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Abstract. We will study hyperbolic structures on a torus with a hole (named

as a “cook-hat”), and on a thrice-punctured sphere with a hole (named as a
“crown”). See Figure 1 below. Both of them have three simple closed geodesics
called canonical triples, whose hyperbolic lengths and the hyperbolic length
of the boundary geodesic define homogeneous coordinates of the Teichmüller

space for each cases. We will show that their Teichmüller spaces are realized
as convex polyhedra in the three-dimensional real projective space P (R4), by
means of the canonical isomorphism between them.

Figure 1. a cook-hat and a crown

1. Introduction

Let X be an orientable surface of genus g with n punctures whose Euler number
is negative, χ(X) := 2− 2g−n < 0. Then the Teichmüller space T (X) is the space
of isotopy classes of hyperbolic metrics on X which has a metric space structure
homeomorphic to the real affine space R6g−6+2n.

By using hyperbolic lengths of simple closed geodesics we can embed T (X)
into the infinite-dimensional real affine space as follows: Let S be the non-trivial
and non-peripheral free homotopy classes of simple closed curves on X. For any
hyperbolic structure m ∈ T (X) and any free homotopy class α ∈ S, we denote
the hyperbolic length of a unique simple closed geodesic belonging to α by l(m,α).
Then the mapping l∗ : Tg,n → RS

+ defined by l∗(m) = (l(m,α))α∈S is injective.
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In practice we can embed T (X) into R9g−9+3n: Fix a pants decomposition P on
X, i.e. a multicurve such that X \ P is homeomorphic to the disjoint union of
thrice punctured spheres. P consists of 3g − 3 + n numbers of disjoint simple close
curves. The Fenchel-Nielsen coordinates associate to each m ∈ T (X) the length
and the twist of each components of P, which is a diffeomorphism from T (X) onto
R3g−3+n

+ × R3g−3+n (see [IT]). On the other hand the twist of each components
of P can be determined by the lengths of two more curves for each components
so that T (X) can be embedded into R9g−9+3n by length functions of 9g − 9 + 3n
number of simple closed geodesics. It should be remarked that the minimal number
of simple closed geodesics whose hyperbolic lengths globally parametrize T (X) is
equal to dimRT (X) + 1 = 6g − 5 + 2n (see [S1]).

Let π be the projection from RS \{0} to the infinite-dimensional real projective
space P (RS). In Proposition 6 of Exposé 7 [FLP] Kerckhoff showed that the
composition map π ◦ l∗ : T (X) → P (RS) is also injective: In his argument, it
is essential that the surface X has at least one handle, because he used the fact
that for the case g ≥ 1 we can find two simple closed curves γ1 and γ2 whose
intersection number is equal to one. Then simple closed curves γ3 and γ4 which are
freely homotopic to γ1 · γ2 and γ−1

1 · γ2 respectively satisfy the key identity for his
proof:

cosh(
l1 + l2

2
) + cosh(

l1 − l2
2

) = cosh(
l3
2

) + cosh(
l4
2

).

where li := l(m, [γi]) for m ∈ T (X) and i = 1, 2, 3, 4. Hence for the case g = 0, we
should look for other ideas to claim that the composition map π◦ l∗ : Tg,n → P (RS)
is also injective (see Corollary 3.7 in Section 3).

The composition map π ◦ l∗ : Tg,n → P (RS) is the basic ingredient for the
Thurston compactification of T (X): The image π ◦ l∗(T (X)) is relatively compact
in P (RS) and its compactification π ◦ l∗(T (X)) in P (RS) is homeomorphic to the
closed ball of dimension 6g − 6 + 2n. The relative boundary of π ◦ l∗(T (X)) co-
incides with PMF(X) the projective image of the space of measured foliations
on X under the intersection number functions, which has a PL-manifold structure
homeomorphic to the sphere of dimension 6g − 7 + 2n (see Exposé 8 [FLP]).

Now we have the following natural question:

Can we find dimRT (X) + 1-number of simple closed geodesics
whose hyperbolic lengths embed T (X) into the finite dimensional
real projective space P (RdimRT (X)+1)?

Because of the PL-Structure of the Thurston boundary, we might expect that the
image should be the interior of some convex polyhedron in P (RdimRT (X)+1).

For this question, Schmutz proved affirmatively for the case (g, n) = (2, 0) (see
[S2]). Hamenstädt also consider the similar question by using non-simple geodesics
for the case n ≥ 1 (see [H]). Gendulphe and the author solved this question
affirmatively for non-orientable genus 3 surfaces (see [GK]). They also showed
that the image of the Teichmüller space in P (R4) becomes a convex polyhedron.

To attack this question in general, in this paper we will consider the case of
a torus with a hole in section 2, and the case of a thrice punctured sphere with a
hole in section 3, since any surface X contains one of these surface as an essential
subsurface. In practice we will answer this question for surfaces with at least one
hole with few exceptional cases (see Corollaries 2.7 and 3.8). In section 2 we will
show that the Teichmüller space of a torus with a hole can be realized as a convex
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polyhedron in P (R4) via hyperbolic length functions, which is a key idea for the
main results of [GK]. Then in section 3 we will show the geometric bijection
between the Teichmüller space of a torus with a hole and the Teichmüller space of
a thrice punctured sphere with a hole, which itself seems interesting. By means of
this bijection we can also realize the Teichmüller space of a thrice punctured sphere
with a hole as a convex polyhedron in P (R4). And as an application of this result,
we will prove that the composition map π ◦ l∗ : Tg,n → P (RS) is injective also for
the case g = 0.

Acknowledgements. The author is grateful to Professor Ruth Kellerhals for
her hospitality during his stay at the university of Fribourg, who suggested him
such charming names, Cook-hats and Crowns. He also thanks Doctor Matthieu
Gendulphe for his critical comments on a draft version of this paper.

2. Cook-hats

In this section we will consider complete hyperbolic structures on a torus with
a hole. We call a hyperbolic torus with a hole a cook-hat.

Definition 2.1. Three simple closed geodesics (α, β, γ) on a cook-hat is called
a canonical triple if each pair of them has the intersection number equal to one.

We remark that the hyperbolic lengths of a canonical triple (α, β, γ) satisfy
triangle inequalities.

For the hyperbolic lengths of a canonical triple (α, β, γ) and the boundary
geodesic δ on a cook-hat, we have the following equality and inequality.

Proposition 2.2. For any cook-hat with the boundary geodesic δ and a canon-
ical triple (α, β, γ), their hyperbolic lengths l(α), l(β), l(γ) and l(δ) satisfy the fol-
lowing equality and inequality:

(2.1) cosh2 l(δ)
4

= (cosh
l(β) + l(γ)

2
− cosh

l(α)
2

)(cosh
l(α)
2

− cosh
l(β) − l(γ)

2
).

(2.2) l(α) + l(β) + l(γ) > l(δ).

Proof. We uniformize a cook-hat by a Fuchsian group Γ ⊂ SL(2, R), and
denote the traces of elements representing α, β, γ and δ by t(α), t(β), t(γ) and t(δ).
Then they satisfy

(2.3) t(δ) − 2 = t(α)t(β)t(γ) − (t(α)2 + t(β)2 + t(γ)2).

By means of the relation between trace functions and length functions

(2.4) |t(α)| = 2 cosh
l(α)
2

and the equality

2 cosh x cosh y = cosh(x + y) + cosh(x − y),
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we can rewrite (2.3) in terms of length functions

2 cosh
l(δ)
2

− 2 = t(δ) − 2

= t(α)t(β)t(γ) − (t(α)2 + t(β)2 + t(γ)2)

= 4(2 cosh
l(α)
2

cosh
l(β)
2

cosh
l(γ)
2

− cosh2 l(α)
2

− cosh2 l(β)
2

− cosh2 l(γ)
2

)

= 4(cosh
l(β) + l(γ)

2
− cosh

l(α)
2

)(cosh
l(α)
2

− cosh
l(β) − l(γ)

2
) − 4.

Therefore

cosh2 l(δ)
4

=
1
2
(cosh

l(δ)
2

+ 1)

= (cosh
l(β) + l(γ)

2
− cosh

l(α)
2

)(cosh
l(α)
2

− cosh
l(β) − l(γ)

2
)

which is the equality (2.1).
Since cosh x, hence cosh2 x is monotonely increasing function of x, the equality

(2.1) implies that it is enough to show that

(cosh
l(β) + l(γ)

2
−cosh

l(α)
2

)(cosh
l(α)
2

−cosh
l(β) − l(γ)

2
) < cosh2 l(α) + l(β) + l(γ)

4
for the proof of the inequality (2.2). In practice

cosh2 l(α) + l(β) + l(γ)
4

−(cosh
l(β) + l(γ)

2
− cosh

l(α)
2

)(cosh
l(α)
2

− cosh
l(β) − l(γ)

2
)

= cosh2 l(α) + l(β) + l(γ)
4

+ cosh2 l(α)
2

+ cosh
l(β) + l(γ)

2
cosh

l(β) − l(γ)
2

− cosh
l(α)
2

cosh
l(β) + l(γ)

2
− cosh

l(α)
2

cosh
l(β) − l(γ)

2

=
1
4
{(el(α) − e

l(α)+l(β)−l(γ)
2 ) + (el(β) − e

l(β)+l(γ)−l(α)
2 ) + (el(γ) − e

l(γ)+l(α)−l(β)
2 )

+(1 − e
l(α)−l(β)−l(γ)

2 ) + (1 − e
l(β)−l(γ)−l(α)

2 ) + (1 − e
l(γ)−l(α)−l(β)

2 )

+e−l(α) + e−l(β) + e−l(γ) + 1} > 0.

¤

Remark 2.3. (1) The equality (2.1) also follows from the plane hyper-
bolic geometry of the right angled hexagon which is the symmetric half of
the pair of pants T \ α.

(2) The inequality (2.2) also comes from the fact that the curve α ∪ β ∪ γ is
freely homotopic to the geodesic δ.

By means of the equality (2.1) in Proposition 2.2, we can embed the Teichmüller
space T (T ) of a torus with a hole into the 3-dimensional real projective space P (R4).

Theorem 2.4. For a cook hat with a canonical triple (α, β, γ) and the boundary
geodesic δ, their hyperbolic lengths l(α), l(β), l(γ) and l(δ) satisfy

cosh2 sl(δ)
4

< (cosh
sl(β) + sl(γ)

2
− cosh

sl(α)
2

)(cosh
sl(α)

2
− cosh

sl(β) − sl(γ)
2

)



COOK-HATS AND CROWNS 5

for any s > 1. In particular the system of length functions L := (l(α), l(β), l(γ), l(δ))
gives a homogeneous coordinate of the Teichmüller space T (T ) of a torus with a
hole into P (R4).

Proof. For simplicity we will write

a = l(α), b = l(β), c = l(γ), d = l(δ).

Then our claim is rewritten as
d

4
s < cosh−1

√
f(s), ∀s > 1

where

f(s) := (cosh
b + c

2
s − cosh

a

2
s)(cosh

a

2
s − cosh

b − c

2
s),

for which it is enough to show that

d

ds
cosh−1

√
f(s) >

d

4
, ∀s > 1.

By the inequality (2.2), it is enough to show that

d

ds
cosh−1

√
f(s) >

a + b + c

4
, ∀s > 1.

By the following simple estimation

d

ds
cosh−1

√
f(s) =

f ′(s)
2
√

f(s)
√

f(s) − 1
>

f ′(s)
2f(s)

we will show that
f ′(s)
f(s)

>
a + b + c

2
, ∀s > 1.

In practice

f ′(s)
f(s)

=
d
ds (cosh b+c

2 s − cosh a
2s)

cosh b+c
2 s − cosh a

2s
+

d
ds (cosh a

2s − cosh b−c
2 s)

cosh a
2s − cosh b−c

2 s

>
b + c

2
+

a

2
=

a + b + c

2
.

Here we use the following lemma:

Lemma 2.5. For 0 < p < q,

g(s) :=
d
ds (cosh qs − cosh ps)

cosh qs − cosh ps
=

q sinh qs − p sinh ps

cosh qs − cosh ps
> q, ∀s > 1.

Proof. It is enough to show that the derivative of g(s) is negative for ∀s > 1,
since

lim
s→∞

g(s) = lim
s→∞

q sinh qs − p sinh ps

cosh qs − cosh ps
= q.

Hence we will show the negativity of the numerator of g′(s):

g′(s) =
(q2 cosh qs − p2 cosh ps)(cosh qs − cosh ps) − (q sinh qs − p sinh ps)2

(cosh qs − cosh ps)2
.



6 YOHEI KOMORI

In practice

(q2 cosh qs − p2 cosh ps)(cosh qs − cosh ps) − (q sinh qs − p sinh ps)2

= q2 cosh2 qs + p2 cosh2 ps − (q2 + p2) cosh qs cosh ps

−q2 sinh2 qs − p2 sinh2 ps + 2pq sinh qs sinh ps

= q2 + p2 − 1
2
(q + p)2 cosh(q − p)s − 1

2
(q − p)2 cosh(q + p)s

< q2 + p2 − 1
2
(q + p)2 − 1

2
(q − p)2 = 0.

¤

¤

By means of the triangle inequalities of l(α), l(β), l(γ) and the inequality (2.2)
in Proposition 2.2, we can determine the image of T (T ) in P(R4) as follows.

Theorem 2.6. The image of T (T ) the Teichmüller space of a cook-hat under
the map L := (l(α) : l(β) : l(γ) : l(δ)) is the convex polyhedron ∆ in P(R4) defined
by

∆ := {(a : b : c : d) ∈ P(R4) | a > 0, b > 0, c > 0, d > 0,

a < b + c, b < c + a, c < a + b, d < a + b + c}.

Proof. By means of the inequality (2.2) in Proposition 2.2, we have L(T ) ⊂ ∆.
Hence we will prove that ∆ ⊂ L(T ). Take any point p ∈ ∆ and four positive real
numbers (a, b, c, d) ∈ R4

+ satisfying p = (a : b : c : d). Then there exist s > 0 and a
hyperbolic structure m ∈ T (T ) such that

(l(α), l(β), l(γ), l(δ)) = (as, bs, cs, ds)

where l(α) = l(m,α) and ds > 0 is defined by

ds := 4 cosh−1

√
(cosh

sb + sc

2
− cosh

sa

2
)(cosh

sa

2
− cosh

sb − sc

2
).

To conclude that L(m) = p, It is enough to show that there is s > 0 such that
ds = sd. We will show that ds/s takes any value between 0 and a + b + c when s
varies. In practice ds/s is a continuous function on s and

(cosh
sb + sc

2
− cosh

sa

2
)(cosh

sa

2
− cosh

sb − sc

2
) → 1

when s decreases, hence ds/s → 0. On the other hand,

(cosh
sb + sc

2
− cosh

sa

2
)(cosh

sa

2
− cosh

sb − sc

2
)

= e
(a+b+c)s

2 O(1), s → ∞

and

cosh
ds

4
= e

ds
4 O(1), s → ∞

imply that lims→∞ ds/s = a + b + c. Hence ds/s takes any value between 0 and
a + b + c. ¤
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As an application, let us consider the Teichmüller space T (Y ) of a orientable
surface Y of genus g with n punctures and r holes. Assuming that r ≥ 1, then
it is known that the minimal number of simple closed geodesics whose hyperbolic
lengths globally parametrize T (Y ) is dimRT (X) = 6g − 6 + 2n + 3r (see [S1]).
Moreover suppose that Y has at least one handle i.e. g ≥ 1, there is a subsurface
homeomorphic to a torus with a hole. Therefore Theorem 2.4 implies the affirmative
answer to our question in section 1 for the case that r ≥ 1 and g ≥ 1:

Corollary 2.7. Assume that r ≥ 1 and g ≥ 1. Then via length functions of
simple closed geodesics, the Teichmüller space T (Y ) of a orientable surface Y of
genus g with n punctures and r holes can be embedded into P (RdimRT (X)+1).

3. Crowns

In this section we will consider complete hyperbolic structures on a thrice-
punctured sphere with a hole. We call a hyperbolic thrice-punctured sphere with a
hole a crown.

Definition 3.1. Three simple closed geodesics (α, β, γ) on a crown is called a
canonical triple if each pair of them has the intersection number equal to two.

We will show that similar results in section 2 also hold for T (S) the Teichmüller
space of a thrice-punctured sphere with a hole with the help of the geometric
bijection between T (T ) and T (S) explained below. For this purpose we realize
T (T ) and T (S) as hypersurfaces in R4 in terms of trace functions:

Theorem 3.2. (Theorem 2 of [L] and Proposition 3.1 of [NN])
(1) We uniformize a cook-hat m ∈ T (T ) by a Fuchsian group and denote

the traces of elements representing a canonical triple α, β, γ and boundary
geodesic δ by tα(m), tβ(m), tγ(m) and tδ(m). Then the map ϕT : T (T ) →
R4 defined by ϕT (m) := (tα(m), tβ(m), tγ(m), tδ(m)) is injective and the
image ϕT (T (T )) is described as follows:

{(a, b, c, d) ∈ R4 | a > 2, b > 2, c > 2, d > 2,

abc − a2 − b2 − c2 + 2 = d}.

(2) We uniformize a crown m ∈ T (S) by a Fuchsian group and denote the
traces of elements representing a canonical triple α, β, γ and boundary
geodesic δ by tα(m), tβ(m), tγ(m) and tδ(m). Then the map ϕS : T (S) →
R4 defined by ϕS(m) := (tα(m), tβ(m), tγ(m), tδ(m)) is injective and the
image ϕS(T (S)) is described as follows:

{(p, q, r, s) ∈ R4 | p > 2, q > 2, r > 2, s > 2, s2 + 2(p + q + r + 4)s
+4(p + q + r) + p2 + q2 + r2 − pqr + 8 = 0}.

Than by means of trace functions, we have the following geometric bijection
between T (T ) and T (S):

Theorem 3.3. There is a bijection from T (T ) to T (S) which sends a cook-
hat T with the lengths of a canonical triple and the boundary geodesic equal to
(l1, l2, l3, l4) to a crown S with the lengths of a canonical triple and the boundary
geodesic equal to (2l1, 2l2, 2l3, l4).
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Proof. When we substitute (a2−2, b2−2, c2−2, d) for (p, q, r, s), the equation
s2 + 2(p + q + r + 4)s + 4(p + q + r) + p2 + q2 + r2 − pqr + 8 factorizes as

d2 + 2(p + q + r + 4)d + 4(p + q + r) + p2 + q2 + r2 − pqr + 8
= (d − (abc − a2 − b2 − c2 + 2))(d − (−abc − a2 − b2 − c2 + 2)).

Hence the map Ψ : ϕT (T (T )) → ϕS(T (S)) defined by Ψ(a, b, c, d) := (a2 − 2, b2 −
2, c2 − 2, d) is bijective. Also the relation between trace functions and length func-
tions

|t(α)| = 2 cosh
l(α)
2

tells us the length relations between m ∈ T (T ) and ϕ−1
S ◦ Ψ ◦ ϕT (m) ∈ T (S). ¤

Remark 3.4. For the limiting case l(δ) = 0, this bijection reduces to the well-
known correspondence between punctured tori and forth-punctured spheres, which
follows from the commensurability of uniformizing Fuchsian groups (see [ASWY]).

This bijection induces the next corollaries: The following inequality is the coun-
terpart of the inequality (2.2) in Proposition 2.2 for crowns.

Corollary 3.5. For any crown with the boundary geodesic δ and a canonical
triple (α, β, γ), their hyperbolic lengths l(α), l(β), l(γ) and l(δ) satisfy the following
inequality:

l(α) + l(β) + l(γ) > 2l(δ).

Next result is the counterpart of Theorem 2.4 and 2.6 for crowns.

Corollary 3.6. For a crown with a canonical triple (α, β, γ) and the boundary
geodesic δ, the system of length functions (l(α), l(β), l(γ), l(δ)) gives a homogeneous
coordinate of the Teichmüller space T (S) into P (R4). The image of T (S) is the
convex polyhedron in P(R4) defined by

{(a : b : c : d) ∈ P (R4) | a > 0, b > 0, c > 0, d > 0,

a < b + c, b < c + a, c < a + b, 2d < a + b + c}.

As an application of Corollary 3.6,

Corollary 3.7. The composition map π ◦ l∗ : T (X) → P (RS) is also injective
for the case g = 0.

For the final application of Corollary 3.6, let us consider the Teichmüller space
T (Y ) of a orientable surface Y of genus g with n punctures and r holes for the
case that g = 0, n ≥ 3 and r ≥ 1. Then there is a subsurface homeomorphic to
a thrice-punctured sphere with a hole, hence Corollary 3.6 implies the affirmative
answer to our question in section 1 for this case also:

Corollary 3.8. Assume that g = 0, n ≥ 3 and r ≥ 1. Then via length func-
tions of simple closed geodesics, the Teichmüller space T (Y ) of a orientable surface
Y of genus g with n punctures and r holes can be embedded into P (RdimRT (X)+1).

For a sphere (i.e., g = 0) with holes (i.e., r ≥ 1), this question is still open for
the cases n = 0, 1, 2.
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