/(7). If T46 were symmetric,
then Λ7/ (t− 2) and Λ7/ (t−1 − 2) should be isomorphic, which is a contradiction since
(t− 2) 6= (t−1 − 2) in the principal ideal domain Λ7.

(iii) From Figs. 12 and 31 we have Gauß(4.95)†
ow∼ − Gauß(4.62∗) and

Gauß(4.95∗)
ow∼Gauß(4.62∗), which imply Tube(4.95)

o
≈ − T46 and Tube(4.95∗)

o
≈T46

by Proposition 3.4. �

Remark 9.2. The group G8 is not a 2-knot group, but a 3-knot group; see [18, The-
orem 14.1.7], where G8 is realized as a group of a 3-knot which is obtained by 3-twist
spinning from the Fox’s ribbon 2-knot J [3, Example 10] with group G7; see Sec. 8.
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4.62!

Virtual Knot 4.62
O1-O2-U1-U3-O4+U2-O3-U4+
4.62!
O1-O2-U1-U3-O4+U2-O3-U4+

z

y

x

u

Figure 30. A diagram of the knot 4.62∗.

+

+

3.7

+
+

+

4.62*

+
4.95

Figure 31. Gauss diagram for the knot 4.95.

10. Ribbon torus knot with group G9; 4T7

We define 4T7 = Tube(4.105).

Lemma 10.1. (i) G(T47) ∼= G(4.105) ∼= G9.
(ii) T47 is asymmetric.

(iii) −Tube(4.105∗)
o
≈T47.

Proof. (i) The group of the knot 4.105 as shown in Fig. 32 has the presentation:

G(4.105) =
〈

x, y, z, u
∣∣ u = yxy−1, z = u−1yu, y = z−1xz, z = xux−1

〉
∼=

〈
x, y, z

∣∣ z = yx−1yxy−1, y = z−1xz, z = xyxy−1x−1
〉
.

(10.1)

Removing z, we obtain the presentation (4.9) of G9.
(ii) The proof is similar to that of Lemma 8.1(iii). We use H1(X̃) = Λ/ (t2 − 2t + 2),

where X̃ is the infinite cyclic covering space of the complement T47 in S4.
(iii) From Fig. 12 Gauß(4.105∗) = −Gauß(4.105)†, which implies the result by Propo-

sition 3.4. This completes the proof. �

The group G9 has the following feature.

Proposition 10.2. The commutator subgroup of G9 is abelian.

Proof. First we give a presentation of the commutator subgroup G′
9 from the pre-

sentation (4.9) of G9 by the Reidemeister-Schreier method. Putting a = yx−1 and
22



4.106 4.105
4.107

x
u

z y

Figure 32. A diagram of the knot 4.105.

ak = x−kaxk, we obtain:

G′
9
∼=

〈
ak (k ∈ Z)

∣∣ a2
ka

−1
k+1 = ak+1a

−1
k+2 = aka

−1
k+1ak (k ∈ Z)

〉
∼=

〈
ak (k ∈ Z)

∣∣ ak+2 = a−2
k a2

k+1, akak+1 = ak+1ak (k ∈ Z)
〉
.

(10.2)

We show that any two generators ai and aj commute, where i < j. By induction we
may show aj = a

mj

i a
nj

i+1 for some integers mj, nj. Then since ai and ai+1 commute, ai

and aj commute. This completes the proof. �

Remark 10.3. Hillman [6, Theorem 14 and Corollary in p. 144] has determined the
abelian 2-knot commutator subgroups; cf. [21, 33]: If G is a 2-knot group whose com-
mutator subgroup is abelian, then either G′ ∼= Z3 or Z/nZ for some odd integer n, or
G ∼= G7, where G7 is presented by (4.7); see Remark 8.2. Therefore, G9 is not a 2-knot
group. In fact, T45 and T47 have different Alexander invariants. However, we do not
know whether G′

9 is isomorphic to Z[1/2](∼= G′
7) or not.

11. Ribbon torus knots with group G5; T48, T49

There are at most two ribbon torus knots with group G5 represented by virtual knots
with up to 4 crossings; T48, T49. However, we do not know whether they are equivalent
or not.

11.1. Ribbon torus knot T48. We define T48 = Tube(4.106).

Lemma 11.1. (i) G(T48) ∼= G(4.106) ∼= G5.
(ii) T48 is symmetric.

(iii) Tube(4.106∗)
o
≈T48.

Proof. (i) The group of the knot 4.106 as shown in Fig. 33 has the presentation:

G(4.106) =
〈

x, y, z, u
∣∣ yu = ux, yz = uy, uz = zx, xy = zx

〉
∼=

〈
x, y

∣∣ yxyxy−1x−1 = xyxy−1, yxyx−1 = xyxy−1x−1y
〉
.

(11.1)
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Putting a = yx−1 and ak = x−kaxk, by the Reidemeister-Schreier method we obtain
the presentation of the commutator subgroup:〈

ak (k ∈ Z)
∣∣ ak+3ak+1a

−1
k = ak+2a

−1
k+1, ak+2ak = ak+1a

−1
k ak+1 (k ∈ Z)

〉
∼=

〈
ak (k ∈ Z)

∣∣ a5
0 = 1, ak = a−1

k+1 (k ∈ Z)
〉 ∼= Z/5Z, (11.2)

from which we obtain the presentation (4.5) of G5.

+
+

+
4.105

4.105

4.106 4.107

+
+

+

4.106

x
u y

z

Figure 33. A diagram of the knot 4.106.

(ii) Green [5] mentions that 4.106 is reversible, which implies that T48 is symmet-
ric. In fact, we have another diagram of 4.106 as shown in Fig. 34 indicating the
reversibility; rotating the whole diagram 180 degrees, we obtain the reversion.

+
4.106

4.106

Figure 34. Another diagram of the knot 4.106 indicating the reversibility.

(iii) From Fig. 12 Gauß(4.106∗) = −Gauß(4.106)†. Since T48 is symmetric, by
Propsition 3.4 we obtain the result. This completes the proof. �

11.2. Ribbon torus knot T49. We define T49 = Tube(4.107).

Lemma 11.2. (i) G(T49) ∼= G(4.107) ∼= G5.

(ii) Tube(4.107∗)
o
≈ − T49.

Proof. (i) The group of the knot 4.107 as shown in Fig. 35 has the presentation:

G(4.107) =
〈

x, y, z, u
∣∣ yx = uy = zu, zy = xz = ux

〉
∼=

〈
x, y

∣∣ x−1yxy−1x = yxyx−1y−1 = yxy−1xy−1
〉
. (11.3)
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From the last relation, we obtain x2 = y2, which is in the center of this group, and so
we have:

G(4.107) ∼=
〈

x, y
∣∣ xyxyx = yxyxy, x2 = y2

〉
. (11.4)

Putting a = yx−1 and ak = x−kaxk, by the Reidemeister-Schreier method we obtain
the presentation of the commutator subgroup:〈

ak (k ∈ Z)
∣∣ a5

k = 1, ak+1 = ak (k ∈ Z)
〉 ∼= Z/5Z,

from which we obtain the presentation (4.5) of G5.

4.107
+

+

+
+

4.107

x y

z u

Figure 35. A diagram of the knot 4.107.

(ii) From Fig. 12 Gauß(4.107∗) = −Gauß(4.107), which implies the result by Propo-
sition 3.4. This completes the proof. �

Remark 11.3. We do not know whether T49 is symmetric or not. According to Green
[5] the knot 4.107 is not reversible.

12. Ribbon torus knots with group G6; T410, T411

There are at most two ribbon torus knots with group G6 represented by virtual
knots with up to 4 crossings; T410, T411. However, we do not know whether they are
equivalent or not.

12.1. Ribbon torus knot T410. We define T410 = Tube(4.66∗).

Lemma 12.1. (i) G(T410) ∼= G(4.66∗) ∼= G6.
(ii) T410 is asymmetric.

(iii) −Tube(4.97)
o
≈T410.

Proof. (i) The group of the knot 4.66∗ as shown in Fig. 36 has the presentation:

G(4.66∗) =
〈

x, y, z, u
∣∣ xz = zy, uy = zu, uz = zx, xz = ux

〉
∼=

〈
x, y

∣∣ zxz−1 = xzx−1, z−1xz = xz−1x−1zxzx−1
〉
. (12.1)
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Putting a = zx−1 and ak = x−kaxk, by the Reidemeister-Schreier method we obtain
the presentation of the commutator subgroup:〈

ak (k ∈ Z)
∣∣ ak+1 = a2

k, a−1
k+1ak = a−1

k ak+1ak−1 (k ∈ Z)
〉〈

ak (k ∈ Z)
∣∣ ak+1 = a2

k, a5
k = 1 (k ∈ Z)

〉 ∼= Z/5Z,

from which we obtain the presentation (4.6) of G6.
(ii) The proof is similar to that of Lemma 9.1(ii). We use H1(X̃) = Λ/(5, t − 2),

where X̃ is the infinite cyclic covering space of the complement T410 in S4.
(iii) From Figs. 12 and 37 Gauß(4.66∗)

ow∼ −Gauß(4.97)†, which implies the result by
Proposition 3.4. This completes the proof. �

+

+

4.66*

y

x
u

z

Figure 36. A diagram of the knot 4.66∗.

+

+

4.66*

+

+
4.97

Figure 37. Gauss diagram for the knot 4.97.

12.2. Ribbon torus knot T411. We define T411 = Tube(4.101).

Lemma 12.2. (i) G(T411) ∼= G6.
(ii) T411 is asymmetric.

(iii) For K = 4.101∗, 4.103, 4.103∗, Tube(K)
o
≈T411.

Proof. (i) The virtual 2-braid knot B(−2,−1, 1) with its orientation reversed is a dia-
gram of the knot 4.101 as shown in Fig. 38. In [14, Example 3.2] it is shown that the
group of the knot B(−2,−1, 1) is isomorphic to G6, and so G(T411) ∼= G(−T411) ∼= G6.

(ii) The proof is the same as that of Lemma 12.1(ii).
(iii) Green [5] mentions that 4.101∗∼ 4.101†. In fact, Fig. 12 shows Gauß(4.101)∗ =

Gauß(4.101)†. Also, from Fig. 39 we have Gauß(4.101)
ow∼Gauß(4.103), Gauß(4.103)∗ =
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Gauß(4.103)†. Then by Proposition 3.4 we obtain the result. This completes the
proof. �

+
+

+

4.101*

4.101* 4.101

+

4.103

+

4.101=-B(-2,-1,1)
Figure 38. A diagram of the knot 4.101.

+
+

+

4.101*

4.101* 4.101

+

4.103

+

4.101=-B(-2,-1,1)

Figure 39. Gauss diagram for the knot 4.103.

Remark 12.3. The group G6 is not a 2-knot group, but a 3-knot group; cf. [18,
Exercise 14.1.8].

13. Remarks and Questions

First we give some remarks.

Remark 13.1. Winter [30, Theorem 3.7] has remarked that the Tube operation is
not injective: Let K be the right-hand trefoil knot. Then K and K∗, the left-hand
trefoil knot, are not equivalent as oriented welded virtual knots. Since K∗ = −K†, by

Eq. (3.5) in Proposition 3.3 we have Tube(K)
o
≈Tube(K∗).

Remark 13.2. Silver and Williams [28, Theorem 2.2] have given a characterization of
virtual knot groups: A virtual knot group G is isomorphic to the group of some ribbon
torus knot. This gives Satoh’s Tube operation algebraically.

Remark 13.3. Maeda [23, Lemma 3.3.2] has shown that if a finitely presented group
G satisfies G/G′ ∼= Z and G′ ∼= Z/mZ, m is a positive integer, then G is isomorphic
to the group 〈

x, a
∣∣ x−1ax = an, am = 1

〉
(13.1)

for some integer n with (m, n) = (n − 1, m) = 1. The groups G2 (Eq. (6.2)), G5, G6,
G8 are such groups. Maeda proved that putting y = xa−1, the group G becomes:〈

x, y
∣∣ y = (y−1x)−qx(y−1x)q, x = (y−1x)−mx(y−1x)m

〉
, (13.2)
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where q(n − 1) + rm = 1 (q, r ∈ Z). From this presentation we can easily see that
G is the group of some ribbon torus knot, or equivalently, of some virtual knot. This
may be also proved by using Corollary 2.3 in [28]. Further, if G is a 2-knot group, then
n = −1 [6, 21].

From Theorem 4.1 and Remark 11.3 the following is open:

Question 13.4. (i) Decide whether each pair of the ribbon torus knots {T48, T49},
{T410, T411} are equivalent or not.

(ii) Is the ribbon torus knot T49 symmetric? Note that T48 is symmetric.

We should consider the remaining virtual knots; knots whose groups are infinite
cyclic. Many such knots are easily seen to be oriented welded-equivalent to the trivial
knot by using deformations of Gauss diagrams just like the knot 3.1 in Example 2.4,
where we use only the moves Ω1 and Φt, and some are deformed into the trivial knot by
the generalized Reidemeister moves and the move Φt on virtual knot diagrams. There
also remaining a few cases we cannot deform into the trivial knot as Question 13.4(i).
They presumably present trivial ribbon torus knots. So in order to show this, we might
need some other moves than Φt for a welded virtual knot. So we may ask the following
question, which relates to Winter’s example in Remark 13.1.

Question 13.5. Suppose that two virtual knots K and K ′ represent the same ribbon

torus knot; Tube(K)
o
≈Tube(K ′). Find a relationship between K and K ′.
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