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Abstract.

Let us consider the Liouville equation

−∆u = λV (x)eu in Ω, u = 0 on ∂Ω,

where Ω is a smooth bounded domain in R2, V (x) > 0 is a given
function in C1(Ω), and λ > 0 is a constant. Let {un} be an m-point
blowing up solution sequence for λ = λn ↓ 0, in the sense that

λn

∫

Ω

V (x)eundx → 8πm as n →∞

for m ∈ N. We prove that the number of blow up points m is less than
or equal to the Morse index of un for n sufficiently large. This extends
the main result of the recent paper [13] to an inhomogeneous (V 6≡ 1)
case.

§1. Introduction

In this paper we study the Liouville equation

(1)

{
−∆u = λV (x)eu in Ω,

u = 0 on ∂Ω

where Ω is a smooth bounded domain in R2, V (x) > 0 is a given function
in C1(Ω), and λ > 0 is a constant.

The purpose of this note is to extend the main result of the recent
paper [13], where only V ≡ 1 was considered, to the present case.

The Liouville equation appears in several fields of mathematics and
physics, and the study of it has a rather long history; see for example,
[3], [4], [12], and the references therein.
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Let {λn} be a sequence of positive numbers with λn → 0 as n →∞.
One of the interesting issues of this problem is the study of asymptotic
behavior of solutions as n → ∞. Concerning this, Ma and Wei [10]
proved the following fact, which extends the former result by Nagasaki
and Suzuki [11] where V ≡ 1 was considered.

Theorem 1. (Ma and Wei [10]) For any solution sequence {un}
of (1) for λ = λn ↓ 0, there exists a subsequence (denoted by un again)
such that it holds

λn

∫

Ω

V (x)eundx → 8πm, for some m ∈ {0} ∪ N ∪ {+∞},

and according to the cases, the solution sequence {un} behaves as
(i) uniform convergence to 0: ‖un‖L∞(Ω) → 0, when m = 0,
(ii) entire blow-up: un(x) → +∞ as n → ∞ for any x ∈ Ω when

m = +∞,
(iii) m-points blow-up: there exists an m-points set S = {a1, · · · , am},

called blow up set, such that each ai is an interior point of Ω,
‖un‖L∞(K) = O(1) for any compact set K ⊂ Ω \ S, un|S →
+∞, and

(2) un → 8π

m∑

i=1

G(·, ai) in C2
loc(Ω \ S)

as n → ∞ when m ∈ N. Furthermore, any blow up point
ai ∈ S must satisfy the condition

1
2
∇R(ai) +

m∑

j=1,j 6=i

∇xG(ai, aj) +
1
8π
∇ log V (ai) = 0

for i = 1, 2, · · · , m. Here, G = G(x, y) is the Green function
of −∆ under the Dirichlet boundary condition with a pole y ∈
Ω, and R(x) =

[
G(x, y) + 1

2π log |x− y|]
y=x

denotes the Robin
function.

Later, the existence of multiple blowing up solutions with a pre-
scribed blow up set is established; see [6] [7].

Let iM (u) denote the Morse index of a solution u of (1), that is, the
number of negative eigenvalues of the linearized operator Lu = −∆ −
λV (x)eu· acting on H1

0 (Ω). In this note, we prove the following, which
is an extension of the main theorem in [13] to the inhomogeneous case.
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Theorem 2. Let {un} be a solution sequence of (1) for λ = λn

satisfying

λn

∫

Ω

V (x)eundx → 8πm

for some m ∈ N. Then m ≤ iM (un) for n sufficiently large.

In the homogeneous (V ≡ 1) case [13], we used the fact that w(x) =
(x − a) · ∇un(x) + 2 satisfies the equation −∆w = λneunw (except for
the boundary condition) for a ∈ R2. This is no longer true when V is
not a constant, and we need another method. The proof presented here
works also for the homogeneous case and the main idea originates from
[1].

§2. Proof of Theorem 2

In this section, we prove Theorem 2 along the line of [13].
Let {un} be a solution sequence to (1) for λ = λn with λn

∫
Ω

V (x)eundx →
8πm for some m ∈ N. Theorem 1 implies that the existence of the blow
up set S = {a1, · · · , am} ⊂ Ω. Also we have a sufficiently small ρ > 0 and
m sequences of local maximum points {xi

n} such that for each ai ∈ S,

un(xi
n) = max

Bρ(xi
n)

un(x) →∞, xi
n → ai (i = 1, · · · ,m),

as n →∞.
Now we recall the following local pointwise estimate for the blowing-

up solutions to (1) thanks to YanYan Li [8]: For a fixed ρ ∈ (0, 1), there
exists a constant C > 0 independent of i = 1, · · · , m and λn > 0 such
that

(3)

∣∣∣∣∣un(x)− log
eun(xi

n)

(
1 + λn

8 V (xi
n)eun(xi

n)|x− xi
n|2

)2

∣∣∣∣∣ ≤ C for x ∈ Bρ(xi
n)

holds true.
Here we show a proof for the reader’s convenience. Define vn(x) =

un(x) + log λn. Then vn satisfies

−∆vn = V (x)evn in Ω, vn = log λn on ∂Ω.

Furthermore, by the assumption λn

∫
Ω

V (x)eundx → 8πm and 0 < ∃a ≤
V (x) ≤ ∃b < +∞, we see that

∫
Ω

evndx = O(1) as n →∞.
Now, we claim that vn(xi

n) → +∞ as n →∞ for any i ∈ {1, · · · , m}.
Indeed, assume the contrary that there exists i ∈ {1, · · · ,m} and a
subsequence (denoted by the same symbol) such that
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(i) vn(xi
n) → −∞, or

(ii) vn(xi
n) → C for some C ∈ R.

When (i) happens, we see
∫

Bρ(xi
n)

V (x)evn(x)dx ≤ evn(xi
n)

∫

Bρ(xi
n)

V (x)dx → 0

as n →∞. However, this contradicts the fact that

lim
n→∞

∫

Bρ(xi
n)

V (x)evndx ≥ 8π,

see, for example, Li and Shafrir [9].
Also if (ii) happens, a result of Brezis and Merle ([2]:Theorem 3)

implies that {vn} is bounded in L∞loc(Ω). On the other hand, (2) in
Theorem 1 implies that vn = un + log λn → −∞ on any compact set
in Ω \ S. Thus again we have a contradiction and we have proved the
claim.

Once we have the claim, we are in the same situation of Theorem
0.3 in [8] (setting that Ω = Bρ(xi

n), 0 = xi
n there). Note that

max
∂Bρ(xi

n)
vn(x)− min

∂Bρ(xi
n)

vn(x) = max
∂Bρ(xi

n)
un(x)− min

∂Bρ(xi
n)

un(x) = O(1)

as n →∞. Thus by Theorem 0.3 in [8], we have
∣∣∣∣∣vn(x)− log

evn(xi
n)

(
1 + λn

8 V (xi
n)evn(xi

n)|x− xi
n|2

)2

∣∣∣∣∣ ≤ C for x ∈ Bρ(xi
n),

which is equivalent to (3).
Now, let us define

(δi
n)2λneun(xi

n) = 1,

ũi
n(y) = un(δi

ny + xi
n)− un(xi

n), y ∈ Bρ/δi
n
(0)

for i ∈ {1, · · · , m}. By the above pointwise estimate, we easily see that
δi
n = o(1) as n →∞. The scaled function ũi

n satisfies




−∆ũi
n = V (δi

ny + xi
n)eũi

n in Bρ/δi
n
(0),

ũi
n(0) = 0, ũi

n(x) ≤ 0, ∀x ∈ Bρ/δi
n
(0),∫

Bρ/δi
n

(0)
V (δi

ny + xi
n)eũi

ndy = O(1), (n →∞).
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Moreover, by an argument in [13], we obtain

(4) ũi
n → U i(y) = −2 log

(
1 +

V (ai)
8

|y|2
)

for i = 1, · · · , m

in C1
loc(R2) as n →∞, where U i is a unique ([5]) solution of





−∆U i = V (ai)eUi

in R2,

U i(0) = 0, U i(y) ≤ 0, ∀y ∈ R2,∫
R2 eUi

dy < +∞.

Now, we define two elliptic operators

Ln := −∆x − λnV (x)eun(x)· : H1
0 (Ω) → H−1(Ω),

L̃i
n := −∆y − V (δi

ny + xi
n)eũi

n(y)· : H1
0 (Bρ/δi

n
(0)) → H−1(Bρ/δi

n
(0)).

These two operators are related to each other by the formula

(δi
n)2Ln

∣∣∣
un(x)=ũi

n(y)+un(xi
n)

= L̃i
n,

where x = δi
ny+xi

n for x ∈ Bρ(xi
n) and y ∈ Bρ/δi

n
(0). Also for a domain

D ⊂ Bρ(xi
n), we have

(5) (δi
n)2λj(Ln, D) = λj(L̃i

n, Di
n), Di

n =
D − xi

n

δi
n

,

where λj(Ln, D), λj(L̃i
n, Di

n) (j ∈ N) denote the j-th eigenvalue of ellip-
tic operators Ln, L̃i

n acting on H1
0 (D),H1

0 (Di
n) respectively.

We show the following.

Lemma 2.1. There exists R > 0 such that λ1(Ln, Bδi
nR(xi

n)) < 0
for n large and for any i ∈ {1, · · · ,m}. Furthermore, these m balls are
disjoint for n large.

Proof. For R > 0, we define

wR(y) = 2 log
8 + R2

8 + |y|2 .

Since wR = 0 on ∂BR(0), we see wR ∈ H1
0 (BR(0)).
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We will prove that (L̃i
nwR, wR)L2(BR) < 0 for R > 0 sufficiently

large and BR(0) ⊂ Bρ/δi
n
(0). Indeed,

(L̃i
nwR, wR)L2(BR) =

∫

BR(0)

|∇wR|2dy −
∫

BR(0)

V (δi
ny + xi

n)eũn(y)w2
R(y)dy

=: I1 − I2.

We observe that

I1 =
∫

BR(0)

16|y|2
(8 + |y|2)2 dy = 2π

∫ R

0

16r2

(8 + r2)2
rdr = 32π [log R + oR(1)] ,

where oR(1) → 0 as R →∞. On the other hand, we have

I2 =
∫

BR(0)

V (δi
ny + xi

n)eũn(y)w2
R(y)dy

= V (ai)
∫

BR(0)

1(
1 + V (ai)

8 |y|2
)2

{
log

8 + R2

8 + |y|2
}2

dy + on(1)

= 2πV (ai)
∫ R

0

r(
1 + V (ai)

8 r2
)2

{
log(8 + R2)− log(8 + r2)

}2
dr + on(1)

= 2πV (ai) · 82
{
log(8 + R2)

}2
[

1
16V (ai)

+ oR(1)
]

+ on(1)

= 32π (log R)2 [1 + oR(1)] + on(1),

where we have used (4) and
∫ R

0

r

(8 + cr2)2
dr =

∫ ∞

0

r

(8 + cr2)2
dr + oR(1) =

1
16c

+ oR(1)

for c > 0. Thus we obtain

(L̃i
nwR, wR)L2(BR) = I1 − I2 = −32π (log R)2 [1 + oR(1)] < 0

by taking n sufficiently large first, and then R > 0 large such that
BR(0) ⊂ Bρ/δi

n
(0). This implies that the first eigenvalue of the operator

L̃i
n on BR is negative: λ1(L̃i

n, BR) < 0. By this and the scaling formula
(5) proves the first half part of the Lemma.

The fact that these balls Bδi
nR(xi

n) are disjoint follows from the strict
concavity of the limit functions U i(y) = −2 log(1 + V (ai)

8 |y|2); see [13].
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By Lemma 2.1, we have m open balls B1, · · · , Bm, Bi = Bδi
nR(xi

n),
which are disjoint, and

λ1(Ln, Bi) < 0 for i = 1, · · · ,m.

On the other hand, it is easy to see that

λm(Ln, Ω) ≤
m∑

i=1

λ1(Ln, Bi)

holds; see for example, [13]. Combining these inequalities, we have
λm(Ln, Ω) < 0. Therefore by the definition of the Morse index of un,
we have m ≤ iM (un). This proves Theorem 2.
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