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1. Results.

Let Ω be a smooth bounded domain in RN , N ≥ 2. In the following, G
will denote the Green function of −∆ under the Dirichlet boundary condition

−∆xG(x, y) = δy(x), x ∈ Ω, G(x, y) = 0, x ∈ ∂Ω

with a pole y ∈ Ω, and

Γ(x, y) =

{
1
2π

log |x− y|−1, (N = 2),
1

(N−2)σN
|x− y|2−N , (N ≥ 3)

the fundamental solution, where σN is a measure of the unit sphere of RN .
Let

R(x) = lim
y→x

[Γ(x, y)−G(x, y)]

denote the Robin function.
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Among semilinear elliptic problems with concentration phenomena, first,
we consider the Liouville equation

{
−∆u = λeu in Ω,

u = 0 on ∂Ω
(1.1)

where Ω is a smooth bounded domain in R2 and λ > 0 is a parameter.
The maximum principle implies any solution is positive on Ω. This kind of
problem with exponential nonlinearity appears in many fields of mathemat-
ics, such as the study of prescribed Gauss curvature equation on a compact
Riemann surface, Chern-Simons gauge theories, the vortex theory for the
turbulent Euler flow, and so on, and it has attracted many authors for more
than decades.

This simple-looking problem is shown to have much richer mathemati-
cal structure than expected before, and the following fundamental fact was
proved by Nagasaki and Suzuki [16] around 1989, which may be considered
as a concrete example of the general principle of concentration-compactness
alternatives by P. L. Lions [18] [19] in two-dimensional critical problems.

Proposition 1 (Nagasaki-Suzuki [16]) Let uλn be a solution sequence of
(1.1) for λ = λn ↓ 0. Then λn

∫
Ω

euλn dx accumulates only on values 8πl
for some l ∈ {0} ∪ N ∪ {+∞} (mass quantization). According to these val-
ues, the subsequence of solutions {uλn} behaves as follows:

(a) If l = 0, then ‖uλn‖L∞(Ω) → 0.

(b) If l = +∞, then uλn(x) → +∞ (∀x ∈ Ω).

(c) If l ∈ N, then there exists a set of l distinct points S = {a1, · · · , al} ⊂
Ω, which is called a blow up set, such that ‖uλn‖L∞(K) = O(1) for any
compact sets K ⊂ Ω \ S, {uλn(x)} has a limit for any x ∈ Ω \ S, and
uλn|S → +∞ (l-points blow up).

Moreover, in the last case, we have

uλn → 8π
l∑

i=1

G(·, ai) in C2
loc(Ω \ S) (n →∞)

and each ai ∈ S must satisfy

1

2
∇R(ai)−

l∑

j=1,j 6=i

∇xG(ai, aj) = ~0, (i = 1, 2, · · · , l). (1.2)
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Here, G and R denotes the Green function of −∆ acting on H1
0 (Ω) and the

Robin function, respectively.

For the proof, the authors in [16] used the complex function theory, more
precisely, a representation formula of solutions to (1.1), called the Liouville
integral formula was a key ingredient. For other proofs of Proposition 1 by
using real analysis and PDE theory, see also Brezis-Merle [3] and Ma-Wei
[14].

More generally, we consider the mean field equation:

{
−∆u = λ V (x)euR

Ω V (x)eudx
in Ω,

u = 0 on ∂Ω
(1.3)

where λ > 0 and V is a given function in C2(Ω). In this case, Ma and Wei
[14] proved the following result.

Proposition 2 (Ma-Wei [14]) Assume V ∈ C2(Ω), infΩ V > 0. Let {uλ} be
a sequence of solutions to (1.3) which is not uniformly bounded from above
for λ bounded. Then there exists a subsequence λn and a set of l distinct
points S = {a1, · · · , al} such that λn → 8πl, l ∈ N, and uλn blows up at
a1, · · · , al in S, that is,

λn
V (x)euλn∫

Ω
V (x)euλndx

⇀ 8π
l∑

i=1

δai

in the sense of measures on Ω as n →∞. Moreover, blow up points {a1, · · · , al}
must satisfy

1

2
∇R(ai)−

l∑

j=1,j 6=i

∇xG(ai, aj)− 1

8π
∇ log V (ai) = ~0 (1.4)

for i = 1, 2, · · · , l.

After the appearance of these results, the existence of blowing-up solu-
tions with multiple blow up points became the next problem to be studied.
On this issue, several affirmative results are now available as follows.
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Let l ≥ 1 be an integer. Assume Ω′ = {x ∈ Ω|V (x) > 0} 6= φ. Set
(Ω′)l = (Ω′) × · · · × (Ω′) (l times) and ∆ = {(ξ1, · · · , ξl) ∈ (Ω′)l | ξi =
ξj for some i 6= j}. Now, define the Hamiltonian function

F(ξ1, · · · , ξl) =
l∑

i=1

R(ξi)−
∑
i6=j

1≤i,j≤l

G(ξi, ξj)− 1

4π

l∑
i=1

log V (ξi) (1.5)

on (Ω′)l \ ∆. Note that the former necessary conditions (1.2) or (1.4) for
l-distinct points {a1, · · · , al} to be blow up points is nothing more than that
(a1, · · · , al) is a critical point of the Hamiltonian F on (Ω′)l \∆.

We recall some definitions from the critical point theory.

Definition 3 ([17], [8]) Let D ⊂ RN and F : D → R is a C1 function. A
bounded set K of critical points of F is called a C1-stable critical set of F if
for any µ > 0, there exists δ > 0 such that if G : D → R is a C1 function
with the property that

max
dist(x,K)≤µ

(|G(x)− F (x)|+ |∇G(x)−∇F (x)|) ≤ δ,

then G has at least one critical point x with dist(x,K) ≤ µ.

Definition 4 ([7]) Let D ⊂ RN and F : D → R be a C1 function. We say
that F links in D at critical level c relative to B and B0 if the followings
hold: B, B0 closed subsets of D with B connected, B0 ⊂ B, and if we set

Γ = {Φ ∈ C(B,D)|∃Ψ ∈ C([0, 1]×B, D)

s.t. Ψ(0, ·) = IdB, Ψ(1, ·) = Φ, Ψ(t, ·)|B0 = IdB0(∀t ∈ [0, 1])}

and
c = inf

Φ∈Γ
sup
y∈B

F (Φ(y)),

then we have supy∈B0
F (y) < c and for any y ∈ ∂D with F (y) = c, there

exists a vector τy tangent to ∂D such that ∇F (y) · τy 6= 0.

Under the circumstances of Definition 4, it is standard to assure that there
exists a critical point y ∈ D such that F (y) = c. Therefore the value c is
called a nontrivial critical level of F in D.

4



Proposition 5 (Existence of l-blowing up solution) Assume Ω′ = {x ∈
Ω|V (x) > 0} 6= φ. If the Hamiltonian F defined by (1.5) satisfies one of the
following assumptions:

(1) F has a nondegenerate critical point (a1, · · · , al) ∈ (Ω′)l \∆ (Baraket-
Pacard [2]), or

(2) there exists a stable critical set K for F in (Ω′)l \∆ (Esposito-Grossi-
Pistoia [8]), or

(3) there exists an open set D compactly contained in (Ω′)l \ ∆ where F
has a nontrivial critical level c (del Pino-Kowalczyk-Musso [7])

then there exists a solution sequence {uλ} to (1.3) such that uλ blows up
exactly on S = {a1, · · · , al}.

It is known that a bounded set K of critical points of F is a stable critical
set if K is a set of strict local minimum points of F : F(x) = F(y) for any
x, y ∈ K and for some open neighborhood U of K it holds F(x) < F(y) for
x ∈ K and y ∈ U \K. Also a strict local maximum set is a stable critical set.
Moreover, if the Brower degree deg(∇F , Uε, 0) 6= 0 for any ε > 0 small, where
Uε is an ε-neighborhood of K, then K is stable. Furthermore, if Ω ⊂ R2 is
not simply-connected, for example, if it has a small hole, then it is proved
in [7] that such a set D in which F has a nontrivial critical level actually
exists for any l ≥ 1. Therefore in this case, we have a blowing-up solution
sequence to (1.1) or (1.3), whose blow up set S consists of l-distinct points
for any l ∈ N.

Even on simply-connected domains, we sometimes have the existence of
multi-bubble solutions. To state the next result, we define l-dumbbell shaped
domain for l ∈ N. Prepare l smooth bounded domains Ω1, · · · , Ωl in R2 with
Ωi ∩ Ωj = φ if i 6= j. Assume that

Ωi ⊂ {(x, y) ∈ R2 | ai ≤ x ≤ bi}, Ωi ∩ {y = 0} 6= φ

for some ai < bi < ai+1 < bi+1, (i = 1, · · · , l − 1) and set Ω0 = Ω1 ∪ · · · ∪ Ωl.
Let

Cε = {(x, y) ∈ R2 | |y| ≤ ε, a1 < x < bl}
and let Ωε be a simply-connected domain such that Ω0 ⊂ Ωε ⊂ Ω0 ∪ Cε. We
call Ωε a l-dumbbell shaped domain.
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Proposition 6 ([8] l-points blow up solution on dumbbell shaped domains)
Let l ≥ 2 and V (x) ≡ 1. Then there exists l-dumbbell shaped domain (in
particular, it is simply connected but not convex) Ω and an l-points set S =
{a1, · · · , al} such that there exists a solutions {uλ} to (MFE) satisfying

λ
euλ∫

Ω
euλdx

⇀ 8π
l∑

i=1

δai

as λ → 8πl on Ω.

However, on convex domains, there does not exist any blowing up solu-
tions with multiple blow up points. The nonexistence result for the Liouville
equation proved in [13] is the following:

Theorem 7 (Grossi-Takahashi [13]) Assume Ω is convex. Let {uλ} be a
solution sequence of (1.1) with ‖uλ‖L∞(Ω) → +∞ as λ → 0. Then we have

λ

∫

Ω

euλdx → 8π

as λ → 0.

Theorem 7 and a direct application of some results in [11] [12] yields

Corollary 8 (Grossi-Takahashi [13]) Let uλ and Ω be as in Theorem 7. Then
the Morse index of uλ is exactly 1 for λ > 0 sufficiently small. Furthermore,
uλ has only one critical point xλ which is the global maximum point of uλ,
and it holds

(x− xλ) · ∇uλ(x) < 0, ∀x ∈ Ω \ {xλ}.
In particular, the level sets of uλ are strict star-shaped with respect to xλ. If
∂Ω has strictly positive curvature at any point, then the level sets of uλ have
strictly positive curvature at any point different from xλ for λ > 0 sufficiently
small. In particular, the level sets are strictly convex.

Almost the same argument as in Theorem 7 yields the following:

Theorem 9 (Grossi-Takahashi [13]) Assume Ω is convex. Let {uλ} be a
solution sequence of (1.3) with ‖uλ‖L∞(Ω) not bounded from above while λ > 0
bounded. Assume infΩ V > 0 and R − 1

4π
log V is a convex function on Ω.

Then λ accumulates only on 8π. In particular, if V > 0 is a concave function
on Ω, we have the same conclusion.
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This is a striking contrast with the known existence theorems of multiple-
blowing-up solutions on domains which meet some topological conditions, see
the results of [2], [8], [7] described in Proposition 5.

We may consider a different type of problem in 2-dimension, which is
socalled a large exponent problem:

{
−∆u = (u+)p in Ω ⊂ R2, p > 1,

u = 0 on ∂Ω.
(1.6)

Here Ω is a smooth bounded domain in R2 and p > 1 is a large exponent.
In [20] [21], the authors showed that least energy solutions up to (1.6)

(which may be chosen positive on Ω) is bounded from above and below away
from zero in L∞ norm sense uniformly for p large. Also, after taking a subse-
quence, p|∇up|2dx ⇀ 8πeδa in Radon measures, where a ∈ Ω is a minimum
point of the Robin function R [10]. In this sense, least energy solutions to
(1.6) exhibit single point condensation phenomena on any smooth bounded
domain in R2.

Recently, Santra and Wei [23] studied the asymptotic behavior of con-
centrating solutions to (1.6) with multiple concentration points. Under the
assumption

p

∫

Ω

(u+)p+1dx = O(1), (p →∞) (1.7)

they obtained the following result.

Proposition 10 (Santra-Wei [23]) Let up be a solution sequence to (Ep)
satisfying the assumption (1.7). Then there exists a subsequence pn → ∞
such that

pn

∫

Ω

((upn)+)pndx → 8π
√

el, l ∈ N

holds. Moreover,

(1) ‖upn‖L∞(Ω) →
√

e as pn →∞,

(2) there exists l-points set S = {a1, · · · , al} ⊂ Ω such that

pnupn → 8π
√

e

l∑
i=1

G(·, ai) in C2
loc(Ω \ S) (pn →∞).

7



(3) ai ∈ S satisfies

1

2
∇R(ai)−

l∑

j=1,j 6=i

∇xG(ai, aj) = ~0, i = 1, 2, · · · , l. (1.8)

Santra and Wei treated the more general problem which includes the
polyharmonic operator with the Dirichlet boundary conditions.

On the existence of concentrating solution sequence with multiple con-
centration points, Esposito, Musso and Pistoia [9] proved the existence of
such sequence to the problem





−∆u = up in Ω,

u > 0 in Ω,

u = 0 on ∂Ω

when Ω satisfies some topological conditions. In particular, for example, un-
der the assumption that Ω is not simply connected, they proved the existence
of solution sequence {up} which satisfies

p|∇up|2dx ⇀ 8πe

l∑
j=1

δaj
weakly in the sense of measures of Ω

as p → ∞ for some l-different concentration points {aj}l
j=1 ⊂ Ω, with {aj}

satisfying the characterization (1.8).
However, the same argument as in Theorem 7 yields the following nonex-

istence result.

Theorem 11 Let Ω ⊂ R2 be a bounded convex domain and let {up} be a
solution sequence satisfying the assumption (1.7). Then there exists a ∈ Ω,
for which

lim
p→∞

p

∫

Ω

((up)+)pdx = 8π
√

e, pup → 8π
√

eG(·, a) in C2
loc(Ω \ {a})

holds true.

Thus the assumption on the domain in [9] is sharp for the construction of
multiple concentrating solution.
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We may consider the higher-dimensional problem:





−∆u = up−ε in Ω ⊂ RN (N ≥ 3),

u > 0 in Ω,

u = 0 on ∂Ω

(1.9)

where p = (N + 2)/(N − 2) is the critical Sobolev exponent with respect to
the embedding H1

0 (Ω) ↪→ Lp+1(Ω), and ε > 0 is a parameter. To describe
the result by Bahri, Li and Rey [1] on the blowing-up sequence to (1.9), we
prepare some notations.

For ~x = (x1, · · · , xl) ∈ Ω × · · · × Ω (l times), we define l × l matrix
M(~x) = (mij)1≤i,j≤l as

mii = R(xi), mij = −G(xi, xj) (i 6= j)

where R is the Robin function on Ω. Let ρ(~x) denote the least eigenvalue
of M(~x), which is known to be simple, and let r(~x) ∈ Rl be the eigenvector
associated with ρ(~x). It is proved in [1] that all components of r(~x) may be
chosen to be positive. When ρ(~x) > 0, the function

F~x(Λ) =
1

2
tΛM(~x)Λ− log Λ1 · · ·Λl

defined for positive vector Λ = t(Λ1, · · · , Λl) ∈ (R+)l is strictly convex, so it
has a unique minimum point, which is denoted by Λ(~x) ∈ (R+)l.

Bahri-Li-Rey first proved the following proposition when N ≥ 4. After
several years, Rey [22] proved that the same results as Bahri-Li-Rey’s hold
true even for N = 3.

Proposition 12 (Bahri-Li-Rey [1], Rey [22]) Let N ≥ 3 and {uε}ε>0 be a
sequence of solutions to (1.9) which blows up at {a1, · · · , al} ⊂ Ω as ε → 0,
in the sense that

|∇uε|2dx ⇀ SN/2

l∑
i=1

δai
, u

2N
N−2
ε ⇀ SN/2

l∑
i=1

δai

where S is the best constant for the Sobolev inequality on RN . Then

(1) ~a = (a1, · · · , al) ∈ Ωl (interior points)
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(2) ρ(~a) ≥ 0 (no collision of blow up points occurs)

(3) it holds

1

2
∇R(ai)Λ

2
i −

l∑

j=1,j 6=i

∇xG(ai, aj)ΛiΛj = ~0 (∀i = 1, 2, · · · , l)

where

Λ = t(Λ1, · · · , Λl) =

{
Λ(~a) if ρ(~a) > 0,

r(~a) if ρ(~a) = 0

As for the existence of multi-peak solutions in higher dimensional case,
Musso and Pistoia [15] constructed solutions to (1.9) which blow up and
concentrate at l-different points {a1, · · · , al} in Ω, if {a1, · · · , al} satisfies,
among other things,

1

2
∇R(ai)Λ

2
i −

l∑

j=1,j 6=i

∇xG(ai, aj)ΛiΛj = ~0, (i = 1, 2, · · · , l), (1.10)

where Λi > 0, (i = 1, · · · , l) are some positive constants. We refer to [15] for
the precise notion of solutions which “blow up and concentrate at l-different
points” and the other assumption imposed on the prescribed blow-up points
{a1, · · · , al}.

Their method can produce also multispike solutions to the equation





−∆u = u
N+2
N−2 + εu in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.11)

which blow up and concentrate on l-different points satisfying (1.10), when
N ≥ 5. Also they exhibited an example of contractible domains for which
the problem (1.9), or (1.11) has a family of solutions which blow up and
concentrate at l-different points.

However, like Theorem 7 and Theorem 11, we have the nonexistence
results on convex domains.
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Theorem 13 ([13]) Let Ω be a smooth bounded, convex domain in RN , N ≥
3. Then any solution sequence {uε} of the problem





−∆u = u
N+2
N−2

−ε in Ω,

u > 0 in Ω,

u = 0 on ∂Ω

must exhibit the single point blow-up as ε → 0, i.e.,

|∇uε|2dx ⇀ SN/2δa, u
2N

N−2
ε ⇀ SN/2δa

for some a ∈ Ω, where S is the best constant of the Sobolev inequality.

Theorem 14 Assume Ω ⊂ RN , N ≥ 4 is convex. Then for l ≥ 2, there does
not exist a solution sequence {uε} of (1.11), which blows up and concentrate
at l-different points {a1, · · · , al} in Ω, those points satisfying (1.10).

2. Outline of Proof.

All nonexistence results in the former section come from the following
Main Theorem.

Main Theorem. Let Ω be a smooth bounded domain in RN , N ≥ 2 and let
l ≥ 2 be an integer. Set Ωl = Ω× · · · × Ω (l times), and ∆ = {(ξ1, · · · , ξl) ∈
Ωl | ξi = ξj for some i 6= j}. For given constants A,B > 0 and Λ =
(Λ1, · · · , Λl), Λi > 0, 1 ≤ i ≤ l, define a function FΛ : Ωl \∆ → R,

FΛ(ξ1, · · · , ξl) = A

l∑
i=1

(R(ξi) + K(ξi)) Λ2
i −B

∑
i6=j

1≤i,j≤l

G(ξi, ξj)ΛiΛj,

where K ∈ C2(Ω) is such that R + K is a convex function on Ω.
Assume Ω is convex. Then there does not exist any critical point (a1, · · · , al)

of FΛ in Ωl \∆. That is, there does not exist (a1, · · · , al) ∈ Ωl \∆ such that

A (∇R(ai) +∇K(ai)) Λ2
i −B

l∑

j=1,j 6=i

∇xG(ai, aj)ΛiΛj = ~0
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for i = 1, 2, · · · , l.

Main Theorem is proved by a contradiction argument, which uses the follow-
ing two facts:

Theorem 15 (Caffarelli-Friedman [5] (N = 2), Cardaliaguet-Tahraoui [6]
(N ≥ 3)) The Robin function on a domain Ω is strictly convex if Ω is a
smooth bounded convex domain.

Lemma 16 Let Ω ⊂ RN , N ≥ 2 be a smooth bounded domain. For any
P ∈ RN and a, b ∈ Ω, a 6= b, there holds

∫

∂Ω

(x− P ) · ν(x)

(
∂G(x, a)

∂νx

)(
∂G(x, b)

∂νx

)
dsx

= (2−N)G(a, b) + (P − a) · ∇xG(a, b) + (P − b) · ∇xG(b, a),

where ν(x) is the unit outer normal at x ∈ ∂Ω.

Note that in Lemma 16, we need not to assume the convexity of Ω.

Proof. We show a formal calculation here for describing the idea of the
proof. However, the standard approximating procedure for the delta function
as in Brezis and Peletier [4] will yield the rigorous proof. Denote Ga(x) =
G(x, a), Gb(x) = G(x, b). For given P ∈ RN , define

w(x) = (x− P ) · ∇Ga(x).

Then we have

−∆w(x) = 2δa(x) + (x− P ) · ∇δa(x),

−∆Gb(x) = δb(x).

Multiplying Gb(x), w(x) to these equations respectively, and subtracting, we
obtain

∫

Ω

(∆Gb(x)) w(x)− (∆w(x)) Gb(x)dx

=

∫

Ω

{2δa(x)Gb(x) + (x− P ) · ∇δa(x)Gb(x)− δb(x)w(x)} dx
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Now, integration by parts gives

LHS =

∫

∂Ω

(x− P ) · ν(x)

(
∂Ga(x)

∂ν

) (
∂Gb(x)

∂ν

)
dsx

RHS = 2Gb(a)− w(b) +

∫

Ω

(x− P ) · ∇δa(x)Gb(x)dx

= 2Gb(a)− w(b) +
N∑

i=1

∫

Ω

(xi − Pi)
∂δa

∂xi

Gb(x)dx

= 2Gb(a)− w(b)−
N∑

i=1

∫

Ω

∂

∂xi

{(xi − Pi)Gb(x)}δa(x)dx

= 2Gb(a)− w(b)−
N∑

i=1

∂

∂xi

{(xi − Pi)Gb(x)}
∣∣∣
x=a

= (2−N)G(a, b) + (P − a) · ∇xG(a, b) + (P − b) · ∇xG(b, a).

This proves Lemma 16.

Proof of Main Theorem
Essential points of the proof can be seen when the function K is constant,

so we give a proof for this case. We argue by contradiction and assume that
there exists {a1, · · · , al} ⊂ Ω (l ≥ 2) satisfying

1

2
A∇R(ai)Λ

2
i −B

l∑

j=1,j 6=i

∇xG(ai, aj)ΛiΛj = ~0 (2.1)

P ∈ Ω will be chosen later. Multiplying P − ai to (2.1) and summing up,
we obtain

1

2
A

l∑
i=1

(P − ai) · ∇R(ai)Λ
2
i

= B

l∑
i=1

l∑

j=1,j 6=i

(P − ai) · ∇xG(ai, aj)ΛiΛj

= B
∑

1≤j<k≤l

{(P − aj) · ∇xG(aj, ak) + (P − ak) · ∇xG(ak, aj)}ΛjΛk.
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By Lemma 16, we see that

(P − aj) · ∇xG(aj, ak) + (P − ak) · ∇xG(ak, aj)

=

∫

∂Ω

(x− P ) · ν(x)

(
∂G(x, aj)

∂νx

)(
∂G(x, ak)

∂νx

)
dsx + (N − 2)G(aj, ak).

The RHS is positive by the convexity of Ω and the positivity of Green’s
function:

(x− P ) · ν(x) > 0,
∂G(x, aj)

∂νx

< 0, (x ∈ ∂Ω), G(aj, ak) > 0 (j 6= k).

Thus
l∑

i=1

(ai − P ) · ∇R(ai) < 0. (2.2)

Here, we recall the important fact that the Robin function is strictly
convex on a convex domain, see Theorem 15. Thus, all level sets of R is
strictly star-shaped with respect to its unique minimum point P ∈ Ω:

(a− P ) · ∇R(a) ≥ 0, ∀a ∈ Ω \ {P}.

In particular,
l∑

i=1

(ai − P ) · ∇R(ai) ≥ 0. (2.3)

A contradiction is obvious from (2.2) and (2.3).
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Birkhüser Boston, Boston, MA, (1989) 149-192.

[5] L. A. Caffarelli, and A. Friedman, Convexity of solutions of semilinear
elliptic equations, Duke Math. J. 52(2) (1985) 431-456.

[6] P. Cardaliaguet, and R. Tahraoui, On the strict concavity of the har-
monic radius in dimension N ≥ 3, J. Math. Pures Appl. 81(9) (2002)
223-240.

[7] M. Del Pino, M. Kowalczyk, and M. Musso, Singular limits in Liouville-
type equations, Calc. Var. Partial Differential Equations 24 (2005) 47-81.

[8] P. Esposito, M. Grossi and A. Pistoia, On the existence of blowing-up
solutions for a mean field equation, Ann. I. H. Poincaré 22 (2005) 227-
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