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Abstract. Toric hyperKähler manifolds are the hyperKähler analogue of symplectic toric man-

ifolds. The purpose of this paper is to study some variation of cohomological rigidity theorem
for toric hyperKähler manifolds. Roughly, we prove that the weak H∗(BT )-algebra structure of
equivariant cohomology determines the weak T -hyperhamiltonian structure of toric hyperKähler
manifolds.

1. Introduction

A toric hyperKähler manifold is defined by the hyperKähler quotient of a torus action on the
quaternionic space Hm. This space is introduced as the hyperKähler analogue of symplectic toric
manifolds in [BiDa, Go]. The resulting manifolds are 4n-dimensional manifolds with quarter
dimensional torus actions, i.e., with Tn-actions (see Section 2). We note that symplectic toric
manifolds are 2n-dimensional manifolds with half dimensional torus actions. So, as a space, sym-
plectic toric manifolds and toric hyperKähler manifolds are quite different. However, in [BiDa],
Bielawski-Dancer show that there is a one-to-one correspondence between toric hypreKähler man-
ifolds (geometry) and smooth hyperplane arrangements (combinatorics) (see Section 3). This is
the similar phenomena to that toric manifolds can be described by using the combinatorial objects,
fans or polytopes (see [BuPa, Fu, Od] for detail). Namely, as far as toric hyperKähler manifolds
(or toric manifolds) are considered, the following two informations are the same:

Geometry ks +3 Combinatorics

In particular, using this correspondence, equivariant cohomologies of toric manifolds and toric
hyperKähler manifolds can be computed (see [Fu, Od] for toric manifolds and [Ko1, Ko2] for
toric hyperKähler manifolds). Here, the equivariant cohomology is the important invariant of
group actions (see [Br, Hs, Ka] for detail, and also see Section 5). Furthermore, in the case of
toric manifolds, the following important theorem are proved by Masuda in [Ma2]:

Theorem 1 (Masuda). Two toric manifolds are isomorphic as varieties if and only if their
equivariant cohomology algebras are weakly isomorphic.

The Masuda’s theorem means that the informations coming from the equivariant cohomology
(algebra) has also the same informations with those coming from geometry and combinatorics,
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i.e., we have the following trinity for the toric manifolds:

Geometry

Combinatorics ks +3
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Motivated by the Masuda’s theorem, the purpose of this paper is to show the trinity above
also holds for toric hyperKähler manifolds. Namely, the goal of this paper is to prove the following
theorem (see Theorem 4.4 and 8.1 for detail):

Theorem 1.1. Let (Mα, T, µα̂) and (Mβ , T, µβ̂) be toric hyperKähler manifolds Mα, Mβ with

hyperKähler moment maps µα̂, µβ̂, and Hα̂, Hβ̂ be their hyperplane arrangements, respectively.

Then, the following three statements are equivalent:

(1) (Mα, T, µα̂) ≡w (Mβ , T, µβ̂);

(2) Hα̂ ≡w Hβ̂;

(3) there exists a weak H∗(BT )-algebra isomorphism f∗
T : H∗

T (Mα;Z) → H∗
T (Mβ ;Z) such

that (f∗
T )R(â) = b̂,

where â = J∗
m1

(α̂) ∈ H2
T (Mα;R), b̂ = J∗

m2
(β̂) ∈ H2

T (Mβ ;R) and (f∗
T )R : H∗

T (Mα;R) → H∗
T (Mβ ;R)

is the natural isomorphism induced from f∗
T .

Here, in Theorem 1.1, three equivalence relations are introduced in Section 4.1 for toric hy-
perKähler manifolds, Section 4.2 for hyperplane arrangements, and Section 5.1 for equivariant
cohomologies; and Jm1 : (tm1)∗ → H2

T (Mα;R) and Jm2 : (tm2)∗ → H2
T (Mβ ;R) are isomorphisms

defined in Section 7.1.2, where Mα, Mβ are defined by the hyperKähler quotient on Hm1 , Hm2 ,
respectively. In this paper, H∗(X) always represents H∗(X;Z).

Theorem 1.1 tells us that, as far as toric hyperKähler manifolds are considered, we have a
trinity among toric hyperKähler manifolds with hyperKähler moment maps (Mα, T, µα̂) (geome-
try), smooth hyperplane arrangements Hα̂ ⊂ (tn)∗ (combinatorics), and equivariant cohomologies
with non-zero element â ∈ H2

T (Mα;R) (H∗
T (Mα), π

∗, â) (algebra) such as the following diagram:

{(Mα, T, µα̂)}/≡w

{Hα̂ ⊂ (tn)∗}/≡w
ks +3

qy
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{(H∗
T (Mα), π

∗, â)}/≃w

%-
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The organization of this paper and the idea of proof of Theorem 1.1 are as follows. We
first recall toric hyperKähler manifolds and their basic facts in Section 2, and we then introduce
hyperplane arrangements defined by toric hyperKähler manifolds in Section 3. In Section 4, we
introduce two equivalence relations on toric hyperKähler manifolds and hyperplane arrangements,
and prove these two equivalence relations are compatible (in Theorem 4.4). In Section 5, we
recall the basic facts about equivariant cohomologies of toric hyperKähler manifolds. The idea
of proof of Theorem 1.1 is to translate the original hyperplane arrangements defined in the dual
of Lie algebra (tn)∗ into the hyperplane arrangements defined in the equivariant cohomology
H2(BTn;R). So, in Section 6, we define the hyperplane arrangement in H2(BTn;R), and in
Section 7, we prove two hyperplane arrangements in (tn)∗ and H2(BTn;R) are equivalent up to
weak equivalence defined in Section 4 (in Proposition 7.11). Finally, in Section 8, we prove a
weak H∗(BT )-algebra isomorphism between two equivariant cohomologies H∗

T (Mα) and H∗
T (Mβ)

induces a weak equivalence between two hyperplane arrangements in H∗(BT ;R)
π∗
1→ H∗

T (Mα;R)

and H∗(BT ;R)
π∗
2→ H∗

T (Mβ ;R). This yields the trinity described as above.
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2. Toric hyperKähler varieties

First of all, in this section, we recall the basic facts of the toric hyperKähler variety needed
later (see [BiDa, HaSt, Ko3, Pr], for detail). We assume throughout this paper that Z is the
integer, R is the real, C is the complex and H is the quaternionic numbers, i.e., H ≃ R4 as the
R-vector space whose basis are 1, i, j, k and they satisfy the following quaternionic relations:

ijk = i2 = j2 = k2 = −1.

2.1. Definition of toric hyperKähler manifolds and their geometric structures. We
first define a toric hyperKähler manifold and introduce its geometric structure.

2.1.1. HyperKähler structure on Hm. In the beginning, let us recall a geometric structure
on the quaternionic vector space. Assume Hm is the m-dimensional quaternionic vector space
with the left H-scalar product. Then the complex structure I1 : Hm → Hm with I21 = −IdHm

(resp. I2 and I3) on Hm is defined by the left multiplication of i (resp. j and k). We now
put the flat Riemannian metric g on Hm arising from the standard Euclidean scaler product
on Hm ≃ R4m = Rm ⊕ iRm ⊕ jRm ⊕ kRm. Using these structures, we can define three Kähler
forms on Hm as follows:

ωi(X,Y ) = g(IiX,Y ) i = 1, 2, 3(2.1)

where X, Y are tangent vectors on a point in Hm. The metric g is a hyperKähler metric, i.e.,
it is a Kähler metric with respect to all three complex structures I1, I2 and I3 which satisfy the
quaternionic relations. The automorphism group which preserves the hyperKähler structure (i.e.,
g, I1, I2 and I3) is called the symplectic group and denoted by Sp(m), i.e., the subgroup of special
orthogonal group SO(4m) which commutes with I1, I2 and I3, or equivalently preserves the Kähler
forms ω1, ω2 and ω3. Note that Sp(m) acts on Hm from the right. In this paper, if the group
G acts on a hyperKähler manifold M with preserving its hyperKähler structure, we call G acts
on (M, gM , IM , JM ,KM ), where gM is a Riemannian structure and IM , JM and KM are three
complex structures which define the hyperKähler structure on M .

2.1.2. HyperKähler moment map of (Hm, Tm). We next recall properties of the torus action
on (Hm, g, I1, I2, I3). Because Sp(m) acts on (Hm, g, I1, I2, I3), a maximal torus in Sp(m) preserves
the hyperKähler structure on Hm. Let Tm be the diagonal abelian subgroup in Sp(m), i.e., m-
dimensional torus. This torus Tm is a maximal torus in Sp(m), and the Tm-action on Hm is
defined by right multiplication:

Hm −→ Hm

∈ ∈

z + wk
·t7−→ zt+ wt−1k

(2.2)

for z, w ∈ Cm and t ∈ Tm. By using this action, we can regard Hm as T ∗Cm, i.e., the cotangent
bundle of Cm; or equivalently Cm⊕Cm, where Cm is isomorphic to Cm with reversed orientation.

Regard a symplectic form on Hm as ωR = ω1 and a holomorphic symplectic form on Hm as
ωC = ω2 +

√
−1ω3. Then the Tm-action defined in (2.2) preserves ωR and ωC, and induces the

hyperKähler moment map

µR ⊕ µC : Hm −→ (tm)∗ ⊕ (tmC )∗

such that

µR(z, w) =
1

2

m∑
i=1

(|zi|2 − |wi|2)∂i

and

µC(z, w) = 2
√
−1

m∑
i=1

ziwi∂i,

where z = (z1, . . . , zm) ∈ Cm and w = (w1, . . . , wm) ∈ Cm for Hm = Cm ⊕ Cm, and ∂i (i =
1, . . . , m) is the basis in (tm)∗ and (tmC )∗.
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2.1.3. Definition of a toric hyperKähler variety. In order to define a toric hyperKähler variety,
we explain the hyperKähler quotient.

Let K be a connected subgroup Tm. There is the following sequence:

K
ι−→ Tm ρ−→ Tm/K ≃ Tn,(2.3)

where ι is the inclusion, ρ is the projection to the cokernel of ι, and put n = m − dimK. This
sequence induces the following exact sequence of Lie algebras:

{0} −→ k
ι∗−→ tm

ρ∗−→ tn −→ {0}.(2.4)

Taking its dual, we have the following exact sequence:

{0} −→ (tn)∗
ρ∗

−→ (tm)∗
ι∗−→ k∗ −→ {0}.(2.5)

By using ι∗ and its complexification ι∗C, we can define the hyperKähler moment map of K-action
on Hm as follows:

µHK : Hm µR⊕µC−−−−→ (tm)∗ ⊕ (tmC )∗
ι∗⊕ι∗C−−−−→ k∗ ⊕ k∗C.(2.6)

By the definition of µHK , an element (α, 0) ∈ k∗ ⊕ k∗C for each non-zero α ∈ k∗ is a regular

value of µHK . Hence, its inverse image µ−1
HK(α, 0) has the almost free K-action. Therefore, its

quotient space µ−1
HK(α, 0)/K is a 4n-dimensional orbifold with the induced Tm/K (≃ Tn) action

from Tm-action on µ−1
HK(α, 0). This quotient is called the hyperKähler quotient.

Put

Mα = µ−1
HK(α, 0)/K.

We call Mα a toric hyperKähler variety. If Mα is non-singular, then we call it a toric hyperKähler
manifold. The following proposition gives the necessary and sufficient condition for the smoothness
of a toric hyperKähler variety (see [Ko1, Proposition 2.2]).

Proposition 2.1. The following two statements are equivalent.

(1) The action of K on µ−1
HK(α, 0) is free, i.e., Mα = µ−1

HK(α, 0)/K is a manifold.
(2) For any J ⊂ {1, . . . ,m} such that {ι∗uj | j ∈ J} forms a basis of k∗,

tmZ = kZ ⊕
∑
j∈Jc

Z∂j as a Z-module,

where we regard k as the subset of tm via ι∗, uj is an element of (tm)∗, and kZ and tmZ
are lattice subgroups of k and tm respectively.

We also note the following proposition:

Proposition 2.2. Let um ∈ (tm)∗ be a basis. If ι∗(um) = 0, then there exists the (4n − 4)-
dimensional toric hyperKähler manifold M such that

µ−1
HK(α, 0)/K = M ×H,

where M ×H has the diagonal Tn−1 × S1-action and the S1-action on H is the standard action.

Proof. Because um is a basis of (tm)∗, there exists the (m− 1)-dimensional subspace in tm

defined by

{x ∈ tm | ⟨um, x⟩ = 0},
where ⟨, ⟩ is the natural paring of Lie algebra and its dual, i.e., ⟨um, x⟩ = um(x). Denote this
subspace by tm−1.

Assume ι∗(um) = 0. Let y ∈ k. Then, we have

⟨um, ι∗(y)⟩ = ⟨ι∗(um), y⟩ = 0.

Therefore, ι∗(k) ⊂ tm−1. In particular, taking their exponent, we have K ⊂ Tm−1. Hence,
µ−1
HK(α, 0)/K may be regarded as the hyperKähler quotient of the diagonal action of K × {e} on

Hm−1 × H. By the definition of hyperKähler quotient, the space appearing as the hyperKähler
quotient of the identity group {e}-action on H is H itself. Therefore, for the hyperKähler quotient
M of K-action on Hm−1, we have that µ−1

HK(α, 0)/K = M ×H. �
4



2.1.4. HyperKähler moment map of (Mα, T
n). By the definition of the toric hyperKähler

variety Mα, the Tn-action on the smooth part of Mα preserves three Kähler forms ω̃i induced
from ωi, i = 1, 2, 3 (see (2.1)), i.e., this action preserves the hyperKähler structure on the smooth
part of Mα. Hence, this Tn-action also preserves the real symplectic form ω̃R = ω̃1 and the
holomorphic symplectic form ω̃C = ω̃2 +

√
−1ω̃3 on the smooth part of Mα. Define a hyperKähler

moment map µα̂ = µ̃R ⊕ µ̃C as follows:

µ̃R[z, w]⊕ µ̃C[z, w] =

(
1

2

m∑
i=1

(|zi|2 − |wi|2)− αi

)
∂i ⊕ 2

√
−1

m∑
i=1

ziwi∂i(2.7)

∈ ker ι∗ ⊕ ker ι∗C ≃ (tn)∗ ⊕ (tnC)
∗,

where [z, w] ∈ Mα and αi is the ith element of α̂ = (α1, . . . , αm) ∈ (ι∗)−1(α) ⊂ (tm)∗; we call
α̂ ∈ (tm)∗ a lift of α ∈ (tn)∗.

We note the following remark (assumption) needed in Section 8.

Remark 2.3. Suppose ι∗(um) = 0. Then, by Proposition 2.2, the toric hyperKähler manifold
is µHK(α, 0)/K = M × H. Note that S1 acts on H standardly. In this paper, we assume that
the hyperKähler moment map of the standard S1-action on H is always defined by the map
µ = µR ⊕ µC : H → R ⊕ C in Section 2.1.2. Therefore, by the definition of the hyperKähler
moment map µα̂, it is easy to check the following decomposition:

µα̂ = µα̂′ ⊕ µ,

for some lift α̂′ ∈ (tm−1)∗ of α ∈ k∗ (note that K ⊂ Tm−1 in this case). Namely, if ι∗(um) = 0
then we always assume a lift α̂ ∈ (tm)∗ of α as follows:

(α̂′, 0) ∈ (tm−1)∗ ⊕ (t1)∗.

2.2. Example and Remark. Here, we give the standard example of toric hyperKähler
varieties.

Example 2.4. Let ∆ be the diagonal subgroup in Tn+1. Then, we get the following exact
sequence by using the inclusion ∆ ⊂ Tn+1:

(tn)∗
ρ∗

−→ (tn+1)∗
ι∗−→ R(2.8)

such that

ι∗(α1, . . . , αn+1) = α1 + · · ·+ αn+1 ∈ R,
where (α1, . . . , αn+1) ∈ (tn+1)∗ ≃ Rn+1 and R is the dual of Lie algebra of ∆.

Put α = n + 1 ∈ R. Then the toric hyperKähler manifold µ−1
HK(α, 0)/∆ is Tn-equivariantly

diffeomorphic to T ∗CPn, where the Tn-action on T ∗CPn is induced from the standard Tn-action
on CPn.

We finish this section by the following remark (assumption).

Remark 2.5. Let {e1, . . . , em} be the standard basis of tm whose dual basis are {∂1, . . . , ∂m}.
If ρ∗(ei) = 0, then we can easily show that K and Tm can be decomposed into K = K ′ × Si and
Tm = Tm−1 × Si by using (2.3) and (2.4), where K ′ ⊂ Tm−1 and Si is the ith coordinate circle
of Tm. Then, the hyperKähler moment map µHK in (2.6) decomposes into µ′

HK and µi, where
µ′
HK is the hyperKähler moment map of the K ′-action on Hm−1 and µi is that of the Si-action

on H. Because the hyperKähler variety constructed by the Si-action on H is the 0-dimensional
manifold, we may regard that the toric hyperKähler variety in this case is constructed by the
hyperKähler quotient of K ′-action on Hm−1. Hence, throughout this paper, we assume ρ∗(ei) ̸= 0
for all i = 1, . . . , m.

3. Hyperplane arrangements

One of the most important properties of toric hyperKähler manifolds is the correspondence be-
tween toric hyperKähler manifolds and hyperplane arrangements, established by Bielawski-Dancer
in [BiDa] (also see [HaPr, Ko3, Pr]). In this section, we recall the hyperplane arrangement in-
duced from the toric hyperKähler variety and recall some basic facts.
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3.1. Hyperplane arrangements induced from toric hyperKähler varieties. In order
to define toric hyperKähler varieties, it is enough to use the exact sequence (2.5) and the non-zero
element α ∈ k∗ (see Section 2). By the exactness of (2.5), there is a non-zero lift α̂ of α, i.e.,
ι∗(α̂) = α. This α̂ determines m affine hyperplanes in (tn)∗ as follows:

Hi = {x ∈ (tn)∗ | ⟨ρ∗(x) + α̂, ei⟩ = 0}
where ei’s (i = 1, . . . , m) are the basis of tm ≃ Rm such as those in Remark 2.5.

Remark 3.1. Due to Remark 2.5, we may assume that ρ∗(ei) ̸= 0 for all i = 1, . . . , m.
This implies that Hi defined as above is always codimension-one affine subspace in (tn)∗, i.e.,
dimHi = n − 1. Moreover, we may regard Hi (i = 1, . . . , m) as a weighted, cooriented, affine
hyperplane by regarding ρ∗(ei) ∈ tnZ as a nonzero integer, cooriented, normal vector of Hi. Here,
“weighted” means that ρ∗(ei) is not required to be primitive.

We call the set of hyperplanes

Hα̂ = {H1, . . . ,Hm}
the hyperplane arrangement induced from (Mα, T

n) or hyperplane arrangement of (Mα, T
n).

Remark 3.2. Ths choise of a lift α̂ ∈ (ι∗)−1(α) yields a parallel translation of the hyperplane
arrangement Hα̂. Let α̂1 and α̂2 be elements in (tn)∗ which satisfy that ι∗(α̂1) = α = ι∗(α̂2).
It is easy to check that the intersection posets of Hα̂1

and Hα̂2
are the same. Namely, the

choice of a lift α̂ does not change the combinatorial structure of Hα̂. However, geometrically, α̂
determines the hyperKähler moment map because of the definition in (2.7). This implies that the
date (Mα, T

n, µα̂) gives more precise structure of hyperplane arrangements than the combinatorial
structure (see Section 4.2, 4.3).

We also note that all hyperplane arrangements do not appear as hyperplane arrangements of
(Mα, T

n). We shall explain it in the following Lemma 3.3. Before that, we prepare two notations.
A hyperplane arrangement is called simple, if every nonempty intersection of k hyperplanes is
codimension-k and there are n hyperplanes whose intersection is nonempty (also see Figure 3 in
Section 3.4). A hyperplane arrangement is called smooth, if it is simple and every collection of n
linearly independent vectors {ρ∗(ei1), . . . , ρ∗(ein)} spans tnZ (also see Figure 2 in Section 3.4). Let
us state Lemma 3.3 (see [BiDa, HaPr] for detail).

Lemma 3.3. The toric hyperKähler variety M is an orbifold if and only if a hyperplane ar-
rangement of (M,T ) is simple. Furthermore, M is smooth (i.e., non-singular) if and only if the
hyperplane arrangement of (M,T ) is smooth.

The following example is one of the standard examples.

Example 3.4. As seen in Example 2.4, the toric hyperKähler manifold which is defined by
the diagonal subgroup ∆ in Tn+1 is Tn-equivariantly diffeomorphic to T ∗CPn.

By using the exactness of (2.8), we may define a representation ρ∗ as follows:

ρ∗(x1, . . . , xn) = (x1, . . . , xn,−(x1 + · · ·+ xn)) ∈ (tn+1)∗

Because we took a lift of α as (1, . . . , 1) ∈ (tn+1)∗ (see Example 2.4), by definition, we get the
following hyperplanes:

H1 = {(x1, . . . , xn) ∈ (tn)∗ | x1 = −1};
...

Hn = {(x1, . . . , xn) ∈ (tn)∗ | xn = −1};
Hn+1 = {(x1, . . . , xn) ∈ (tn)∗ | x1 + · · ·+ xn = 1}.

Figure 1 shows the case when n = 2.

Henceforth, we assume all toric hyperKähler varieties are non-singular, i.e., all toric hy-
perKähler varieties are smooth manifolds. In other words, all toric hyperKähler varieties satisfy
the condition in Proposition 2.1 or equivalently their hyperplane arrangements are smooth as we
have seen in Lemma 3.3.
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Figure 1. The hyperplane arrangement H(1,1,1) of T
∗CP (2)

3.2. Toric hyperKähler manifolds induced from smooth hyperplane arrangements.
We next demonstrate the construction of the toric hyperKähler manifold with the hyperKähler
moment map (M4n

α , Tn, µα̂) from the smooth hyperplane arrangement in (tn)∗. Before demon-
strating that, we assume the following fact.

Remark 3.5. If m = n, i.e., dimHm = 4dimTn, then the toric hyperKähler manifold is Hn

itself and the hyperKähler moment map is given by µR ⊕ µC (see Section 2.1). Therefore, this
case is uniquely determined. If n = 0, then the toric hyperKähler manifold is the one point and
the hyperKähler moment map is given by the zero map to {0} ⊕ {0}. Therefore, this case is also
uniquely determined. Hence, in this paper, we assume m ≥ n+ 1 and n ≥ 1.

Let H be a set of weighted, cooriented, affine hyperplanes {H1, . . . ,Hm} such that

Hi = {x ∈ (tn)∗ | ⟨x, vi⟩+ αi = 0}

and

dimHi = n− 1,

where vi ∈ tnZ (i = 1, . . . , m) regarded as the weighted coorientation (normal vector) of Hi and
αi ∈ R determines the position in (tn)∗. Assume the hyperplane arrangement H is smooth (see
Lemma 3.3). Because H is smooth and m ≥ n+1 (see Remark 3.5), the surjective homomorphism
ρ∗ : tm → tn can be defined by

ρ∗(ei) = vi ∈ tnZ,(3.1)

where ei is the ith standard basis of tm ≃ Rm. Because dimHi = n− 1, we have that vi ̸= 0 (also
see Remark 2.5). Put k = ker ρ∗. Then, there is the following exact sequence:

{0} −→ k = ker ρ∗
ι∗−→ tm

ρ∗−→ tn −→ {0}.

Taking its dual, we can define the following sequence as well as the sequence (2.5):

{0} −→ (tn)∗
ρ∗

−→ (tm)∗
ι∗−→ k∗ −→ {0}.

Now we may regard αi = ⟨α̂, ei⟩ by taking α̂ = (α1, . . . , αm) ∈ (tm)∗ with respect to the dual
basis ∂i of ei. Because H is simple and m ≥ n + 1, we can easily show that ι∗(α̂) = α ̸= 0 in
k∗. Therefore, with the method similar to that demonstrated in Section 2.1, we can construct
the toric hyperKähler variety Mα = µ−1

HK(α, 0)/K from the above exact sequence and the non-
zero element α ∈ k∗, where K is the connected torus whose Lie algebra is k. Moreover, it is
easy to check that Mα is non-singular by the smoothness of H and Proposition 2.1, and we have
the hyperKähler moment map µα̂ as the equation (2.7). Therefore, from the smooth, weighted,
cooriented, affine hyperplane arrangement, the toric hyperKähler manifold with the hyperKähler
moment map (Mα, T

n, µα̂) can be constructed.
7



3.3. Geometric meaning of weighted, cooriented, affine hyperplanes. In this sub-
section, we quickly review the geometric meaning of hyperplanes.

According to [BiDa, Theorem 3.1 (1)], the hyperKähler moment map µα̂ : Mα → (tn)∗⊕(tnC)
∗

in (2.7) is surjective. Let rR : (tn)∗ ⊕ (tnC)
∗ → (tn)∗ be the natural projection to the real part.

Then, we have the surjective map

Ψα̂ : Mα −→ (tn)∗

by Ψα̂ = rR ◦ µα̂.
Let Mi be a characteristic submanifold of (Mα, T

n), i.e., Mi is an invariant connected sub-
manifold in Mα which is fixed by some circle subgroup in Tn. By [HaHo, Section 3], we have the
following proposition.

Proposition 3.6. Let Ni (i = 1, . . . , m) be the subset in µ−1
HK(α, 0) ⊂ Cm ⊕ Cm such that

zi = 0 = wi, where zi and wi are the ith coordinate in Cm and Cm, respectively. For the given
characteristic submanifold Mi, there exists the subset Ni such that

Mi = Ni/K.

Equivalently, Mi is the hyperKähler quotient of the restricted K-action on the (m−1)-dimensional
subspace Hm−1

i , where Hm−1
i is the subspace of Hm whose ith coordinate is 0.

Due to Proposition 3.6, we have dimMi = 4n − 4 for all i = 1, . . . , m. By the definition of
µα̂ and hyperplanes Hi (for i = 1, . . . , m), we have the following relation:

Ψα̂(Mi) = Hi ⊂ (tn)∗.(3.2)

Hence, there exists the one-to-one correspondence between hyperplanes in Hα̂ and characteristic
submanifolds in (Mα, T

n, µα̂).
Next we demonstrate the meaning of the cooriented, normal vector ρ∗(ei) of Hi. Note that

the vector ρ∗(ei) is a primitive vector in tn, because hyperplane arrangements are smooth. By
using Proposition 3.6, the circle subgroup which fixes Mi is induced by the ith coordinate circle Si

in Tm. Because ρ∗(ei) ̸= 0 in tn (see Remark 2.5), the induced subgroup Si/K(⊂ Tm/K) is the
circle subgroup Ti in Tn and can be obtained by the exponent of ρ∗(ei) ∈ tn. In other words, such
circle subgroup can be determined by the vector ρ∗(ei) ∈ tn up to sign. Moreover, it is easy to
check that the circle subgroup Ti acts on the normal bundle νi of Mi and this action is induced by
the right scaler multiplications on fibres, where fibers are isomorphic to H = C⊕C. Namely, two
choices of signs of ρ∗(ei) ∈ tn correspond to two orientations of νi (we often call the orientation
of νi an omni-orientation of Mi, also see [HaMa]). In summary, we have the following corollary
as the geometric meaning of the weighted, cooriented, normal vector ρ∗(ei) of Hi.

Corollary 3.7. Let ρ∗(ei) be the weighted, cooriented, normal vector of Hi. Then, the
circle subgroup which fixes the characteristic submanifold Mi such that Ψα̂(Mi) = Hi is given the
following subgroup:

Ti = {exp rρ∗(ei) | r ∈ R}
for all i = 1, . . . , m.

Furthermore, two signs of ρ∗(ei) correspond to two orientations of the normal bundle νi of
Mi.

3.4. Some remarks on smooth hyperplane arrangements. In closing this section, we
give some remarks about smooth hyperplane arrangements. Let Hα̂ be a smooth weighted, coori-
ented affine hyperplane arrangement. Then, by definition, we may put

Hα̂ = {H1, . . . , Hm}
and

Hi = {x ∈ (tn)∗ | ⟨x, ρ∗(ei)⟩ = −⟨α̂, ei⟩},
such that

⟨ρ∗(ei1), . . . , ρ∗(ein)⟩Z = tnZ
8



if {ρ∗(ei1), . . . , ρ∗(ein)} is linearly independent. This condition is equivalent to the following
condition:

det(ρ∗(ei1) · · · ρ∗(ein)) = ±1,(3.3)

where (ρ∗(ei1) · · · ρ∗(ein)) is the n× n-integer matrix whose column vectors consist of ρ∗(ei)’s.
Because Hα̂ is also simple, we have that for all i ∈ [m] there exists {i1, . . . , in} ⊂ [m], where

[m] = {1, . . . ,m}, such that

i ∈ {i1, . . . , in}

and

∩n
j=1Hij = {p} ⊂ (tn)∗.

By changing the order of hyperplanes, we may regard ∩n
i=1Hi = {p}. Let ρ∗(ei) = vi ∈ tn. Then,

there exists the linear isomorphism f∗ : tn → tn such that

f∗(vi) = (0, . . . , 0, 1, 0, . . . , 0) = xi ∈ tn,

i.e., {f∗(v1), . . . , f∗(vn)} is the standard basis of tn. By the definition of Hi and p ∈ Hi for all
i = 1, . . . , n, we have

⟨(f∗)−1(p),xi⟩ = ⟨p, f−1
∗ (xi)⟩ = ⟨p, vi⟩ = −⟨α̂, ei⟩

for all i = 1, . . . , n, where f∗ : (tn)∗ → (tn)∗ is the induced dual isomorphism of f∗. Therefore,
we can easily check that there exists an affine (parallel) isomorphism A : (tn)∗ → (tn)∗ such that
A(p) is the origin of (tn)∗ and

A(Hi) = {x ∈ (tn)∗ | ⟨x,xi⟩ = 0}.

for i = 1, . . . , n. Because xi is the standard basis of tn, we may regard A(Hi) as the following
linear subspace in (tn)∗:

(tn)∗i = {(x1, . . . , xi−1, 0, xi+1, . . . , xn) ∈ (tn)∗ | xj ∈ (t1)∗ ≃ R}.

Therefore, up to affine isomorphism on (tn)∗, we may regard first n hyperplanes in Hα̂ as
(tn)∗1, . . . , (tn)∗n.

In this case, by the condition (3.3), if there is the hyperplane Hn+1 ∈ Hα̂ such that Hn+1 is
not parallel to any (tn)∗i for i = 1, . . . , n, then Hn+1 is given by the following hyperplane:

Hn+1 = {x ∈ (tn)∗ | ⟨x, ρ∗(en+1)⟩ = ⟨α̂, en+1⟩}

such that ⟨α̂, en+1⟩ ̸= 0 and

ρ∗(en+1) = (±1, . . . ,±1) ∈ tn.

Again by using (3.3), we have that if Hn+1 and Hn+2 are not parallel to any (tn)∗i then Hn+1 and
Hn+2 are parallel, i.e.,

ρ∗(en+1) = ρ∗(en+2).

Therefore, if H ∈ Hα̂ is not parallel to any (tn)∗i then we may take

ρ∗(en+1) = (1, . . . , 1) ∈ tn

up to linear isomorphism (just changing the sign of some coordinates, i.e., the coorientations of
hyperplanes).

Now, we call two hyperplane arrangements H1 and H2 in Rn are affine equivalent if there
exists an affine isomorphism A : Rn → Rn which preserves all hyperplanes, i.e., the cardinalities of

H1 and H2 are the same, and for all H
(1)
i ∈ H1 there exists H

(2)
j ∈ H2 such that A(H(1)

i ) = H
(2)
j .
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By using the arguments above, a smooth hyperplane arrangement Hα̂ can be divided into the
following subsets up to affine equivalence:

Hα̂(1) = {H1,1, . . . ,H1,m1};
...

Hα̂(n) = {Hn,1, . . . , Hn,mn};
Hα̂(n+ 1) = {Hn+1,1, . . . ,Hn+1,mn+1

};

where Hα̂(i) is the set of hyperplanes which are parallel to (tn)∗i for i = 1, . . . , n and Hα̂(n+1) is
the set of hyperplanes whose ρ∗(ej) coincides with (1, . . . , 1) ∈ tn. Here,

∑n
i=1 mi +mn+1 = m,

mi > 0 for i = 1, . . . , n, and mn+1 ≥ 0.
Therefore, we have established the following proposition (also see Figures 2 and 3):

Proposition 3.8. Let Hα̂ be a smooth hyperplane arrangement. Then, there exists integers
m1, . . . ,mn(> 0) and mn+1(≥ 0) such that Hα̂ is combinatorially equivalent to the following
hyperplane arrangement:

H(m1, . . . ,mn,mn+1),

where H(m1, . . . ,mn,mn+1) is a simple hyperplane arrangement such that the cardinality of hy-
perplanes which is parallel to (tn)∗i is mi for i = 1, . . . , n, and that of hyperplanes whose ρ∗(ej)
coincides with (1, . . . , 1) is mn+1.

Furthermore, the above equivalence can be taken from the affine equivalence, for any fixed
affine structure on H(m1, . . . ,mn,mn+1).

Figure 2. Smooth hyperplane arrangements. The left arrangement is the ar-
rangement represented by H(4, 5, 0) and the right one is H(2, 1, 3).

Figure 3. Non-smooth hyperplane arrangements. Both of the hyperplanes do
not satisfy the condition (3.3) around the vertex p; therefore, both of them are
not smooth (but simple). Note that bounded regions of smooth hyperplane ar-
rangements in R2 are equilateral triangles or quadrangle only.
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Here, in Proposition 3.8, we call two hyperplanes H1 and H2 are combinatorially equivalent if
their intersection posets are equivalent.

4. Equivalence relations on toric hyperKähler manifolds

We next define the equivalence relations on toric hyperKähler manifolds and the hyperplane
arrangements, and prove that these equivalence relations are compatible (see Theorem 4.4) in this
section.

Before we define equivalence relations, we recall the following notations. For two G-spaces X
and Y , a map f : X → Y is called a weak G-equivariant map if there is a group isomorphism
φ : G → G such that f(x · t) = f(x) · φ(t) for all t ∈ G and x ∈ X; if this isomorphism φ is the
identity map then f is called a G-equivariant map.

4.1. Equivalence relations of toric hyperKähler manifolds. Let (Mα, T
n, µα̂) and

(Mβ , T
n, µβ̂) be two toric hyperKähler manifolds with hyperKähler moment maps, where we

put α ∈ k∗1, β ∈ k∗2 and their lifts α̂ ∈ t∗1, β̂ ∈ t∗2, respectively. Here, dimT1 − dimK1 = n =
dimT2 − dimK2 (dimT1 = m1 and dimT2 = m2).

Definition 4.1. We say a weakly Tn-equivariantly isometric map f : Mα → Mβ a weak
hyperhamiltonian Tn-isometry or weak Tn-isomorphism simply, if a weak Tn-equivariant diffeo-
morphism f preserves the hyperKähler structures and satisfies that

µα̂ = φ∗
R⊕C ◦ µβ̂ ◦ f,

that is, the following diagram is commute:

Mα

f

��

µα̂ // (tn)∗ ⊕ (tn)∗C

Mβ

µ
β̂ // (tn)∗ ⊕ (tn)∗C

φ∗
R⊕C

OO
(4.1)

where φ∗
R⊕C : (tn)∗ ⊕ (tnC)

∗ → (tn)∗ ⊕ (tnC)
∗ is the induced isomorphism from φ : Tn → Tn such

that f(x ·t) = f(x) ·φ(t). If φ is the identity map, then f is called a hyperhamiltonian Tn-isometry
or Tn-isomorphism simply.

If there is a (weak) Tn-isomorphism between two triples

(Mα, T
n, µα̂) and (Mβ , T

n, µβ̂),

then we say that such triples are (weakly) hyperhamiltonian Tn-isometric or (weakly) Tn-isomorphic.

Remark 4.2. In the paper [Bi], if the above φ is identity then Mα and Mβ are called iso-
morphic as tri-Hamiltonian hyperKähler T -manifolds.

In this paper, the symbol (Mα, T
n, µα̂) ≡w (Mβ , T

n, µβ̂) (resp. (Mα, T
n, µα̂) ≡ (Mβ , T

n, µβ̂))

represents that (Mα, T
n, µα̂) and (Mβ , T

n, µβ̂) are weakly Tn-isomorphic (resp. Tn-isomorphic).

4.2. Equivalence relations of hyperplane arrangements. In this subsection, we intro-
duce the equivalence relations of weighted, cooriented, smooth hyperplane arrangements. Let

Hα̂ = {H(1)
1 , . . . , H

(1)
m1} and Hβ̂ = {H(2)

1 , . . . , H
(2)
m2} be such hyperplane arrangements consist of

H
(1)
i = {x ∈ (tn)∗ | ⟨x, v(1)i ⟩+ α̂i = 0},(4.2)

H
(2)
j = {x ∈ (tn)∗ | ⟨x, v(2)j ⟩+ β̂j = 0},(4.3)

where v
(1)
i ∈ tn (i = 1, . . . , m1) and v

(2)
j ∈ tn (j = 1, . . . , m2) are weighted, cooriented vectors,

α̂i, β̂j ∈ R represent positions of hyperplanes, respectively
Now we may introduce the equivalence relation on the weighted, cooriented, smooth hy-

perplane arrangements. Two hyperplane arrangements Hα̂ and Hβ̂ are called weakly (linear)

equivalent if there exists a linear isomorphism φ∗ : (tn)∗ → (tn)∗, induced from an isomorphism
11



φ : Tn → Tn, such that φ∗ sends Hα̂ to Hβ̂ , i.e., m1 = m2 = m and there is a permutation

σ : [m] → [m] such that

φ∗(H
(1)
i ) = H

(2)
σ(i)

for all i ∈ [m]; in this paper, the symbol [m] for some m ∈ N represents the finite set {1, . . . ,m},
and we denote such hyperplane arrangements by Hα̂ ≡w Hβ̂ . Moreover, if we can take such φ∗ as

the identity map, then Hα̂ and Hβ̂ are said to be equivalent, and we denote them by Hα̂ ≡ Hβ̂ .

Remark 4.3. As we mentioned in Section 3.4, there are other equivalence relations of hyper-
plane arrangements, i.e., affine equivalence and combinatorially equivalence. One can easily show
that there are the following hierarchy for these equivalence relations:

weak equivalence ⊂ affine equivalence ⊂ combinatorially equivalence

4.3. Relations between equivalent toric hyperKähler manifolds and their hyper-
plane arrangements. The goal of this subsection is to prove the following theorem:

Theorem 4.4. Let (Mα, T
n, µα̂), (Mβ , T

n, µβ̂) be two toric hyperKähler manifolds, and Hα̂,

Hβ̂ be their hyperplane arrangements, respectively. Then, the following two statements are equiv-

alent:

(1) (Mα, T
n, µα̂) ≡w (Mβ , T

n, µβ̂);

(2) Hα̂ ≡w Hβ̂.

We first show the direction (1) ⇒ (2) in Theorem 4.4.

Proposition 4.5. Under the hypothesis of Theorem 4.4, if (Mα, T
n, µα̂) ≡w (Mβ , T

n, µβ̂),

then Hα̂ ≡w Hβ̂.

Proof. Assume (Mα, T
n, µα̂) ≡w (Mβ , T

n, µβ̂). By definition, there exists a weak Tn-

isomorphism f : Mα → Mβ such that the following diagram commutes (see Section 3.3 and
4.1):

Mα
f //

Ψα̂

��

Mβ

Ψ
β̂

��
(tn)∗ (tn)∗

φ∗
oo

where φ∗ is induced from the isomorphism φ : Tn → Tn such that f(x · t) = f(x) · φ(t). Be-
cause f preserves the characteristic submanifolds, we have that the cardinality of characteristic
submanifolds of Mα is the same with that of Mβ , say m. Then, we can define the permutation

σ : [m] → [m] induced by f , i.e., if f(M
(1)
i ) = M

(2)
j for characteristic submanifolds M

(1)
i ⊂ Mα

and M
(2)
j ⊂ Mβ (i, j ∈ [m]), then we define σ(i) = j. Using the geometric meaning of hyperplanes

mentioned in Section 3.3, we have that

H
(1)
i = Ψα̂(M

(1)
i ) (by the relation (3.2))

= φ∗ ◦Ψβ̂ ◦ f(M (1)
i ) (by the commutativity of the above diagram)

= φ∗ ◦Ψβ̂(M
(2)
σ(i)) (by the definition of σ)

= φ∗(H
(2)
σ(i)) (by the relation (3.2)),

for all i ∈ [m]. This implies that φ∗ : (tn)∗ → (tn)∗ is a linear map which gives Hα̂ ≡w Hβ̂ . �

The following lemma is the key lemma to prove Theorem 4.4:

Lemma 4.6. Let Hα̂ and Hβ̂ be smooth hyperplane arrangements induced from toric hy-

perKähler manifolds (Mα, T
n, µα̂) and (Mβ , T

n, µβ̂), respectively. Assume a linear isomorphism

12



φ∗ : (tn)∗ → (tn)∗, induced from an isomorphism φ : Tn → Tn, gives Hβ̂ ≡w Hα̂. Then, there

exists the lift φ̃∗ such that the following diagram commutes:

(tn)∗
ρ∗
2 //

φ∗

��

(tm)∗

φ̃∗

��
(tn)∗

ρ∗
1 // (tm)∗

and

φ̃∗(β̂) = α̂,

where ρ∗1, ρ
∗
2 : (tn)∗ → (tm)∗ are the injective representations defined in (2.5) for Mα, Mβ, respec-

tively.
Furthermore, the above φ̃∗ can be represented as a following matrix:

ϵ1 0 · · · 0
0 ϵ2 · · · 0
...

...
. . .

...
0 0 · · · ϵm

 · Σ

with respect to the basis ∂i (i ∈ [m]) of (tm)∗, where ϵi = ±1 for i ∈ [m] and Σ is the m × m
matrix induced from the permutation σ : [m] → [m].

Proof. Assume Hβ̂ ≡w Hα̂. Then, by definition, there exists a linear isomorphism φ∗ :

(tn)∗ → (tn)∗ such that

φ∗(H
(2)
j ) = H

(1)
σ(j),

for all j ∈ [m] and some permutation σ : [m] → [m], where H
(1)
σ(j) and H

(2)
j are hyperplanes in Hα̂

and Hβ̂ , respectively. Here, m is the cardinalities of Hα̂ and Hβ̂ . Then, we have the following

relations:

φ∗(H
(2)
j ) = φ∗({x ∈ (tn)∗ | ⟨ρ∗2(x) + β̂, ej⟩ = 0})

= H
(1)
σ(j) = {y ∈ (tn)∗ | ⟨ρ∗1(y) + α̂, eσ(j)⟩ = 0}.

Hence, for x ∈ H
(2)
j , we have the following equations:

⟨ρ∗2(x), ej⟩ = −⟨β̂, ej⟩;(4.4)

⟨ρ∗1 ◦ φ∗(x), eσ(j)⟩ = −⟨α̂, eσ(j)⟩.
One can easily show that the following two statements are equivalent:

• ⟨β̂, ej⟩ = 0;

• H
(2)
j is a linear subspace in (tn)∗.

This implies that ⟨β̂, ej⟩ = 0 if and only if ⟨α̂, eσ(j)⟩ = 0. Therefore, because ⟨α̂, eσ(j)⟩ and ⟨β̂, ej⟩
are real numbers, there exists ϵ′j ∈ R \ {0} such that

⟨α̂, eσ(j)⟩ = ϵ′j⟨β̂, ej⟩.(4.5)

Using the equations (4.4) and (4.5) above, it is easy to check that, for all x ∈ H
(2)
j ,

⟨x, (ρ2)∗(ϵ′jej)⟩ = ⟨x, φ∗ ◦ (ρ1)∗(eσ(j))⟩,

where φ∗ : tn → tn is the dual linear isomorphism of φ∗. Therefore, by using the fact that H
(2)
j

is a codimension one hyperplane, we can easily show that two non-zero vectors (ρ2)∗(ϵ
′
jej) and

φ∗◦(ρ1)∗(eσ(j)) lie in the same 1-dimensional linear subspace in tn. Hence, there exists ϵj ∈ R\{0}
such that

ϵj(ρ2)∗(ej) = φ∗ ◦ (ρ1)∗(eσ(j)).(4.6)
13



Define the linear map φ̃∗ : tm → tm as the following (m ×m)-square matrix with respect to the
standard basis {e1, . . . , em}: 

ϵ1 0 · · · 0
0 ϵ2 · · · 0
...

...
. . .

...
0 0 · · · ϵm

 · Σ−1,

where the (m × m)-matrix Σ−1 is the inverse of the matrix Σ induced from the permutation
σ : [m] → [m]. Using (4.6), we have that the linear map φ̃∗ satisfies that

φ∗ ◦ (ρ1)∗ = (ρ2)∗ ◦ φ̃∗,

i.e., the following diagram is commute:

tn tm
(ρ2)∗oo

tn

φ∗

OO

tm
(ρ1)∗oo

φ̃∗

OO

We claim ϵj = ±1 for all j = 1, . . . , m. Because Hβ̂ is a smooth hyperplane arrangements,

for all j ∈ [m], there exists Ij ⊂ [m] such that |Ij | = n (i.e., the cardinality of Ij is n), j ∈ Ij ,

∩i∈IjH
(2)
i ̸= ∅ and

{(ρ2)∗(ei) | i ∈ Ij}
spans tnZ (also see Section 3.4). Therefore, because φ∗ gives weak equivalence between two smooth
hyperplane arrangements Hβ̂ and Hα̂, the vectors

{(ρ1)∗(eσ(i)) | i ∈ Ij}
also spans tnZ. By the definition of φ̃∗ and the commutativity of the diagram above, we have that

φ∗ ◦ (ρ1)∗(eσ(i)) = (ρ2)∗ ◦ φ̃∗(eσ(i))

= (ρ2)∗(ϵiei).

Because the isomorphism φ∗ : tn → tn is induced from an isomorphism φ : Tn → Tn, the
restriction of φ∗ to tnZ induces the isomorphism between tnZ and tnZ. This implies that ϵi = ±1 for
all i ∈ Ij . Because this satisfies for all Ij (j ∈ [m]), we have ϵj = ±1 for all j = 1, . . . , m. By
taking the dual of the above homomorphisms, it is easy to check the statement of Lemma 4.6. �

Now we may prove the direction (2) ⇒ (1) in Theorem 4.4.

Proposition 4.7. Under the hypothesis of Theorem 4.4, if Hα̂ ≡w Hβ̂, then (Mα, T
n, µα̂) ≡w

(Mβ , T
n, µβ̂).

Proof. Assume Hα̂ ≡w Hβ̂ and this is given by φ∗ : (tn)∗ → (tn)∗. In this case, by using the

arguments in Section 3.3, the cardinality of characteristic submanifolds of Mα and that of Mβ are
the same, say m. Therefore, it also follows from Proposition 3.6 that Mα and Mβ are defined by
the hyperKähler quotient of torus actions on Hm, i.e., there exist the same dimensional subtori
K1,K2 ⊂ Tm such that

Mα = µ−1
HK(α, 0)/K1,

Mβ = µ−1
HK(β, 0)/K2,

whereKs, s = 1, 2, can be defined by the exponent of Lie algebra ks whose dual is k
∗
s = (tm)∗/Im ρ∗s.

By using Lemma 4.6, there exists the lift φ̃∗ : (tm)∗ → (tm)∗ of φ∗ such that

φ̃∗(β̂) = α̂,

and we also have its matrix representation with respect to the basis ∂i (i ∈ [m]) of (tm)∗ such as
the matrix in Lemma 4.6. We denote this matrix representation by X ∈ O(m).

14



Let µ = µR ⊕ µC be the hyperKähler moment map of the standard Tm-action on Hm (see
Section 2.1). Then, by the definition of µ, it is easy to check that the following diagram is
commutative:

Hm
µ // (tm)∗ ⊕ (tm)∗C

φ̃∗
R⊕C

��
Hm

µ //

ΦX

OO

(tm)∗ ⊕ (tm)∗C

where φ̃∗
R⊕C = φ̃∗ ⊕ φ̃∗

C(= X ⊕X) and ΦX : Hm → Hm is defined by the following matrix XH in
Sp(m): 

h1 0 · · · 0
0 h2 · · · 0
...

...
. . .

...
0 0 · · · hm

 · Σ−1
H

such that {
hi = 1 if ϵi = 1
hi = k if ϵi = −1,

and Σ−1
H is the (m × m)-matrix induced by the permutation σ−1 : [m] → [m] acting on Hm.

Here, k is the basis of H, i.e., {1, i, j,k}, and XH acts on Hm from the right hand side (note
that X acts on (tm)∗ ⊕ (tm)∗C from the left hand side). Because ΦX : Hm → Hm is represented
by XH ∈ Sp(m) as above and rk = kr−1 for all r ∈ S1, we see that ΦX gives the weak Tm-
isomorphism on (Hm, Tm, µ) such that ΦX((z, w)t) = ΦX(z, w)φ̃(t), where φ̃ : Tm → Tm is the
induced isomorphism from φ̃∗ : (tm)∗ → (tm)∗ (also see φ̃∗ in the proof of Lemma 4.6).

Because φ̃∗(β̂) = α̂, one can easily show that

ΦX(µ−1
HK(α, 0)) = µ−1

HK(β, 0).

Recall that, in the first paragraph of this proof, we define Ks, s = 1, 2, as the induced torus from
k∗s = (tm)∗/Imρ∗s. Because φ̃∗ is a lift of φ∗, i.e., φ̃∗ ◦ ρ∗2 = ρ∗1 ◦φ∗, this lift φ̃∗ induces the natural
isomorphism between k∗2 and k∗1. This implies that

φ̃(K1) = K2.

Therefore, ΦX induces the weak Tn-equivariant diffeomorphism between Mα = µ−1
HK(α, 0)/K1

and Mβ = µ−1
HK(β, 0)/K2; moreover, ΦX preserves their hyperKähler structures because XH ∈

Sp(m). Note that φ̃ : Tm → Tm induces φ̃/K : Tm/K1 → Tm/K2 and φ̃/K coincides with
φ : Tn → Tn, where φ is the isomorphism which induces φ∗ : (tn)∗ → (tn)∗ in the first paragraph

(also see the definition of Hβ ≡w Hα in Section 4.2). Moreover, by using φ̃∗(β̂) = α̂ and the
definitions of the hyperKähler moment maps µα̂ and µβ̂ (see Section 2.1.4), we have that the

induced diffeomorphism from ΦX also preserves hyperKähler moment maps µα̂ and µβ̂ . This

establishes that (Mα, T
n, µα̂) ≡w (Mβ , T

n, µβ̂). �

By Propositions 4.5 and 4.7, we have Theorem 4.4.

5. Equivariant cohomology of toric hyperKähler manifolds

Using the combinatorial data of the smooth hyperplane arrangement induced from the toric
hyperKähler manifold (M,T ), we can describe the ring structure of the equivariant cohomology
H∗

T (M) of (M,T ), i.e., the Konno’s theorem (see Theorem 5.4). In this section, we recall this
important fact of the equivariant cohomology of toric hyperKähler manifolds.
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5.1. Notations and H∗
T (M) as the H∗(BT )-algebra. We first recall the H∗(BT )-algebra

structure of H∗
T (M). In order to define H∗

T (M), we need to take a space ET ×T M called the
Borel construction (or homotopy quotient). This space is the orbit space of the diagonal T -action
on ET ×M , where ET is a total space of the universal principal T -bundle. Because T acts freely
on the ET -factor in ET × M , the Borel construction is regarded as the fibre bundle over the
classifying space BT = ET/T with fibre M , i.e., there is the following fibration:

M
j−→ ET ×T M

π−→ BT,(5.1)

where π is the projection and j is the injection to the fixed fibre. We call the ordinary cohomology
H∗(ET ×T M) the equivariant cohomology of (M,T ), and denote it by H∗

T (M). By using the
fibration (5.1), we have the following induced homomorphism:

π∗ : H∗(BT ) −→ H∗
T (M).

Hence, the equivariant cohomology H∗
T (M) can be regarded as not only the ring but also the

H∗(BT )-algebra via π∗.

Remark 5.1. In this paper, as we mentioned in Section 1, if we do not mention the coefficient
of the cohomology, it means that we take the integer Z as the coefficient ring.

The following proposition is well-known (see e.g. [MiTo, Chapter 3]).

Proposition 5.2. If dimT = n, the cohomology ring H∗(BT ;R) is isomorphic to the poly-
nomial ring, i.e.,

H∗(BT ;R) ≃ R[x1, . . . , xn]

for R = Z or R, where deg xi = 2 (i = 1, . . . , n).

By using the Serre spectral sequence and Proposition 5.2, we also have the following well-
known proposition (see e.g. [MiTo, Chapter 3]).

Proposition 5.3. If Hodd(M ;R) = 0 and M is simply connected, then the induced homomor-
phism π∗ is injective and the induced homomorphism j∗ : H∗

T (M ;R) → H∗(M ;R) is surjective
for R = Z or R.

In closing this subsection, we recall the equivalence relations on equivariant cohomologies.
Let (M,T ) and (N,T ) be two manifolds with T -actions. If there exists ring isomorphisms f∗

T :
H∗

T (M) → H∗
T (N) and φ∗ : H∗(BT ) → H∗(BT ) such that the following diagram commutes:

H∗(BT )
π∗
1 //

φ∗

��

H∗
T (M)

f∗
T

��
H∗(BT )

π∗
2 // H∗

T (N)

then we call H∗
T (M) and H∗

T (N) are weakly H∗(BT )-algebra isomorphic, and denote them by
H∗

T (M) ≃w H∗
T (N). If the above φ∗ is the identity, then we call H∗

T (M) and H∗
T (N) are H∗(BT )-

algebra isomorphic, and denote them by H∗
T (M) ≃ H∗

T (N).

5.2. Equivariant cohomology of toric hyperKähler manifolds. In this subsection, we
review the ring structure of H∗

T (Mα) of toric hyperKähler manifold (Mα, T ) (see e.g. [Ko3,
HaHo, HaPr, Pr] for detail).

First, we introduce the ring generators of H∗
T (Mα) which are defined by the 1st Chern classes

of line bundles along the characteristic submanifolds. Let Mi, i = 1, . . . , m, be the characteristic
submanifold of (Mα, T ) (see Section 3.3). The symbol νi represents its normal bundle in Mα.
Then we may regard the total space E(νi) of νi as follows:

E(νi) = Ni ×K Hi,(5.2)
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by using Proposition 3.6. Here, the 1-dimensional H-vector space Hi(≃ H ≃ R4) is the represen-
tation space of K by the following representation:

ιi : K
ι−→ Tm pi−→ Si,(5.3)

where pi is the projection to the ith coordinate subgroup Si ≃ S1 of Tm. Thus, we may regard
the normal bundle νi as the pull-back bundle induced from the following diagram:

E(νi)

��

// µ−1
HK(α, 0)×K Hi

��
Mi

// Mα = µ−1
HK(α, 0)/K

(5.4)

where the bottom Mi → Mα is the inclusion.
Now we may regard the product manifold µ−1

HK(α, 0) × Hi as the Tm-manifold, i.e., Tm acts

on the µ−1
HK(α, 0)-factor naturally and on the Hi-factor by the representation pi (see (5.3)). Then,

the subgroup K(⊂ Tm) acts on µ−1
HK(α, 0) × Hi freely, because K acts on the µ−1

HK(α, 0)-factor

freely. Therefore, the induced Tn = Tm/K-action on µ−1
HK(α, 0)×K Hi is well-defined. Similarly,

we can define Tn-action on E(νi). Thus, by taking the Borel construction of each factor in (5.4),
the following commutative diagram is induced:

ETn ×Tn E(νi)

��

// ETn ×Tn µ−1
HK(α, 0)×K Hi

��
ETn ×Tn Mi

// ETn ×Tn Mα

(5.5)

Because H = C⊕ C (see Section 2.1), the bundle in (5.5) splits into the following line bundles:

ETn ×Tn (µ−1
HK(α, 0)×K Hi) ≡ ETn ×Tn (µ−1

HK(α, 0)×K (Ci ⊕ Ci)),

where Ci is the complex 1-dimensional representation space with K-representation via ιi defined
in (5.3), and Ci is isomorphic to Ci with reversed orientation. Let Li be the following line bundle
over ETn ×Tn Mα:

E(Li) = ETn ×Tn (µ−1
HK(α, 0)×K Ci),(5.6)

and let τi be the 1st Chern class of Li, i.e.,

τi = c1(Li) ∈ H2
T (Mα).(5.7)

The following Konno’s theorem says that the set of such 1st Chern classes {τ1, . . . , τm} gives the
canonical generator of H∗

T (Mα):

Theorem 5.4 (Konno). Let (M,T ) be a toric hyperKähler manifold and H = {H1, . . . , Hm}
its hyperplane arrangement. Then, the equivariant cohomology H∗

T (M) satisfies the following
isomorphism:

H∗
T (M ;Z) ≃ Z[τ1, . . . , τm]/I

where I is the ideal in the polynomial ring Z[τ1, . . . , τm] generated by∏
i∈I

τi

for all I ⊂ [m] such that ∩i∈IHi = ∅.

Due to the geometric meaning of hyperplanes mentioned in Section 3.3 and the definition of τi
in (5.7), we have the following correspondence among the characteristic submanifolds Mi ⊂ Mα,
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the hyperplanes Hi ∈ Hα̂ and the canonical generators τi ∈ H2
T (Mα):

Mi ⊂ Mα

Hi ∈ Hα̂
ks +3

t|

4<qqqqqqqqqq

qqqqqqqqqq

τi ∈ H2
T (Mα)

#+

ck OOOOOOOOOO

OOOOOOOOOO

We finish this section by the following example.

Example 5.5. By Example 2.4, the cotangent bundle T ∗CPn over CPn is a toric hyperKähler
manifold. Using Example 3.4, we may put the hyperplane arrangement of T ∗CPn as H =
{H1, . . . , Hn+1}. Again by Example 3.4, if I ⊂ [n+ 1] satisfies that ∩i∈IHi = ∅ then I = [n+ 1].
Therefore, by using Theorem 5.4, the equivariant cohomology ring of T ∗CPn is given by

H∗
T (T

∗CPn) ≃ Z[τ1, . . . , τn+1]/⟨τ1 · · · τn+1⟩,

where deg τi = 2.
In this case, characteristic submanifolds are given by T ∗CPi, where CPi

∼= CPn−1 is the
complex projective space in CPn whose ith-projective coordinate is 0.

6. Hyperplane arrangements induced from the equivariant cohomology

As we have seen in Section 3 and 4, the hyperplane arrangements induced from toric hy-
perKähler manifolds are defined in (tn)∗. One of the idea to prove our main theorem, Theorem
1.1, is to translate these hyperplane arrangements into the equivariant cohomology H2(BT ;R).
In this section, we define the hyperplane arrangement induced from the equivariant cohomology
(with fixed generators).

Let (Mα, T ) be a toric hyperKähler manifold. Then, by using the homotopy exact sequence
for the fibration (5.1), i.e.,

Mα
j−→ ET ×T Mα

π−→ BT,

we have the fundamental group π1(ET ×T Mα) is trivial; therefore, H1(ET ×T Mα) = {0}. Hence,
by using the universal coefficient theorem for cohomology, we have

H2
T (Mα;Z) ≃ Hom(H2(ET ×T Mα),Z).(6.1)

Here, the homology H∗(ET ×T Mα) is called the equivariant homology, and often denoted by
HT

∗ (Mα).
Because of Proposition 5.3 and Theorem 5.4, we have that the following induced exact sequence

from the fibration (5.1):

{0} −→ H2(BT ;Z) π∗

−→ H2
T (Mα;Z)

j∗−→ H2(Mα;Z) −→ {0}.(6.2)

Now we may take the canonical generator in H2
T (Mα;Z) as {τ1, . . . , τm} by virtue of Theorem 5.4.

With the method similar to that demonstrated by Masuda in the proof of [Ma2, Proposition 2.2],
it is easy to show that the homomorphism π∗ in (6.2) can be expressed as that in the following
proposition:

Proposition 6.1. To each i ∈ [m], there exists a unique element vi ∈ H2(BT ;Z) such that

π∗(x) =

m∑
i=1

⟨x, vi⟩Hτi

for any x ∈ H2(BT ;Z).

Here, in Proposition 6.1, the symbol ⟨, ⟩H represents the pairing of the cohomology and ho-
mology defined by H2(BT ) ≃ Hom(H2(BT );Z) (see (6.1) with Mα = {∗}). We also note that
Theorem 5.4 and Proposition 6.1 imply that the H∗(BT )-algebra structure on H∗

T (Mα).
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Taking the tensor product H∗
T (Mα) ⊗Z R, the sequence (6.2) induces the following exact

sequence:

{0} −→ H2(BT ;R)
π∗
R−→ H2

T (Mα;R)
j∗R−→ H2(Mα;R) −→ {0},(6.3)

where π∗
R in (6.3) is induced by π∗ ⊗ id : H∗(BT )⊗Z R → H∗

T (Mα)⊗Z R. Using Proposition 6.1,
the injective homomorphism π∗

R can be described by the following formula:

π∗
R(x) =

m∑
i=1

⟨x, vi⟩Hτi,(6.4)

where x ∈ H2(BT ;R), vi ∈ H2(BT ;Z) ⊂ H2(BT ;R) and τi ∈ H2
T (Mα;Z) ⊂ H2

T (Mα;R).
Take an element â ∈ H2

T (Mα;R). Then, we define Heq
â as follows:

Heq
â = {Heq

1 , . . . ,Heq
m }

such that each hyperplane Heq
i ⊂ H2(BT ;R), i = 1, . . . , m, is defined by

Heq
i = {x ∈ H2(BT ;R) | ⟨π∗

R(x) + â,ui⟩H = 0}.

Here, ui, i = 1, . . . , m, is the linear basis in HT
2 (M ;Z)(⊂ HT

2 (M ;R)) such that

⟨τj ,ui⟩H =

{
1 if i = j
0 if i ̸= j

(6.5)

where the paring ⟨, ⟩H is defined by (6.1). We call Heq
â a hyperplane arrangement of H∗

T (Mα).
We finish this section by the following two remarks.

Remark 6.2. The hyperplane arrangement of equivariant cohomology Heq
â is determined by

the triple (H2
T (Mα), π

∗, â) for â ∈ H2
T (M ;R) as well as the hyperplane arrangement of toric

hyperKähler manifold Hα̂ is determined by the triple (Mα, T
n, µα̂) (see Section 2.2 and 3.3). So

we may think of the inclusion π∗ : H2(BT ) → H2
T (M) as an algebraic counterpart to the T -

action on Mα and the fixed element â ∈ H2
T (Mα;R) as that of the hyperKähler moment map

µα̂ : Mα → (tn)∗ ⊕ (tn)∗C (also see [AtBo] and the equivariant symplectic form in [GuSt, Chapter
9]).

Remark 6.3. Using Proposition 5.3, if Hodd(M) = 0 then a simply connected T -manifold
(M,T ) (not only toric hyperKähler manifolds) satisfies all conditions mentioned as above. There-
fore, for more general class of T -manifolds, we can define a hyperplane arrangement of H∗

T (M) as
above.

7. Equivalence between two hyperplane arrangements in (tn)∗ and H2(BTn;R)

Henceforth, we assume (M4n
α , Tn, µα̂) is a triple of 4n-dimensional toric hyperKähler manifold

Mα, its T
n-action and its hyperKähler moment map µα̂, where α ∈ k∗ is a non-zero element and

α̂ ∈ (tm)∗ is its lift (see Section 2). In this section, we prove that two hyperplane arrangements
induced from Mα and the equivariant cohomology H∗

T (Mα) are weak equivalent.

7.1. Equivalence of two exact sequences. We first recall the following two exact se-
quences defined in (2.5) and (6.3):

{0} −→ (tn)∗
ρ∗

−→ (tm)∗
ι∗−→ k∗ −→ {0};(7.1)

and

{0} −→ H2(BT ;R)
π∗
R−→ H2

T (Mα;R)
j∗R−→ H2(Mα;R) −→ {0}.(7.2)

In this subsection, we will define the following three natural isomorphisms:

J∗
n : (tn)∗ −→ H2(BTn;R) (see Section 7.1.1);

J∗
m : (tm)∗ −→ H2

T (Mα;R) (see Section 7.1.2);
J∗
K : k∗ −→ H2(Mα;R) (see Section 7.1.4),

and prove the following proposition:
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Proposition 7.1. The following diagram (7.3) is a commutative diagram.

0 // (tn)∗

J∗
n

��

ρ∗
// (tm)∗

J∗
m

��

ι∗ // k∗

J∗
K

��

// 0

0 // H2(BTn;R)
π∗
R // H2

T (Mα;R)
j∗R // H2(Mα;R) // 0

(7.3)

Proposition 7.1 tells us that the two exact sequences (7.1) and (7.2) are equivalent.
7.1.1. Definition of the 1st isomorphism. We first define the 1st isomorphism

J∗
n : (tn)∗ −→ H2(BTn;R).(7.4)

Let f ∈ Hom(S1, Tn). The homomorphism f can be denoted by

S1 f−→ Tn

∈ ∈

t 7−→ (tc1 , . . . , tcn),

(7.5)

for some integers c1, . . . , cn. Using this (7.5), we have the isomorphism Hom(S1, Tn) ≃ Zn.
Moreover, f induces the continuous map Bf : BS1 → BTn, and this map induces the homo-
morphism Bf∗ : H2(BS1;Z) → H2(BTn;Z). We fix a generator κ ∈ H2(BS1;Z) ≃ Z. Because
H2(BTn;Z) ≃ Zn ≃ Hom(S1, Tn), the homomorphism defined as follow is the isomorphism:

Hom(S1, Tn)
≃−→ H2(BTn;Z)

∈ ∈

f 7−→ Bf∗(κ).

(7.6)

Because of (7.5), there exists the lift to the Lie algebra homomorphism f̂ : R → tn such that

f̂(r) = (c1r, . . . , cnr) for r ∈ R, i.e., we have the following commutative diagram

R
f̂ //

��

tn

��
S1

f // Tn

where two vertical maps are the exponential maps from Lie algebras to Lie groups. Because

(c1, . . . , cn) ∈ Zn, the lift f̂ preserve lattices, i.e., f̂(Z) ⊂ tnZ, where tnZ ≃ Zn is the lattice in tn.
Hence, there is the following isomorphism:

Hom(S1, Tn)
≃−→ tnZ

∈ ∈

f 7−→ f̂(1) = (c1, . . . , cn).

(7.7)

By the composition of two isomorphisms (7.6) and (7.7) as above, we can define the isomorphism

H2(BTn;Z) ≃−→ tnZ

∈ ∈

Bf∗(κ) 7−→ f̂(1).

Taking the tensor products with R, this isomorphism induces the following isomorphism:

(Jn)∗ : H2(BTn;R) ≃−→ tn.(7.8)

The isomorphism (7.4) is define by taking the dual of (Jn)∗.
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7.1.2. Definition of the 2nd isomorphisms. We next define the 2nd isomorphism

J∗
m : (tm)∗ −→ H2

T (Mα;R)(7.9)

as follows:

(tm)∗
≃−→ H2

T (Mα;R)

∈ ∈

∂i
J∗
m7−→ τi,

where ∂i is the dual basis in (tm)∗ (i = 1, . . . , m) of the basis ei in tm ≃ Rm (see Remark
2.5), and τi is the canonical generator of the equivariant cohomology H∗

T (Mα;Z) (see (5.7) and
Theorem 5.4); here, we may regard it as the basis of H2

T (Mα;R).
Note that the isomorphism J∗

m in (7.9) is also defined by the dual of the following isomorphism:

HT
2 (Mα;R)

(Jm)∗−−−−→
≃

tm
∈ ∈

ui 7−→ ei,

where ui is the basis which satisfies (6.5).
7.1.3. Preparation to define the 3rd isomorphisms: the geometric interpretation of vi. In order

to define the 3rd isomorphisms, we recall the geometric meaning of the unique element vi ∈
H2(BT ;Z) ⊂ H2(BT ;R) in the following formulation (6.4) (also see Proposition 6.1);

π∗
R(u) =

m∑
i=1

⟨u, vi⟩Hτi ∈ H2
T (Mα;R),

for u ∈ H2(BT ;R). Namely, the purpose of Section 7.1.3 is to prove the following proposition.

Proposition 7.2. Let Ti be the circle subgroup in Tn appeared in Corollary 3.7, i.e., the circle
subgroup which fixes the characteristic submanifold Mi. Let λvi : S

1 → Tn be the homomorphism
which corresponds to the unique element vi ∈ H2(BT ;Z) in Proposition 6.1 via the inverse of
isomorphism (7.6). Then, the following relation holds:

λvi(S
1) = Ti.

We note that the arguments we will use in Section 7.1.3 is almost similar to the proof of [Ma1,
Lemma 1.10].

First, we recall the tangent spaces of fixed points of toric hyperKähler manifolds (see [HaHo,
Section 3] for detail). Let p be a fixed point, i.e., p ∈ MT

α , and Mi ⊂ Mα be the characteristic
submanifold (see Section 3.2) (i = 1, . . . ,m). Put I(p) = {i | p ∈ MT

i }. By the definitions of toric
hyperKähler manifolds and their characteristic submanifolds (also see Proposition 3.6), we have
that the cardinality of I(p) is just n for all p ∈ MT

α , i.e., |I(p)| = n, and

{p} = ∩i∈I(p)Mi.

Using (5.2), there exists the following decomposition:

TpMα =
⊕

i∈I(p)

νi|p =
⊕

i∈I(p)

V (χi)⊕ V (−χi),(7.10)

where V (χi)⊕V (−χi) ≃ C⊕C ≃ H, the representation χi : T
n → S1 is induced from the normal

representation ofMi on p and−χi is its orientation-reversing representation, i.e., −χi(t) = χi(t)
−1.

Let us interpret the above χi ∈ Hom(Tn, S1) as the element in the (equivariant) cohomol-
ogy H2(BTn;Z) (see Proposition 7.4). Taking the dual of (7.6), we first define the following
isomorphism:

H2(BTn;Z) ≃−→ Hom(Tn, S1)

∈ ∈

u 7−→ χu.

(7.11)

In order to prove Proposition 7.4, we prepare the following lemma:
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Lemma 7.3. Let (Bχu)∗ : H∗(BS1;Z) → H∗(BTn;Z) be the induced representation. Then,
it satisfies that

(Bχu)∗(κ∗) = u

for the dual basis κ∗ ∈ H2(BS1;Z) of a basis κ ∈ H2(BS1;Z).

Proof. Let f ∈ Hom(S1, Tn). Then, by definition, χu ◦ f : S1 → S1 can be defined by the
following homomorphism:

χu ◦ f(r) = r⟨u,Bf∗(κ)⟩H ,

where r ∈ S1. Because κ∗ is the dual basis, by using the arguments demonstrated in Section 7.1.1
(in this case, n = 1), we have that

⟨u,Bf∗(κ)⟩H = ⟨κ∗, (Bχu ◦ f)∗(κ)⟩H .

Because this equation holds for all f ∈ Hom(S1, Tn), we have the statement of this lemma. �

Let ιp be the inclusion ιp : {p} → Mα and ιTp be its induced inclusion ιTp : ET ×T {p} →
ET ×T Mα. The inclusion ιTp induces the following representation:

ι∗p : H∗
T (Mα) → H∗

T ({p}) = H∗(BT ).

Then, χi : T
n → S1 in (7.10) can be translated into the element in the equivariant cohomology as

the following proposition:

Proposition 7.4. For all i ∈ I(p), χi = χι∗p(τi).

Proof. The representation χi : T
n → S1 in (7.10) induces the continuous map Bχi : BT →

BS1. Now we may regard (by changing the sign of κ if we need) the basis κ∗ ∈ H∗(BS1;Z) as
the 1st Chern class of the canonical line bundle η:

E(η) = ES1 ×S1 C −→ BS1,

where S1 acts on C by the scaler multiplication (rotated by one time only) , i.e.,

κ∗ = c1(η).

Let ET ×T V (χi) be the Borel construction of the representation space V (χi). Then we may
regard ET ×T V (χi) → BT as the line bundle over BT and denote this line bundle as γi. It is
easy to see that γi is the pull-back of η along Bχi : BT → BS1, i.e.,

ET ×T V (χi) //

��

ES1 ×S1 C

��
BT

Bχi // BS1.

Therefore, Bχ∗
i (κ

∗) = Bχ∗
i c1(η) = c1(γi). Hence, it follows from Lemma 7.3 that Bχ∗

i =
(Bχc1(γi))∗. Thus, together with the definition of J∗

n in Section 7.1.1, we have

χi = χc1(γi).

Hence, in order to complete the proof, i.e., to prove χi = χι∗p(τi), it is sufficient to show that
c1(γi) = ι∗p(τi).

Using (5.5) and (7.10), one can easily show that γi is the pull-back of Li (see (5.6)) along the
following inclusion:

ιTp : ET ×T {p} ↪→ ET ×T Mi ↪→ ET ×T Mα.

Because c1(Li) = τi, we have c1(γi) = ι∗p(τi). This establishes Proposition 7.4. �

Moreover, we have the following corollary.

Corollary 7.5. The set {ι∗p(τi) | i ∈ I(p)} is a basis of H2(BT ;Z) for all p ∈ MT
α .
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Proof. It is sufficient to show that {χi | i ∈ I(p)} is a basis of Hom(Tn, S1) by using (7.11)
and Lemma 7.4. By the definition of the toric hyperKähler manifold Mα, we see that Tn acts on
Mα effectively. Hence, by using the differentiable slice theorem (see e.g. [Br, Ka]), this action
induces an effective and linear Tn-action on the tangent space TpM for every fixed point p ∈ MT

α ,
in other wards, the induced Tn-action on TpM ≃ Hn can be defined by an injective representation
to Sp(n). It follows that the representations {χi | i ∈ I(p)} which appeared in the decomposition
(7.10) of TpM can be regarded as a basis of Hom(Tn, S1). This establishes Corollary 7.5. �

Using the definition of Li (see (5.6)), we have that the restricted bundle Li|p to p ∈ MT \MT
i is

the trivial line bundle over BT . Therefore, it follows from Corollary 7.5 that we have the following
relations: {

ι∗p(τi) = 0 if p ∈ MT \MT
i

ι∗p(τi) ̸= 0 if p ∈ MT
i .

(7.12)

The following lemma tells us the relation between ι∗p(τi) ∈ H2(BT ) and vi ∈ H2(BT ) in Proposi-
tion 6.1.

Lemma 7.6. Let vi be the element appearing in Proposition 6.1. Then, the set {ι∗p(τi) | i ∈
I(p)} ⊂ H2(BT ;Z) is the dual basis of {vi | i ∈ I(p)} ⊂ H2(BT ;Z).

Proof. By using Proposition 6.1, we have the following equation:

π∗(ι∗p(τi)) =
m∑
j=1

⟨ι∗p(τi), vj⟩Hτj .

Using (7.12), the equation above implies the following equation:

ι∗p ◦ π∗(ι∗p(τi)) =
∑

j∈I(p)

⟨ι∗p(τi), vj⟩Hι∗p(τj).

Because ET ×T {p} ∼= BT
ιp−→ ET ×T M

π−→ BT can be regarded as the identity map, the
induced map ι∗p ◦ π∗ is the identity map. Therefore, we have

ι∗p(τi) =
∑

j∈I(p)

⟨ι∗p(τi), vj⟩Hι∗p(τj).

By Corollary 7.5, there are no linear relations among ι∗p(τj)’s. Therefore we have the following
equation: {

⟨ι∗p(τi), vj⟩H = 0 if i ̸= j
⟨ι∗p(τi), vj⟩H = 1 if i = j.

This establishes that the element ι∗p(τi) is the dual basis of vi for all i ∈ I(p). �

In order to prove Proposition 7.2, we prepare one more lemma:

Lemma 7.7. Let χu ∈ Hom(T, S1) (resp. λv ∈ Hom(S1, T )) be the corresponding homomor-
phism to u ∈ H2(BT ;Z) (resp. v ∈ H2(BT ;Z)) via (7.11) (resp. (7.6)). Then

χu ◦ λv(r) = r⟨u,v⟩H

for all r ∈ S1.

Proof. Let κ∗ ∈ H2(BS1;Z) ⊂ H2(BS1;R) be the dual basis of κ ∈ H2(BS1;Z) ⊂
H2(BS1;R). Put (Bχu ◦ Bλv)∗ : H∗(BS1;R) → H∗(BS1;R) the induced homomorphism by
χu ◦λv : S1 → S1. Because κ ∈ H2(BS1;Z) is a generator, we can put (Bχu ◦Bλv)∗(κ) = a(u, v)κ
for some a(u, v) ∈ Z. Using (7.6) and Lemma 7.3, we have

⟨u, v⟩H = ⟨(Bχu)∗(κ∗), (Bλv)∗(κ)⟩H = ⟨κ∗, Bχu
∗ ◦ (Bλv)∗(κ)⟩H

= ⟨κ∗, (Bχu ◦Bλv)∗(κ)⟩H = ⟨κ∗, a(u, v)κ⟩H
= a(u, v).
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It follows that

(Bχu ◦Bλv)∗(κ) = ⟨u, v⟩Hκ.

Therefore, by using the isomorphism (7.6), (7.7) for n = 1, we have that

χu ◦ λv(r) = r⟨u,v⟩H

for r ∈ S1. �
Now we may prove Proposition 7.2.

Proof of Proposition 7.2. Using Lemma 7.6 and 7.7, we have χι∗p(τi) ◦ λvi(r) = r for all
p ∈ MT

i and r ∈ S1. By Proposition 7.4, we also have χi ◦λvi(r) = r for all r ∈ S1. It follows from
the decomposition (7.10) that λvi(S

1) acts on the normal space of Mi on each p ∈ MT
i effectively.

Therefore, one can easily show that the circle subgroup λvi(S
1) ⊂ Tn acts trivially on Mi. Thus,

we have that λvi(S
1) = Ti. This establishes Proposition 7.2. �

7.1.4. Definition of the 3rd isomorphisms. We finally define the 3rd isomorphism

J∗
K : k∗ −→ H2(Mα;R),(7.13)

and prove Proposition 7.1.
In order to do that, we first prove the following proposition:

Proposition 7.8. The following diagram is a commutative diagram:

(tn)∗
ρ∗

//

J∗
n

��

(tm)∗

J∗
m

��
H2(BTn;R)

π∗
R // H2

T (Mα;R)

(7.14)

where ρ∗ is defined by (2.5) (or see (7.1)), π∗
R by (6.4), J∗

n by (7.4) and J∗
m by (7.9).

In order to prove Proposition 7.8, we prepare the following lemma:

Lemma 7.9. The following equation holds for all i = 1, . . . , m,

(Jn)∗(vi) = ρ∗(ei),

where vi is the unique element appearing in Proposition 6.1.

Proof. Let λvi ∈ Hom(S1, T ) be the element which corresponds to vi ∈ H2(BT ;Z) via the
isomorphism (7.6). By the definition of (Jn)∗ in Section 7.1.1, we have that

(Jn)∗(vi) = λ̂vi(1),

where λ̂vi : R → tn is the lift of λvi . Therefore, it is enough to show that λ̂vi(1) = ρ∗(ei).
Because ei ∈ tmZ , we have that ρ∗(ei) ∈ tnZ. Let λρ∗(ei) ∈ Hom(S1, T ) be the element which

corresponds to ρ∗(ei) ∈ tnZ via the isomorphism (7.7), i.e., λ̂ρ∗(ei)(1) = ρ∗(ei) for the lift λ̂ρ∗(ei) :
R → tn. Hence, using Corollary 3.7 and Proposition 7.2, we have that

λρ∗(ei)(S
1) = {exp rρ∗(ei) | r ∈ R} = Ti = λvi

(S1).

It follows that λ̂ρ∗(ei)(1) = ρ∗(ei) = λ̂vi(1). This establishes the statement of Lemma 7.9. �
Now we may prove prove Proposition 7.8.

Proof of Proposition 7.8. Let x ∈ (tn)∗. Using the formula (6.4), we have the equation

π∗
R ◦ J∗

n(x) =

m∑
i=1

⟨J∗
n(x), vi⟩Hτi,

where vi ∈ H2(BT ;Z) ⊂ H2(BT ;R) and τi ∈ H2
T (M ;Z) ⊂ H2

T (M ;R) (i = 1, . . . , m). By the
definition of J∗

n in Section 7.1, we also have the equation

⟨J∗
n(x), vi⟩H = ⟨x, (Jn)∗(vi)⟩,
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where (Jn)∗ : H2(BT ;R) → tn is the isomorphism defined in (7.8). Note that, in the above
equation, the left ⟨, ⟩H is the pairing of the cohomology and homology and the right ⟨, ⟩ is the
pairing of the dual Lie algebra and Lie algebra. Using the above two equations, we have

π∗
R ◦ J∗

n(x) =

m∑
i=1

⟨x, (Jn)∗(vi)⟩Hτi.(7.15)

On the other hand, the homomorphism ρ∗ : (tn)∗ → (tm)∗ can be denoted as follows:

ρ∗(x) =

m∑
i=1

⟨ρ∗(x), ei⟩∂i(7.16)

=
m∑
i=1

⟨x, ρ∗(ei)⟩∂i ∈ (tm)∗,

where ei is the natural basis in tm and ∂i is its dual basis in (tm)∗. Therefore, by the definition of
J∗
m in Section 7.1.2 and (7.16), we have that

J∗
m ◦ ρ∗(x) =

m∑
i=1

⟨x, ρ∗(ei)⟩Hτi(7.17)

Using (7.15), (7.17) and Lemma 7.9, we have Proposition 7.8. �

Let us define the 3rd isomorphism J∗
K in (7.13). First, we regard the two homomorphisms in

(7.1) and (7.2) as the quotient homomorphism:

ι∗ : (tm)∗ → k∗ ≃ (tm)∗/Im(ρ∗)

and

j∗R : H2
T (M ;R) → H2(M ;R) ≃ H2

T (M ;R)/Im(π∗
R).

Then, using Proposition 7.8, we get the well-defined isomorphism J∗
K : k∗ → H2(M ;R) as the

quotient homomorphism of the isomorphism J∗
m : (tm)∗ → H2

T (M ;R) defined by (7.9). This gives
the definition of the 3rd isomorphism (7.13).

It is also easy to check Proposition 7.1 by using Proposition 7.8 and the definition of J∗
K .

7.2. Equivalence of two hyperplane arrangements. In this subsection, we prove that the
hyperplane arrangement Hα̂ ⊂ (tn)∗ defined by (Mα, T

n, µα̂) is weak equivalent to the hyperplane
arrangement Heq

â ⊂ H2(BT ;R) defined by the triple (H2
T (Mα), π

∗, â), where â is the element in
H2

T (Mα) such that â = J∗
m(α̂). Namely, we prove the isomorphism J∗

n : (tn)∗ → H2(BT ;R)
defined in Section 7.1.1 preserves these two hyperplane arrangements.

We first recall two hyperplane arrangements (see Section 3 and Section 6). Using the top
exact sequence in (7.3), the hyperplane arrangement Hα̂ = {H1, . . . , Hm} of (Mα, T

n, µα̂) satisfies

Hi = {x ∈ (tn)∗ | ⟨ρ∗(x) + α̂, ei⟩ = 0},

where α̂ ∈ (tm)∗ is a lift of the non-zero element α ∈ k∗ and ei ∈ tm is the basis whose dual is
∂i ∈ (tm)∗. On the other hand, using the bottom exact sequence in (7.3), we have the hyperplane
arrangement Heq

â = {Heq
1 , . . . , Heq

m } of (H∗
T (Mα), π

∗, â) for â(= J∗
m(α̂)) ∈ H2

T (Mα;R) as follows:

Heq
i = {y ∈ H2(BT ;R) | ⟨π∗

R(y) + â,ui⟩ = 0},

where ui ∈ HT
2 (Mα;R) is the basis whose dual is tha canonical generator τi ∈ H2

T (M).
In order to prove the weak equivalence of two hyperplane arrangements, we remark the fol-

lowing.

Remark 7.10. Using the following three facts: (Jm)∗(ui) = ei (see Section 7.1.2); ρ∗(ei) ̸= 0
(see Remark 3.1); and the commutativity of the dual of the diagram (7.3), we have (πR)∗(ui) ̸= 0
for all i = 1, . . . , m. This gives that dimHeq

i = n− 1.

The following proposition tells us the equivalence of Hα̂ and Heq
â .
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Proposition 7.11. Let Hα̂ = {H1, . . . , Hm} be the hyperplane arrangement of (Mα, T
n, µα̂)

and Heq
â = {Heq

1 , . . . ,Heq
m } that of (H∗

T (Mα), π
∗, â), where â = J∗

m(α̂). Then, the isomorphism
J∗
n : (tn)∗ → H2(BT ;R) satisfies that

J∗
n(Hi) = Heq

i

for all i = 1, . . . , m.
In particular, we have that Hα̂ induced from (Mα, T

n, µα̂) and Heq
â induced from (H∗

T (Mα), π
∗, â)

are weak equivalence (see Section 4.2).

Proof. Let x ∈ Hi ∈ Hα̂. Then, by definition, x satisfies ⟨ρ∗(x)+ α̂, ei⟩ = 0. Then, By using
the definition of J∗

m and, we have that J∗
n(x) ∈ H2(BT ;R) satisfies the following equations:

⟨π∗
R ◦ J∗

n(x) + â,ui⟩H
= ⟨J∗

m ◦ ρ∗(x) + J∗
m(α̂),ui⟩H (by the commutativity of (7.3))

= ⟨ρ∗(x) + α̂, (Jm)∗(ui)⟩ (by the definition of J∗
m)

= ⟨ρ∗(x) + α̂, ei⟩ (by (Jm)∗(ui) = ei)
= 0.

Therefore, J∗
n(Hi) ⊂ Heq

i . Because J∗
n is the isomorphism and dimHi = dimHeq

i = n − 1 (by
Remark 3.1 and 7.10), we have that

J∗
n(Hi) = Heq

i

for all i = 1, . . . , m. �

8. Tn-equivariant cohomological rigidity

In this final section, we prove the following main theorem of this paper:

Theorem 8.1. Let (Mα, T, µα̂) and (Mβ , T, µβ̂) be toric hyperKähler manifolds with hy-

perKähler moment maps. The following two statements are equivalent:

(1) (Mα, T, µα̂) ≡w (Mβ , T, µβ̂);

(2) there exists a weak H∗(BT )-algebra isomorphism f∗
T : H∗

T (Mα;Z) → H∗
T (Mβ ;Z) such

that f∗
T (â) = b̂,

where â = J∗
m1

(α̂) and b̂ = J∗
m2

(β̂) for the isomorphisms J∗
m1

: (tm1)∗ → H2
T (Mα;R) and J∗

m2
:

(tm2)∗ → H2
T (Mβ ;R) defined in Section 7.1.2.

Let (Mα, T
n, µα̂), (Mβ , T

n, µβ̂) be two toric hyperKähler manifolds, and Heq
â , Heq

b̂
be their

hyperplane arrangements induced from the equivariant cohomologies, respectively, where â =

J∗
m1

(α̂) and b̂ = J∗
m2

(β̂). Here, Mα = µ−1
HK(α, 0)/K1 such that µHK : Hm1 → (k1)

∗ ⊕ (k1)
∗
C

and Mβ = µ−1
HK(β, 0)/K2 such that µHK : Hm2 → (k2)

∗ ⊕ (k2)
∗
C. By using Theorem 4.4 and

Proposition 7.11, in order to prove Theorem 8.1, it is enough to show the following two statements
are equivalent:

(1) Heq
â ≡w Heq

b̂
:

(2) there exists a weak H∗(BT )-algebra isomorphism f∗
T : H∗

T (Mα;Z) → H∗
T (Mβ ;Z) such

that f∗
T (â) = b̂.

8.1. Proof of (1) ⇒ (2). We first prove the following proposition:

Proposition 8.2. If Heq
â ≡w Heq

b̂
, then there exists a weak H∗(BT )-algebra isomorphism

f∗
T : H∗

T (Mα;Z) → H∗
T (Mβ ;Z) such that f∗

T (â) = b̂.

Proof. Let φ∗ : H2(BT ) → H2(BT ) be an isomorphism such that φ∗
R gives Heq

â ≡w Heq

b̂
.

Then, we may put m as the cardinalities of Heq
â and Heq

b̂
. Due to Proposition 7.1, we may regard

two exact sequences appearing in Proposition 7.1 as the same sequences. Therefore, with the
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method similar to that demonstrated in the proof of Lemma 4.6, there exists the lift f∗
T such that

the following diagram commutes:

H2(BT ;R)
(π∗

1 )R //

φ∗
R

��

H2
T (Mα;R)

f∗
T

��
H2(BT ;R)

(π∗
2 )R // H2

T (Mβ ;R)

(8.1)

and

f∗
T (â) = b̂,

where π1 : ET ×T Mα → BT and π2 : ET ×T Mβ → BT are the projections of the Borel
constructions. Furthermore, the above f∗

T can be represented as the following matrix:
ϵ1 0 · · · 0
0 ϵ2 · · · 0
...

...
. . .

...
0 0 · · · ϵm

 · Σ

with respect to the canonical basis τ
(1)
i of H2

T (Mα) and τ
(2)
i of H2

T (Mβ) (i ∈ [m]), where ϵi = ±1
and Σ is the (m × m)-matrix induced from the permutation σ : [m] → [m]. Namely, for the
canonical basis of H∗

T (Mα) and H∗
T (Mβ), we have

f∗
T (τ

(1)
i ) = ϵiτ

(2)
σ(i).

We claim that this f∗
T extends to the weakH∗(BT )-algebra isomorphism. Because φ∗

R(H
(1)
i ) =

H
(2)
σ(i) for H

(1)
i ∈ Heq

â and H
(2)
σ(i) ∈ Heq

b̂
, we have that the following two statements are equivalent

for I ⊂ [m]:

• ∩i∈IH
(1)
i = ∅;

• ∩σ(i)∈σ(I)H
(2)
σ(i) = ∅.

Therefore, due to Theorem 5.4, the linear isomorphism f∗
T : H2

T (Mα) → H2
T (Mβ) naturally extends

to the ring isomorphism

f∗
T : H∗

T (Mα) −→ H∗
T (Mβ).

Note that H∗(BT ) is the polynomial ring (see Proposition 5.2), i.e., there is no relations among
generators {x1, . . . , xn} in H∗(BT ). Therefore, the linear isomorphism φ∗ : H2(BT ) → H2(BT )
also naturally extends to the ring isomorphism

φ∗ : H∗(BT ) −→ H∗(BT ).

By using Proposition 6.1 and the commutativity of the diagram (8.1), it is easy to check that, for
every degree, the following diagram commutes:

H∗(BT )
π∗
1 //

φ∗

��

H∗
T (Mα)

f∗
T

��
H∗(BT )

π∗
2 // H∗

T (Mβ)

i.e., f∗
T is a weak H∗(BT )-algebra isomorphism. �
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8.2. Proof of (2) ⇒ (1). We next prove the converse of Proposition 8.2. Assume that

f∗
T : H∗

T (Mα) → H∗
T (Mβ) is a weak H∗(BT )-algebra isomorphism such that f∗

T (â) = b̂. Let

{τ (1)1 , . . . , τ
(1)
m1} and {τ (2)1 , . . . , τ

(2)
m2} be the canonical generators of H∗

T (Mα) and H∗
T (Mβ), respec-

tively (say T (1) and T (2) briefly).
Because H∗

T (Mα) ≃ H∗
T (Mβ), we have that m1 = m2 = m. The goal of this final subsection

is to prove the following proposition:

Proposition 8.3. If there exists a weak H∗(BT )-algebra isomorphism f∗
T : H∗

T (Mα;Z) →
H∗

T (Mβ ;Z) such that f∗
T (â) = b̂, then Heq

â ≡w Heq

b̂
.

In order to prove Proposition 8.3, the most part of this subsection is devoted to the proof of
the following key lemma:

Lemma 8.4. For any weak H∗(BT )-algebra isomorphism f∗
T : H∗

T (Mα) → H∗
T (Mβ) such that

f∗
T (â) = b̂, there exists a weak H∗(BT )-algebra isomorphism g∗T : H∗

T (Mα) → H∗
T (Mβ) such that

g∗T (â) = b̂ and g∗T preserves the canonical generators up to sign, i.e., there exists a permutation
σ : [m] → [m] and ϵi = ±1 such that

g∗T (τ
(1)
i ) = ϵiτ

(2)
σ(i),

for all i ∈ [m].

In order to prove this lemma, we prepare some notations and facts (also see [Ma2]).
Let MT

α be the set of T -fixed points in Mα. Because p ∈ MT
α can be represented by

{p} = ∩n
j=1Mij

for some characteristic submanifolds Mij (j = 1, . . . , n, where 4n = dimMα), the fixed point set

MT
α consists of finitely many points.
For ξ ∈ H2

T (Mα), we denote its restriction to p ∈ MT
α by ξ|p, i,e,

ξ|p = ι∗p(ξ) ∈ H∗
T ({p}) = H∗(BT ),

where ι∗p is the induced homomorphism from the natural projection ιp : {p} → Mα. We define the
set

Z(ξ) := {p ∈ MT
α | ξ|p = 0}.

We call the cardinality of Z(ξ) the zero-length of ξ, denote it |Z(ξ)|. The following proposition
tells us that the zero-length |Z(ξ)| is invariant under an algebra isomorphism.

Proposition 8.5. Let f∗
T : H∗

T (Mα) → H∗
T (Mβ) be a weak H∗(BT )-algebra isomorphism.

Then, the following equation holds for all ξ ∈ H∗
T (Mα):

|Z(ξ)| = |Z(f∗
T (ξ))|.

Proof. Let S = H∗(BT ) \ {0} and let S−1H∗
T (M) denote the localized ring of H∗

T (M) by
S, i.e.,

S−1H∗
T (M) = {r

s
| r ∈ H∗

T (M), s ∈ S}/∼

where
r1
s1

∼ r2
s2

⇐⇒ (r1s2 − r2s1)t = 0 for some t ∈ S.

Due to Theorem 5.4 and Proposition 6.1, H∗
T (Mα;Z) is free as a module over H∗(BT ;Z). Hence,

because of the localization theorem in equivariant cohomology (see [Hs, p.40]), the natural map

H∗
T (Mα) −→ S−1H∗

T (Mα) ≃ S−1H∗
T (M

T
α ) =

⊕
p∈MT

α

S−1H∗
T ({p})
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is injective (also see [HaPr, Theorem 2.5]), where the isomorphism appearing in the above maps
is induced from the inclusion map from MT

α to Mα. Therefore, we may regard an element ξ ∈
H∗

T (Mα) as an element in S−1H∗
T (Mα). Then, the annihilator

Ann(ξ) := {η ∈ S−1H∗
T (Mα) | ηξ = 0} ⊂

⊕
p∈MT

α

S−1H∗
T ({p})

of ξ is nothing but the sum of S−1H∗
T ({p}) over p with ξ|p = 0, because η|p = 0 if ξ|p ̸= 0.

Therefore, Ann(ξ) is a free S−1H∗(BT )-module of rank |Z(ξ)|. Since f∗
T is a weak H∗(BT )-

algebra isomorphism, we have

Ann(ξ) ≃ Ann(f∗
T (ξ))

as a free S−1H∗(BT )-module. This implies that |Z(ξ)| = |Z(f∗
T (ξ))|. �

Put T (1) and T (2) be the canonical generators in H∗
T (Mα) and H∗

T (Mβ), respectively. Let

T (s)
0 ⊂ T (s), for s = 1, 2, be the canonical generators whose zero-length are zero. Let T (s)

1 be the

set in T (s) \ T (s)
0 with largest zero-length, and let T (s)

2 be the set in T (s) \ T (s)
0 second largest

zero-length, and so on.

Remark 8.6. In toric manifolds, all of canonical generators satisfy |Z(τi)| ̸= 0, i.e., T (s)
0 = ∅.

However, in toric hyperKähler manifolds, there exists a canonical generator τi such that |Z(τi)| =
0, i.e., T (s)

0 ̸= ∅. For example, in the equivariant cohomology of a toric hyperKähler manifold
M = M ′ ×H, the canonical generator τ which corresponds to the characteristic submanifold M ′

satisfies |Z(τ)| = 0 because MT = (M ′)T . This gives one of the difference between the proof of
the Masuda’s theorem (see Theorem 1 in Section 1) for toric manifolds proved in [Ma2] and that
of Theorem 1.1 in Section 1 for toric hyperKähler manifolds.

We first show the following property for T (s)
0 (s = 1, 2):

Proposition 8.7. If there exists τi ∈ T (s)
0 (s = 1, 2), then there exists the element xi ∈

H2(BT ) such that

π∗
s (xi) = τi.

Proof. Assume τi ∈ T (1)
0 . By definition, we have that τi|p ̸= 0 for all p ∈ MT . Recall that

the canonical generator τi corresponds to the characteristic submanifold Mi, and Mi corresponds
to the hyperplane Hi ⊂ H2(BT ;R) (see Section 5.2). Using τi|p ̸= 0 for all p ∈ MT , it is easy to
check that (Mi)

T = MT
α . Therefore, because fixed points correspond to the intersection of just n

hyperplanes, we have that Hi ∩Hj ̸= ∅ for all j ̸= i. Because there are no intersection points of
just n hyperplanes in the complement of Hi(⊂ H2(BT ;R)), there exists a primitive xi ∈ H2(BT )
such that all of the hyperplanes Hj (where j ̸= i) satisfy

Hj = Lj × Rxi,

where Lj = Hi ∩Hj is the (n − 2)-dimensional hyperplane (see Figure 4). This means that, for
all x ∈ Hj (j ̸= i), there exists x′ ∈ Lj = Hi ∩Hj and r ∈ R such that

x = x′ + rxi.

Hence, we have the following relations:

0 = ⟨π∗
1(x) + â,uj⟩H (by x ∈ Hj)

= ⟨π∗
1(x

′ + rxi) + â,uj⟩H (by x = x′ + rxi)
= ⟨π∗

1(rxi),uj⟩H (by x′ ∈ Hj).

Therefore, we have that

⟨π∗
1(xi),uj⟩H = 0 for all j ̸= i.

Because π∗
1 is injective, this also implies that ⟨π∗

1(xi),ui⟩ ̸= 0. Because τi is the dual basis of ui

(see Section 7.2), we have that

π∗
1(xi) = r′τi ∈ H2

T (Mα)
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Figure 4. The hyperplane Hj = Lj × Rxi. Three lines in the hyperplane Hi

represent the intersections with the other hyperplanes and Hj ∩Hi = Li.

for r′ = ⟨π∗
1(xi),ui⟩ ∈ Z \ {0}. Therefore, one can easily show that

r′τi|p = xi,

for all p ∈ MT
α (e.g. by using the localization theorem, also see [HaHo, HaPr]). Because xi is a

primitive vector in H2(BT ), we have that r′ = ±1. Therefore, by changing the sign if we need,
we have that there exists xi ∈ H2(BT ) such that π∗

1(xi) = τi. This establishes the statement for
s = 1.

Similarly, we have the statement for s = 2. �

Next, we prove that f∗
T preserves T (1)

k to T (2)
k for k ̸= 0 (see Lemma 8.9). In order to do that,

we need the following lemma:

Lemma 8.8. Let ξ ∈ H2
T (Mα) be an element with |Z(ξ)| ̸= 0. Express ξ =

∑m
i=1 aiτi for some

integers ai. If ai ̸= 0 for some i, then Z(ξ) ⊂ Z(τi) for τi ∈ T (1) \ T (1)
0 .

Furthermore, if ai ̸= 0 and aj ̸= 0 for some different i and j, then Z(ξ) ( Z(τi) for τi ∈
T (1) \ T (1)

0 .

Proof. Let p ∈ MT
α and p ∈ Z(ξ). Then 0 = ξ|p =

∑m
i=1 aiτi|p. Using Corollary 7.5, we

have that if ai ̸= 0 then τi|p = 0. This establishes that if ai ̸= 0 then Z(ξ) ⊂ Z(τi); moreover,
if both ai and aj are non-zero, then Z(ξ) ⊂ Z(τi) ∩ Z(τj). Therefore, it suffices to prove that
Z(τi) ∩ Z(τj) is properly contained in Z(τi).

Suppose that Z(τi) ∩ Z(τj) = Z(τi). Then Z(τj) ⊃ Z(τi). By (7.12), we have that

(8.2) τi|q = 0 if and only if q /∈ MT
i .

Therefore, MT
j ⊂ MT

i . Recall that fixed points of (Mα, T ) correspond to the intersections of just

n hyperplanes. Hence, the condition MT
j ⊂ MT

i gives that the corresponding hyperplanes Hj and
Hi satisfy that Hj ∩Hi = Lj is the (n− 2)-dimensional hyperplane and

Hj = Lj × Rxi,

for some xi; a normal vector of Hi (also see the proof of Proposition 8.7). Because we assume
τi|p = 0, there exists x ̸∈ Hi∩Hj in H2(BT ;R) such that {x} = ∩k∈I(p)Hk by using (8.2) (also see

Figure 5), where I(p) ⊂ [m]\{i, j} is the set satisfying that {p} = ∩k∈I(p)Mk, i.e., x ∈ H2(BT ;R) is
the corresponding intersection point to p ∈ MT

α . Because the hyperplane arrangement is smooth,
it is easy to check that there exists l ∈ I(p) such that, for I ′(p) = I(p) \ {l}, the intersection
∩k∈I′(p)Hk is the 1-dimensional affine subspace which goes through x and Hj . It also follows
from I(p) ⊂ [m] \ {i, j} that the 1-dimensional affine subspace ∩k∈I′(p)Hk does not intersect with
Lj = Hi ∩Hj . Therefore, there is the point {y} = (∩k∈I′(p)Hk)∩Hj such that y ̸∈ Hi (see Figure

5). This gives a contradiction to the assumption thatMT
j ⊂ MT

i . Therefore, Z(τi)∩Z(τj) ̸= Z(τi).
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Figure 5

This establishes that Z(ξ) ( Z(τi). �

Now we may prove Lemma 8.9.

Lemma 8.9. Every weak H∗(BT )-algebra isomorphism f∗
T preserves T (1)

k to T (2)
k up to sign

for k ̸= 0.

Proof. Let m
(1)
k (resp. m

(2)
k ) be the zero-length of elements in T (1)

k (resp. T (2)
k ).

By using Lemma 8.8, if ξ =
∑m

i=1 aiτ
(1)
i satisfies ai, aj ̸= 0 then |Z(ξ)| < |Z(τ

(1)
i )|. Therefore,

we have that m
(1)
1 is the highest zero-length in H2

T (Mα), and if |Z(ξ)| = m
(1)
1 then ξ = aiτ

(1)
i for

some non-zero integer ai and τ
(1)
i ∈ T (1)

1 . Similarly, we have that m
(2)
1 is the highest zero-length

in H2
T (Mβ), and if |Z(ξ)| = m

(2)
1 then ξ = biτ

(2)
i for some non-zero integer bi and τ

(2)
i ∈ T (2)

1 .

Take an element τ
(1)
i ∈ T (1)

1 . Due to Proposition 8.5, f∗
T (τ

(1)
i ) has the zero-length m

(1)
1 . Moreover,

f∗
T (τ

(1)
i ) has the highest zero-length in f∗

T (H
2
T (Mα)) = H2

T (Mβ). Therefore, we have m
(1)
1 = m

(2)
1 .

By using the arguments above, we have that f∗
T (τ

(1)
i ) = bτ

(2)
j for some τ

(2)
j ∈ T (2)

1 and non-zero

integer b. Because f∗
T is isomorphism, we also have that b = ±1, i.e., f∗

T maps T (1)
1 to T (2)

1

bijectively up to sign.

Take an element τ
(1)
i ∈ T (1)

2 . Because T (1)
1 and T (2)

1 are preserved under f∗
T and (f∗

T )
−1,

f∗
T (τ

(1)
i ) does not have a term described by a linear combination of elements in T (2)

1 . Therefore,

by using Proposition 8.5 and Lemma 8.8, we have that f∗
T (τ

(1)
i ) has the second highest zero-length

m
(1)
2 in f∗

T (H
2
T (Mα)) = H2

T (Mβ). With the method similar to that demonstrated as above, we

also have that m
(1)
2 = m

(2)
2 and f∗

T maps T (1)
2 to T (2)

2 bijectively up to sign. By repeating this

argument, we have that f∗
T preserves T (1)

k to T (2)
k up to sign for k ̸= 0. �

Let us prove Lemma 8.4.

Proof of Lemma 8.4. Because of Lemma 8.9, f∗
T preserves T (1) \ T (1)

0 to T (2) \ T (2)
0 . To-

gether with |T (1)| = |T (2)| = m, we may put

|T (1)
0 | = |T (2)

0 | = m0.

Let T (s)
0 = {τ (s)i | i = 1, . . . ,m0} for s = 1, 2. By Proposition 8.7, there exist elements xi, yi ∈

H2(BT ) such that π∗
1(xi) = τ

(1)
i and π∗

2(yi) = τ
(2)
i for i = 1, . . . , m0. Therefore, by the exactness

of the sequence (6.2), we have that j∗(τ
(s)
i ) = 0. Hence, it follows from the assumption mentioned

in Remark 2.3 that ai = bi = 0, where ai, bi are the ith coordinate of â and b̂, respectively.
Moreover, using Proposition 2.2, we have that Mα = M ′

α × Hm0 and Mβ = M ′
β × Hm0 for some
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4(n−m0)-dimensional toric hyperKähler manifolds M ′
α and M ′

β ; therefore, we have

H∗
T (Mα) ≃ H∗

Tn−m0 (M
′
α)⊕H∗

Tm0 (Hm0),

H∗
T (Mβ) ≃ H∗

Tn−m0 (M
′
β)⊕H∗

Tm0 (Hm0)

such that T (s)
0 becomes the canonical generators in H∗

Tm0 (Hm0) and T (1) \ T (1)
0 (resp. T (2) \ T (2)

0 )
becomes those in H∗

Tn−m0
(M ′

α) (resp. H
∗
Tn−m0

(M ′
β)). Therefore, f

∗
T decomposes into

f∗
T = f∗

n−m0
⊕ φ∗

m0
.

where

φ∗
m0

: H∗
Tm0 (Hm0) → H∗

Tm0 (Hm0)

is an isomorphism and

f∗
n−m0

: H∗
Tn−m0 (M

′
α) → H∗

Tn−m0 (M
′
β)

is a weak H∗(BTn−m0)-algebra isomorphism which preserves T (1) \T (1)
0 to T (2) \T (2)

0 . Therefore,
in order to prove Lemma 8.4, it is enough to change φ∗

m0
into some isomorphism which preserves

T (1)
0 to T (2)

0 .

Because π1(xi) = τ
(1)
i and π2(yi) = τ

(2)
i , we may identify H∗(BTm0) and H∗

Tm0 (Hm0) by πs

and there exists a decomposition

φ∗ = φ∗
n−m0

⊕ φ∗
m0

for some isomorphism φ∗
n−m0

: H∗(BTn−m0) → H∗(BTn−m0) such that that the following dia-
gram is commutative for each factor:

H2(BTn−m0)⊕H2(BTm0)

φ∗=φ∗
n−m0

⊕φ∗
m0

��

π∗
1 // H2

Tn−m0
(M ′

α)⊕H2
Tm0 (Hm0)

f∗
T=f∗

n−m0
⊕φ∗

m0

��
H2(BTn−m0)⊕H2(BTm0)

π∗
2 // H2

Tn−m0
(M ′

β)⊕H2
Tm0 (Hm0)

i.e., φ∗
m0

◦ π∗
1 = π∗

2 ◦ φ∗
m0

and f∗
n−m0

◦ π∗
1 = π∗

2 ◦ φ∗
n−m0

. Because φ∗
m0

is an isomorphism and
{xi} and {yi} are generators of H∗(BTm0) (see the proof of Proposition 8.7), there exists an
isomorphism X : H∗(BTm0) → H∗(BTm0) such that X ◦ φ∗

m0
(xi) = yi. Then, it is easy to check

that

g∗T = f∗
n−m0

⊕X ◦ φ∗
m0

is a weak H∗(BT )-algebra isomorphism which preserves T (1)
k to T (2)

k for k ≥ 0. Moreover, g∗T (â) =

b̂ because ai = bi = 0 for the coordinates in H2
Tm0 (Hm0). This establishes Lemma 8.4. �

Now we may prove Proposition 8.3:

Proof of Proposition 8.3. Let H
(1)
i and H

(2)
j be hyperplanes in Hâ and Hb̂, respectively.

Due to Lemma 8.4, there exists a weak H∗(BT )-algebra isomorphism g∗T such as Lemma 8.4.
Because g∗T is a weak algebraic isomorphism, there exists an isomorphism φ∗ : H∗(BT ) → H∗(BT )

such that g∗T ◦ π∗
1 = π∗

2 ◦ φ∗. We claim φ∗(H
(1)
i ) = H

(2)
σ(i) for some permutation σ : [m] → [m].

Because g∗T (τ
(1)
i ) = ϵiτ

(2)
σ(i), we have

(gT )∗(u
(2)
σ(i)) = ϵiu

(1)
i ,(8.3)
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for the dual basis u
(1)
i ∈ HT

2 (Mα) and u
(2)
σ(i) ∈ HT

2 (Mβ) of τ
(1)
i and τ

(2)
σ(i), respectively. Therefore,

we have the following relations for x ∈ H
(1)
i :

⟨π∗
2 ◦ φ∗(x) + b̂,u

(2)
σ(i)⟩H

= ⟨g∗T ◦ π∗
1(x) + g∗T (â),u

(2)
σ(i)⟩H (by assumptions)

= ⟨π∗
1(x) + â, (gT )∗(u

(2)
σ(i))⟩H (by dual)

= ⟨π∗
1(x) + â, ϵiu

(1)
i ⟩H (by (8.3))

= 0. (by x ∈ H
(1)
i )

It follows from the relations above that we can easily prove φ∗(H
(1)
i ) = H

(2)
σ(i) for all i ∈ [m]. This

establishes Proposition 8.3. �

By using Proposition 8.2 and 8.3, we have Theorem 8.1.
Because of Theorem 4.4 and 8.1, we have Theorem 1.1.

Remark 8.10. According to [HaPr], there exists the residual S1-action on toric hyperKähler
manifolds. The similar statement with Theorem 8.1 also holds for the Tn × S1-action on toric
hyperKähler manifolds. We omit the detail of this fact in the present paper. This fact will be
proved for more general context in the future works (also see [Ku]). Moreover, the cohomology
rings and dimensions determine the diffeomorphism types of toric hyperKähler manifolds. Namely,
the set of 4n-dimensional toric hyperKähler manifolds satisfy the cohomological rigidity for all
n ∈ N. The detail of this fact will be appeared in somewhere soon.
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[Hi] F. Hirzebruch, Über eine Klasse von einfachzusammenhängenden komplexen Mannigfaltigkeiten, Math. Ann.,
124 (1951) 77–86.

[Hs] W.Y. Hsiang, Cohomology Theory of Topological Transformation Groups, Ergeb. Math., 85, Springer-Verlag,
Berlin, 1975.

[Ka] K. Kawakubo, The theory of transformation groups, Oxford Univ. Press, London, 1991.
[Ko1] H. Konno, Equivariant cohomology rings of toric hyperkahler manifolds, Quaternionic structures in mathe-

matics and physics (Rome, 1999), 231–240 (electronic), Univ. Studi Roma “La Sapienza”, Rome, 1999.
[Ko2] H. Konno, Cohomology rings of toric hyperKähler manifolds, Int. J. of Math., 11 (2000), 1001–1026.

33



[Ko3] H. Konno, The geometry of toric hyperkahler varieties. Toric topology, Contemp. Math., 460 (2008), 241–
260.

[Ku] S. Kuroki, A topological definition of hypertoric manifolds and its equivariant cohomology, Trends in Mathe-
matics - New Series Vol 12 No 1, 135–138 (2010).

[Ma1] M. Masuda, Unitary toric manifolds, multi-fans and equivariant index, Tohoku Math. J., 51 (1999), 237–265.
[Ma2] M. Masuda, Equivariant cohomology distinguishes toric manifolds, Adv. Math., 218 (2008), 2005–2012.

[MaSu] M. Masuda, D. Y. Suh, Classification problems of toric manifolds via topology, Proc. of Toric Topology,
Contemp. Math., 460 (2008), 273-286.

[MiTo] M. Mimura, H. Toda, Topology of Lie Groups, I and II, Amer. Math. Soc., 1991.
[Od] T. Oda, Convex Bodies and Algebraic Geometry. An Introduction to the Theory of Toric Varieties, Ergeb.

Math. Grenzgeb. (3), 15, Springer-Verlag, Berlin, 1988.
[Pr] N. Proudfoot, A survey of hypertoric geometry and topology, Proc. of Toric topology, Contemp. Math., 460

(2008), 323–338.

Department of Mathematical Sciences, KAIST, Daejeon 305-701, R. Korea
E-mail address: kuroki@kaist.ac.kr

34


