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Abstract. We will show that except few cases, by using the hyperbolic length
functions of simple closed geodesics, we can embed the Teichmüller space of

a bordered Riemann surface into the real projective space of the same di-
mension. The key idea is to study the hyperbolic structure on a subsurface
conformally isomorphic to a torus with a hole (named as a “cook-hat”), or a

thrice-punctured sphere with a hole (named as a “crown”).

1. Introduction

Let M be a hyperbolic Riemann surface of genus g with n punctures and r holes.
In this paper we assume that M has at least one boundary geodesic, i.e. r ≥ 1.
Then the Teichmüller space Tg,n,r is the space of isotopy classes of hyperbolic
metrics on M which has a metric space structure homeomorphic to the real affine
space R6g+2n+3r−6.

By using hyperbolic lengths of simple closed geodesics we can embed Tg,n,r into
the real affine space. In practice we can embed Tg,n,r into R9g−9+3n+4r: Fix a
pants decomposition P on M , i.e. a multicurve such that M \ P is homeomorphic
to the disjoint union of thrice punctured spheres. P consists of 3g − 3 + n + r
numbers of disjoint simple close curves. The Fenchel-Nielsen coordinates associate
to each m ∈ Tg,n,r the length of each components of P and boundary geodesics,
and the twist of each components of P, which is a diffeomorphism from Tg,n,r onto
R3g−3+n+2r

+ ×R3g−3+n+r (see [IT]). On the other hand the twist of each components
of P can be determined by the lengths of two more curves for each components so
that Tg,n,r can be embedded into R9g−9+3n+4r by length functions of 9g − 9 +
3n + 4r number of simple closed geodesics. In his paper [S1], Schmutz showed that
the minimal number of simple closed geodesics whose hyperbolic lengths globally
parametrize Tg,n,r is equal to dimRTg,n,r, so that the image of Tg,n,r in RdimRTg,n,r

should be an unbounded domain.
Now we have the following natural question:

Can we find dimRTg,n,r+1-number of simple closed geodesics whose
hyperbolic lengths embed Tg,n,r into the finite dimensional real
projective space P (RdimRTg,n,r+1)?

Because of the PL-Structure of the Thurston boundary, we might expect that the
image of Tg,n,r should be the interior of some convex polyhedron in P (RdimRTg,n,r+1).

In this paper we answer this question affirmatively except for the cases when
g = 0 and r = 0, 1, 2. The key idea is to look for a subsurface homeomorphic to
a thrice-punctured sphere with a hole or a torus with a hole, which is a tubular
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neighborhood of two geodesics contained in the members of geodesics parametrizing
Tg,n,r in P (RdimRTg,n,r+1).
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2. Review the results of Schmutz

2.1. Surfaces with no handles. Let M be a Riemann surface of type (0, n, r).
From our assumption, n and r satisfy n + r ≥ 3 and r ≥ 1. We denote the
boundary geodesics x, a1, a2, · · · , an+r−1 and dividing geodesics b1, b2, · · · , bn+r−3

which decompose M into disjoint union of (degenerate) pair of pants (see Figure
1).
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For each i = 1, 2, · · · , n + r− 3, let Xi be the subsurface of type (0, ni, ri) where
ni + ri = 4 with boundary geodesics ai+1, ai+2, bi−1, bi+1. Choose geodesics ci

and di in Xi so that the triple {bi, ci, di} mutually intersect exactly twice. Then
Schmutz proved that

Proposition 2.1. (cf. Proposition2 [S1])
The hyperbolic lengths of 2n + 3r − 6 geodesics

a1, a2, · · · , an+r−1, b1, c1, c2, cn+r−3, , d1, d2, dn+r−3

embeds T0,n,r into R2n+3r−6. Here we remark that the length of ak is equal to 0
when ak corresponds to a puncture.

2.2. Surfaces with at least one handle. Next we consider a Riemann surface
M of type (g, n, r) where g ≥ 1.

First we consider the case (g, 0, 1). We denote the boundary geodesic by x.
Choose non-dividing geodesics a1, a2, · · · , ag, b2, b3, · · · , bg, c2, c3, · · · , cg which de-
compose M into disjoint union of pair of pants (see Figure 2).

For each i = 2, · · · , g−1, let Xi be the subsurface of type (0, 0, 4) with boundary
geodesics bi, ci, bi+1, ci+1, Choose geodesics di+1 and ei+1 in Xi so that the triple
{ai+1, di+1, ei+1} mutually intersect exactly twice. Let X1 be the subsurface of
M of type (0, 0, 4) with boundary geodesics a1, a1, b2, c2, and choose d2 and e2

on X1 so that the triple {a2, d2, e2} mutually intersect exactly twice. Moreover
let f be a geodesic intersecting with a1, b2, b3, · · · , bg, c2, c3, · · · , cg exactly once.
Then for i = 2, · · · , g, we can find geodesics r1, s2, s3, · · · , sg, t2, t3, · · · .tg so that
{a1, r1, f}, {bi, si, f} and {ci, ti, f} mutually intersect exactly once. In this case,
Schmutz proved that
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Proposition 2.2. (cf. Proposition3 [S1])
The hyperbolic lengths of 6g − 3 geodesics

a1, a2, · · · , ag, b2, · · · , bg, d2, · · · , dg, e2, · · · , eg, f, r1, s2, · · · , sg, t2, · · · , tg

embeds Tg,0,1 into R6g−3.

Finally we consider a Riemann surface M of type (g, n, r) where g ≥ 1 in general.
First we choose a dividing geodesic x to decompose M into subsurfaces M ′ of type
(g, 0, 1) and N ′ of type (0, n, r + 1) (see Figure 3).
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Let N be the subsurface of M consisting of N ′ and the pair of pants whose
boundary curves are x, bg and cg. Then from the above argument we can choose
6g−3 curves from M ′ and 2n+3(r+2)−6 curves from N which determines M ′ and
N in Tg,0,1 and T0,n,r+2 respectively. On the other hand the lengths of curves x, bg

and cg are counted twice in M ′ and N so that we can find 6g−3+2n+3(r+2)−6−3 =
6g+2n+3r−6 geodesics whose hyperbolic lengths embed Tg,n,r into R6g+2n+3r−6.

3. Main result

First let M be a Riemann surface of type (0, n, r). We assume that n ≥ 3 and
a1, a2, a3 are punctures. Then the subsurface X1 bounded by a1, a2, a3 and b2 is
a thrice-punctured sphere with a hole, on which the triple {b1, c1, d1} mutually
intersect exactly twice (see Figure 1). Therefore by means of Corollary 5.6, the
hyperbolic lengths of 2n + 3r − 5 geodesics

a1, a2, · · · , an+r−1, b1, c1, c2, cn+r−3, , d1, d2, dn+r−3, b2

embeds T0,n,r into P (R2n+3r−5).
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Next we suppose M is a Riemann surface of type (g, n, r) where g ≥ 1. Then
there is a subsurface X of M with a geodesic boundary, which is a tubular neigh-
borhood of the union of geodesics a1 and f . X is homeomorphic to a torus with
a hole on which the triple {a1, r1, f} mutually intersect exactly once (see Figure
2). Then by means of Theorem 4.4, the proportion of the hyperbolic lengths of
6g + 2n + 3r − 5 geodesics embeds Tg,n,r into P (R6g+2n+3r−5).

Summarizing the above arguments,

Theorem 3.1. Assume that g ≥ 1 or n ≥ 3. Then the Teichmüller space Tg,n,r

of a bordered Riemann surface can be embedded into the real projective space of
dimRTg,n,r by the hyperbolic length functions of dimRTg,n,r+1 simple closed geodesics.

For a sphere (i.e., g = 0) with holes (i.e., r ≥ 1), this question is still open for
the cases n = 0, 1, 2.

4. Cook-hats

In this section we will consider complete hyperbolic structures on a torus with a
hole. We call a hyperbolic torus with a hole a cook-hat.

Definition 4.1. Three simple closed geodesics (α, β, γ) on a cook-hat is called a
canonical triple if each pair of them has the intersection number equal to one.

We remark that the hyperbolic lengths of a canonical triple (α, β, γ) satisfy
triangle inequalities.

For the hyperbolic lengths of a canonical triple (α, β, γ) and the boundary geo-
desic δ on a cook-hat, we have the following equality and inequality.

Proposition 4.2. For any cook-hat with the boundary geodesic δ and a canonical
triple (α, β, γ), their hyperbolic lengths l(α), l(β), l(γ) and l(δ) satisfy the following
equality and inequality:

(4.1) cosh2 l(δ)
4

= (cosh
l(β) + l(γ)

2
− cosh

l(α)
2

)(cosh
l(α)
2

− cosh
l(β) − l(γ)

2
).

(4.2) l(α) + l(β) + l(γ) > l(δ).

Proof. We uniformize a cook-hat by a Fuchsian group Γ ⊂ SL(2, R), and denote
the traces of elements representing α, β, γ and δ by t(α), t(β), t(γ) and t(δ). Then
they satisfy

(4.3) t(δ) − 2 = t(α)t(β)t(γ) − (t(α)2 + t(β)2 + t(γ)2).

By means of the relation between trace functions and length functions

(4.4) |t(α)| = 2 cosh
l(α)
2

and the equality

2 cosh x cosh y = cosh(x + y) + cosh(x − y),



PROJECTIVE EMBEDDINGS OF THE TEICHMÜLLER SPACES OF BORDERED RIEMANN SURFACES5

we can rewrite (4.3) in terms of length functions

2 cosh
l(δ)
2

− 2 = t(δ) − 2

= t(α)t(β)t(γ) − (t(α)2 + t(β)2 + t(γ)2)

= 4(2 cosh
l(α)
2

cosh
l(β)
2

cosh
l(γ)
2

− cosh2 l(α)
2

− cosh2 l(β)
2

− cosh2 l(γ)
2

)

= 4(cosh
l(β) + l(γ)

2
− cosh

l(α)
2

)(cosh
l(α)
2

− cosh
l(β) − l(γ)

2
) − 4.

Therefore

cosh2 l(δ)
4

=
1
2
(cosh

l(δ)
2

+ 1)

= (cosh
l(β) + l(γ)

2
− cosh

l(α)
2

)(cosh
l(α)
2

− cosh
l(β) − l(γ)

2
)

which is the equality (4.1).
Since cosh x, hence cosh2 x is monotonely increasing function of x, the equality

(4.1) implies that it is enough to show that

(cosh
l(β) + l(γ)

2
−cosh

l(α)
2

)(cosh
l(α)
2

−cosh
l(β) − l(γ)

2
) < cosh2 l(α) + l(β) + l(γ)

4
for the proof of the inequality (4.2). In practice

cosh2 l(α) + l(β) + l(γ)
4

−(cosh
l(β) + l(γ)

2
− cosh

l(α)
2

)(cosh
l(α)
2

− cosh
l(β) − l(γ)

2
)

= cosh2 l(α) + l(β) + l(γ)
4

+ cosh2 l(α)
2

+ cosh
l(β) + l(γ)

2
cosh

l(β) − l(γ)
2

− cosh
l(α)
2

cosh
l(β) + l(γ)

2
− cosh

l(α)
2

cosh
l(β) − l(γ)

2

=
1
4
{(el(α) − e

l(α)+l(β)−l(γ)
2 ) + (el(β) − e

l(β)+l(γ)−l(α)
2 ) + (el(γ) − e

l(γ)+l(α)−l(β)
2 )

+(1 − e
l(α)−l(β)−l(γ)

2 ) + (1 − e
l(β)−l(γ)−l(α)

2 ) + (1 − e
l(γ)−l(α)−l(β)

2 )

+e−l(α) + e−l(β) + e−l(γ) + 1} > 0.

¤
Remark 4.3. (1) The equality (4.1) also follows from the plane hyperbolic ge-

ometry of the right angled hexagon which is the symmetric half of the pair
of pants T \ α.

(2) The inequality (4.2) also comes from the fact that the curve α ∪ β ∪ γ is
freely homotopic to the geodesic δ.

By means of the equality (4.1) in Proposition 4.2, we can embed the Teichmüller
space T (T ) of a torus with a hole into the 3-dimensional real projective space
P (R4).

Theorem 4.4. For a cook hat with a canonical triple (α, β, γ) and the boundary
geodesic δ, their hyperbolic lengths l(α), l(β), l(γ) and l(δ) satisfy

cosh2 sl(δ)
4

< (cosh
sl(β) + sl(γ)

2
− cosh

sl(α)
2

)(cosh
sl(α)

2
− cosh

sl(β) − sl(γ)
2

)
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for any s > 1. In particular the system of length functions L := (l(α), l(β), l(γ), l(δ))
gives a homogeneous coordinate of the Teichmüller space T (T ) of a torus with a
hole into P (R4).

Proof. For simplicity we will write

a = l(α), b = l(β), c = l(γ), d = l(δ).

Then our claim is rewritten as
d

4
s < cosh−1

√
f(s), ∀s > 1

where

f(s) := (cosh
b + c

2
s − cosh

a

2
s)(cosh

a

2
s − cosh

b − c

2
s),

for which it is enough to show that

d

ds
cosh−1

√
f(s) >

d

4
, ∀s > 1.

By the inequality (4.2), it is enough to show that

d

ds
cosh−1

√
f(s) >

a + b + c

4
, ∀s > 1.

By the following simple estimation

d

ds
cosh−1

√
f(s) =

f ′(s)
2
√

f(s)
√

f(s) − 1
>

f ′(s)
2f(s)

we will show that
f ′(s)
f(s)

>
a + b + c

2
, ∀s > 1.

In practice

f ′(s)
f(s)

=
d
ds (cosh b+c

2 s − cosh a
2s)

cosh b+c
2 s − cosh a

2s
+

d
ds (cosh a

2s − cosh b−c
2 s)

cosh a
2s − cosh b−c

2 s

>
b + c

2
+

a

2
=

a + b + c

2
.

Here we use the following lemma:

Lemma 4.5. For 0 < p < q,

g(s) :=
d
ds (cosh qs − cosh ps)

cosh qs − cosh ps
=

q sinh qs − p sinh ps

cosh qs − cosh ps
> q, ∀s > 1.

Proof. It is enough to show that the derivative of g(s) is negative for ∀s > 1, since

lim
s→∞

g(s) = lim
s→∞

q sinh qs − p sinh ps

cosh qs − cosh ps
= q.

Hence we will show the negativity of the numerator of g′(s):

g′(s) =
(q2 cosh qs − p2 cosh ps)(cosh qs − cosh ps) − (q sinh qs − p sinh ps)2

(cosh qs − cosh ps)2
.
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In practice

(q2 cosh qs − p2 cosh ps)(cosh qs − cosh ps) − (q sinh qs − p sinh ps)2

= q2 cosh2 qs + p2 cosh2 ps − (q2 + p2) cosh qs cosh ps

−q2 sinh2 qs − p2 sinh2 ps + 2pq sinh qs sinh ps

= q2 + p2 − 1
2
(q + p)2 cosh(q − p)s − 1

2
(q − p)2 cosh(q + p)s

< q2 + p2 − 1
2
(q + p)2 − 1

2
(q − p)2 = 0.

¤

¤

By means of the triangle inequalities of l(α), l(β), l(γ) and the inequality (4.2)
in Proposition 4.2, we can determine the image of T (T ) in P(R4) as follows.

Theorem 4.6. The image of T (T ) the Teichmüller space of a cook-hat under the
map L := (l(α) : l(β) : l(γ) : l(δ)) is the convex polyhedron ∆ in P(R4) defined by

∆ := {(a : b : c : d) ∈ P(R4) | a > 0, b > 0, c > 0, d > 0,

a < b + c, b < c + a, c < a + b, d < a + b + c}.

Proof. By means of the inequality (4.2) in Proposition 4.2, we have L(T ) ⊂ ∆.
Hence we will prove that ∆ ⊂ L(T ). Take any point p ∈ ∆ and four positive real
numbers (a, b, c, d) ∈ R4

+ satisfying p = (a : b : c : d). Then there exist s > 0 and a
hyperbolic structure m ∈ T (T ) such that

(l(α), l(β), l(γ), l(δ)) = (as, bs, cs, ds)

where l(α) = l(m,α) and ds > 0 is defined by

ds := 4 cosh−1

√
(cosh

sb + sc

2
− cosh

sa

2
)(cosh

sa

2
− cosh

sb − sc

2
).

To conclude that L(m) = p, It is enough to show that there is s > 0 such that
ds = sd. We will show that ds/s takes any value between 0 and a + b + c when s
varies. In practice ds/s is a continuous function on s and

(cosh
sb + sc

2
− cosh

sa

2
)(cosh

sa

2
− cosh

sb − sc

2
) → 1

when s decreases, hence ds/s → 0. On the other hand,

(cosh
sb + sc

2
− cosh

sa

2
)(cosh

sa

2
− cosh

sb − sc

2
)

= e
(a+b+c)s

2 O(1), s → ∞

and

cosh
ds

4
= e

ds
4 O(1), s → ∞

imply that lims→∞ ds/s = a + b + c. Hence ds/s takes any value between 0 and
a + b + c. ¤
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5. Crowns

In this section we will consider complete hyperbolic structures on a thrice-
punctured sphere with a hole. We call a hyperbolic thrice-punctured sphere with a
hole a crown.

Definition 5.1. Three simple closed geodesics (α, β, γ) on a crown is called a
canonical triple if each pair of them has the intersection number equal to two.

We will show that similar results in section 2 also hold for T (S) the Teichmüller
space of a thrice-punctured sphere with a hole with the help of the geometric
bijection between T (T ) and T (S) explained below. For this purpose we realize
T (T ) and T (S) as hypersurfaces in R4 in terms of trace functions:

Theorem 5.2. (Theorem 2 of [L] and Proposition 3.1 of [NN])
(1) We uniformize a cook-hat m ∈ T (T ) by a Fuchsian group and denote the

traces of elements representing a canonical triple α, β, γ and boundary geo-
desic δ by tα(m), tβ(m), tγ(m) and tδ(m). Then the map ϕT : T (T ) → R4

defined by ϕT (m) := (tα(m), tβ(m), tγ(m), tδ(m)) is injective and the image
ϕT (T (T )) is described as follows:

{(a, b, c, d) ∈ R4 | a > 2, b > 2, c > 2, d > 2,

abc − a2 − b2 − c2 + 2 = d}.

(2) We uniformize a crown m ∈ T (S) by a Fuchsian group and denote the
traces of elements representing a canonical triple α, β, γ and boundary geo-
desic δ by tα(m), tβ(m), tγ(m) and tδ(m). Then the map ϕS : T (S) → R4

defined by ϕS(m) := (tα(m), tβ(m), tγ(m), tδ(m)) is injective and the image
ϕS(T (S)) is described as follows:

{(p, q, r, s) ∈ R4 | p > 2, q > 2, r > 2, s > 2, s2 + 2(p + q + r + 4)s
+4(p + q + r) + p2 + q2 + r2 − pqr + 8 = 0}.

Than by means of trace functions, we have the following geometric bijection
between T (T ) and T (S):

Theorem 5.3. There is a bijection from T (T ) to T (S) which sends a cook-hat T
with the lengths of a canonical triple and the boundary geodesic equal to (l1, l2, l3, l4)
to a crown S with the lengths of a canonical triple and the boundary geodesic equal
to (2l1, 2l2, 2l3, l4).

Proof. When we substitute (a2 − 2, b2 − 2, c2 − 2, d) for (p, q, r, s), the equation
s2 + 2(p + q + r + 4)s + 4(p + q + r) + p2 + q2 + r2 − pqr + 8 factorizes as

d2 + 2(p + q + r + 4)d + 4(p + q + r) + p2 + q2 + r2 − pqr + 8
= (d − (abc − a2 − b2 − c2 + 2))(d − (−abc − a2 − b2 − c2 + 2)).

Hence the map Ψ : ϕT (T (T )) → ϕS(T (S)) defined by Ψ(a, b, c, d) := (a2 − 2, b2 −
2, c2 − 2, d) is bijective. Also the relation between trace functions and length func-
tions

|t(α)| = 2 cosh
l(α)
2

tells us the length relations between m ∈ T (T ) and ϕ−1
S ◦ Ψ ◦ ϕT (m) ∈ T (S). ¤



PROJECTIVE EMBEDDINGS OF THE TEICHMÜLLER SPACES OF BORDERED RIEMANN SURFACES9

Remark 5.4. For the limiting case l(δ) = 0, this bijection reduces to the well-known
correspondence between punctured tori and forth-punctured spheres, which follows
from the commensurability of uniformizing Fuchsian groups (see [ASWY]).

This bijection induces the next corollaries: The following inequality is the coun-
terpart of the inequality (4.2) in Proposition 4.2 for crowns.

Corollary 5.5. For any crown with the boundary geodesic δ and a canonical triple
(α, β, γ), their hyperbolic lengths l(α), l(β), l(γ) and l(δ) satisfy the following in-
equality:

l(α) + l(β) + l(γ) > 2l(δ).

Next result is the counterpart of Theorem 4.4 and 4.6 for crowns.

Corollary 5.6. For a crown with a canonical triple (α, β, γ) and the boundary
geodesic δ, the system of length functions (l(α), l(β), l(γ), l(δ)) gives a homogeneous
coordinate of the Teichmüller space T (S) into P (R4). The image of T (S) is the
convex polyhedron in P(R4) defined by

{(a : b : c : d) ∈ P (R4) | a > 0, b > 0, c > 0, d > 0,

a < b + c, b < c + a, c < a + b, 2d < a + b + c}.

References

[ASWY] H. Akiyoshi, M. Sakuma, M. Wada and Y. Yamashita, Punctured torus groups and
2-bridge knot groups. I, Lecture Notes in Mathematics, 1909. Springer, Berlin, 2007.

[GK] M. Gendulphe and Y. Komori, Polyhedral realization of a Thurston compactification,

http://www.sci.osaka-cu.ac.jp/math/OCAMI/preprint/2010/10_13.pdf

[FLP] A. Fathi, F. Laudenbach and V. Poénaru, Travaux de Thurston sur les surfaces, Séminaire
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