Blow up points and the Morse indices of solutions to the Liouville equation: inhomogeneous case

Futoshi Takahashi

Abstract.

Let us consider the Liouville equation

 $-\Delta u = \lambda V(x)e^u \quad \text{in } \Omega, \quad u = 0 \quad \text{on } \partial \Omega,$

where Ω is a smooth bounded domain in \mathbb{R}^2 , V(x) > 0 is a given function in $C^1(\overline{\Omega})$, and $\lambda > 0$ is a constant. Let $\{u_n\}$ be an *m*-point blowing up solution sequence for $\lambda = \lambda_n \downarrow 0$, in the sense that

$$\lambda_n \int_{\Omega} V(x) e^{u_n} dx \to 8\pi m \quad \text{as } n \to \infty$$

for $m \in \mathbb{N}$. We prove that the number of blow up points m is less than or equal to the Morse index of u_n for n sufficiently large. This extends the main result of the recent paper [13] to an inhomogeneous ($V \neq 1$) case.

§1. Introduction

In this paper we study the Liouville equation

(1)
$$\begin{cases} -\Delta u = \lambda V(x)e^u & \text{ in } \Omega, \\ u = 0 & \text{ on } \partial \Omega \end{cases}$$

where Ω is a smooth bounded domain in \mathbb{R}^2 , V(x) > 0 is a given function in $C^1(\overline{\Omega})$, and $\lambda > 0$ is a constant.

The purpose of this note is to extend the main result of the recent paper [13], where only $V \equiv 1$ was considered, to the present case.

The Liouville equation appears in several fields of mathematics and physics, and the study of it has a rather long history; see for example, [3], [4], [12], and the references therein.

²⁰⁰⁰ Mathematics Subject Classification. 35B40, 35J25.

Key words and phrases. Morse index, blow up point, Liouville equation.

Let $\{\lambda_n\}$ be a sequence of positive numbers with $\lambda_n \to 0$ as $n \to \infty$. One of the interesting issues of this problem is the study of asymptotic behavior of solutions as $n \to \infty$. Concerning this, Ma and Wei [10] proved the following fact, which extends the former result by Nagasaki and Suzuki [11] where $V \equiv 1$ was considered.

Theorem 1. (Ma and Wei [10]) For any solution sequence $\{u_n\}$ of (1) for $\lambda = \lambda_n \downarrow 0$, there exists a subsequence (denoted by u_n again) such that it holds

$$\lambda_n \int_{\Omega} V(x) e^{u_n} dx \to 8\pi m, \quad \text{for some } m \in \{0\} \cup \mathbb{N} \cup \{+\infty\},$$

and according to the cases, the solution sequence $\{u_n\}$ behaves as

- (i) uniform convergence to 0: $||u_n||_{L^{\infty}(\Omega)} \to 0$, when m = 0,
- (ii) entire blow-up: $u_n(x) \to +\infty$ as $n \to \infty$ for any $x \in \Omega$ when $m = +\infty$,
- (iii) *m*-points blow-up: there exists an *m*-points set $S = \{a_1, \dots, a_m\}$, called blow up set, such that each a_i is an interior point of Ω , $\|u_n\|_{L^{\infty}(K)} = O(1)$ for any compact set $K \subset \overline{\Omega} \setminus S$, $u_n|_S \to +\infty$, and

(2)
$$u_n \to 8\pi \sum_{i=1}^m G(\cdot, a_i) \quad in \ C^2_{loc}(\overline{\Omega} \setminus \mathcal{S})$$

as $n \to \infty$ when $m \in \mathbb{N}$. Furthermore, any blow up point $a_i \in S$ must satisfy the condition

$$\frac{1}{2}\nabla R(a_i) + \sum_{j=1, j \neq i}^m \nabla_x G(a_i, a_j) + \frac{1}{8\pi} \nabla \log V(a_i) = 0$$

for $i = 1, 2, \dots, m$. Here, G = G(x, y) is the Green function of $-\Delta$ under the Dirichlet boundary condition with a pole $y \in \Omega$, and $R(x) = \left[G(x, y) + \frac{1}{2\pi} \log |x - y|\right]_{y=x}$ denotes the Robin function.

Later, the existence of multiple blowing up solutions with a prescribed blow up set is established; see [6] [7].

Let $i_M(u)$ denote the Morse index of a solution u of (1), that is, the number of negative eigenvalues of the linearized operator $L_u = -\Delta - \lambda V(x)e^u$ acting on $H_0^1(\Omega)$. In this note, we prove the following, which is an extension of the main theorem in [13] to the inhomogeneous case.

 $\mathbf{2}$

Blow up points

Theorem 2. Let $\{u_n\}$ be a solution sequence of (1) for $\lambda = \lambda_n$ satisfying

$$\lambda_n \int_{\Omega} V(x) e^{u_n} dx \to 8\pi m$$

for some $m \in \mathbb{N}$. Then $m \leq i_M(u_n)$ for n sufficiently large.

In the homogeneous $(V \equiv 1)$ case [13], we used the fact that $w(x) = (x - a) \cdot \nabla u_n(x) + 2$ satisfies the equation $-\Delta w = \lambda_n e^{u_n} w$ (except for the boundary condition) for $a \in \mathbb{R}^2$. This is no longer true when V is not a constant, and we need another method. The proof presented here works also for the homogeneous case and the main idea originates from [1].

$\S 2.$ Proof of Theorem 2

In this section, we prove Theorem 2 along the line of [13].

Let $\{u_n\}$ be a solution sequence to (1) for $\lambda = \lambda_n$ with $\lambda_n \int_{\Omega} V(x) e^{u_n} dx \to 8\pi m$ for some $m \in \mathbb{N}$. Theorem 1 implies that the existence of the blow up set $\mathcal{S} = \{a_1, \dots, a_m\} \subset \Omega$. Also we have a sufficiently small $\rho > 0$ and m sequences of local maximum points $\{x_n^i\}$ such that for each $a_i \in \mathcal{S}$,

$$u_n(x_n^i) = \max_{B_{\rho}(x_n^i)} u_n(x) \to \infty, \quad x_n^i \to a_i \ (i = 1, \cdots, m),$$

as $n \to \infty$.

Now we recall the following local pointwise estimate for the blowingup solutions to (1) thanks to YanYan Li [8]: For a fixed $\rho \in (0, 1)$, there exists a constant C > 0 independent of $i = 1, \dots, m$ and $\lambda_n > 0$ such that

(3)
$$\left| u_n(x) - \log \frac{e^{u_n(x_n^i)}}{\left(1 + \frac{\lambda_n}{8}V(x_n^i)e^{u_n(x_n^i)}|x - x_n^i|^2\right)^2} \right| \le C \text{ for } x \in B_\rho(x_n^i)$$

holds true.

Here we show a proof for the reader's convenience. Define $v_n(x) = u_n(x) + \log \lambda_n$. Then v_n satisfies

$$-\Delta v_n = V(x)e^{v_n} \quad \text{in } \Omega, \quad v_n = \log \lambda_n \quad \text{on } \partial \Omega.$$

Furthermore, by the assumption $\lambda_n \int_{\Omega} V(x) e^{u_n} dx \to 8\pi m$ and $0 < \exists a \leq V(x) \leq \exists b < +\infty$, we see that $\int_{\Omega} e^{v_n} dx = O(1)$ as $n \to \infty$.

Now, we claim that $v_n(x_n^i) \to +\infty$ as $n \to \infty$ for any $i \in \{1, \dots, m\}$. Indeed, assume the contrary that there exists $i \in \{1, \dots, m\}$ and a subsequence (denoted by the same symbol) such that

(i) $v_n(x_n^i) \to -\infty$, or (ii) $v_n(x_n^i) \to C$ for some $C \in \mathbb{R}$.

When (i) happens, we see

$$\int_{B_{\rho}(x_n^i)} V(x) e^{v_n(x)} dx \le e^{v_n(x_n^i)} \int_{B_{\rho}(x_n^i)} V(x) dx \to 0$$

as $n \to \infty$. However, this contradicts the fact that

$$\lim_{n \to \infty} \int_{B_{\rho}(x_n^i)} V(x) e^{v_n} dx \ge 8\pi,$$

see, for example, Li and Shafrir [9].

Also if (ii) happens, a result of Brezis and Merle ([2]:Theorem 3) implies that $\{v_n\}$ is bounded in $L^{\infty}_{loc}(\Omega)$. On the other hand, (2) in Theorem 1 implies that $v_n = u_n + \log \lambda_n \to -\infty$ on any compact set in $\overline{\Omega} \setminus S$. Thus again we have a contradiction and we have proved the claim.

Once we have the claim, we are in the same situation of Theorem 0.3 in [8] (setting that $\Omega = B_{\rho}(x_n^i), 0 = x_n^i$ there). Note that

$$\max_{\partial B_{\rho}(x_n^i)} v_n(x) - \min_{\partial B_{\rho}(x_n^i)} v_n(x) = \max_{\partial B_{\rho}(x_n^i)} u_n(x) - \min_{\partial B_{\rho}(x_n^i)} u_n(x) = O(1)$$

as $n \to \infty$. Thus by Theorem 0.3 in [8], we have

$$\left| v_n(x) - \log \frac{e^{v_n(x_n^i)}}{\left(1 + \frac{\lambda_n}{8} V(x_n^i) e^{v_n(x_n^i)} |x - x_n^i|^2 \right)^2} \right| \le C \quad \text{for } x \in B_\rho(x_n^i),$$

which is equivalent to (3).

Now, let us define

$$\begin{aligned} &(\delta_n^i)^2 \lambda_n e^{u_n(x_n^i)} = 1, \\ &\tilde{u}_n^i(y) = u_n(\delta_n^i y + x_n^i) - u_n(x_n^i), \quad y \in B_{\rho/\delta_n^i}(0) \end{aligned}$$

for $i \in \{1, \cdots, m\}$. By the above pointwise estimate, we easily see that $\delta_n^i = o(1)$ as $n \to \infty$. The scaled function \tilde{u}_n^i satisfies

$$\begin{split} & -\Delta \tilde{u}_{n}^{i} = V(\delta_{n}^{i}y + x_{n}^{i})e^{\tilde{u}_{n}^{i}} & \text{in } B_{\rho/\delta_{n}^{i}}(0), \\ & \tilde{u}_{n}^{i}(0) = 0, \ \tilde{u}_{n}^{i}(x) \leq 0, \quad \forall x \in B_{\rho/\delta_{n}^{i}}(0), \\ & \int_{B_{\rho/\delta_{n}^{i}}(0)} V(\delta_{n}^{i}y + x_{n}^{i})e^{\tilde{u}_{n}^{i}}dy = O(1), \quad (n \to \infty) \end{split}$$

4

 $Blow \ up \ points$

Moreover, by an argument in [13], we obtain

(4)
$$\tilde{u}_n^i \to U^i(y) = -2\log\left(1 + \frac{V(a_i)}{8}|y|^2\right) \quad \text{for } i = 1, \cdots, m$$

in $C^1_{loc}(\mathbb{R}^2)$ as $n \to \infty$, where U^i is a unique ([5]) solution of

$$\begin{cases} -\Delta U^i = V(a_i)e^{U^i} & \text{in } \mathbb{R}^2, \\ U^i(0) = 0, \ U^i(y) \le 0, \quad \forall y \in \mathbb{R}^2, \\ \int_{\mathbb{R}^2} e^{U^i} dy < +\infty. \end{cases}$$

Now, we define two elliptic operators

$$\begin{split} L_n &:= -\Delta_x - \lambda_n V(x) e^{u_n(x)} \cdot :H_0^1(\Omega) \to H^{-1}(\Omega), \\ \tilde{L}_n^i &:= -\Delta_y - V(\delta_n^i y + x_n^i) e^{\tilde{u}_n^i(y)} \cdot :H_0^1(B_{\rho/\delta_n^i}(0)) \to H^{-1}(B_{\rho/\delta_n^i}(0)). \end{split}$$

These two operators are related to each other by the formula

$$(\delta_n^i)^2 L_n \Big|_{u_n(x) = \tilde{u}_n^i(y) + u_n(x_n^i)} = \tilde{L}_n^i,$$

where $x = \delta_n^i y + x_n^i$ for $x \in B_\rho(x_n^i)$ and $y \in B_{\rho/\delta_n^i}(0)$. Also for a domain $D \subset B_\rho(x_n^i)$, we have

(5)
$$(\delta_n^i)^2 \lambda_j(L_n, D) = \lambda_j(\tilde{L}_n^i, D_n^i), \quad D_n^i = \frac{D - x_n^i}{\delta_n^i},$$

where $\lambda_j(L_n, D), \lambda_j(\tilde{L}_n^i, D_n^i)$ $(j \in \mathbb{N})$ denote the *j*-th eigenvalue of elliptic operators L_n, \tilde{L}_n^i acting on $H_0^1(D), H_0^1(D_n^i)$ respectively.

We show the following.

Lemma 2.1. There exists R > 0 such that $\lambda_1(L_n, B_{\delta_n^i R}(x_n^i)) < 0$ for n large and for any $i \in \{1, \dots, m\}$. Furthermore, these m balls are disjoint for n large.

Proof. For R > 0, we define

$$w_R(y) = 2\log \frac{8+R^2}{8+|y|^2}.$$

Since $w_R = 0$ on $\partial B_R(0)$, we see $w_R \in H^1_0(B_R(0))$.

We will prove that $(\tilde{L}_n^i w_R, w_R)_{L^2(B_R)} < 0$ for R > 0 sufficiently large and $B_R(0) \subset B_{\rho/\delta_n^i}(0)$. Indeed,

$$\begin{split} (\tilde{L}_n^i w_R, w_R)_{L^2(B_R)} &= \int_{B_R(0)} |\nabla w_R|^2 dy - \int_{B_R(0)} V(\delta_n^i y + x_n^i) e^{\tilde{u}_n(y)} w_R^2(y) dy \\ &=: I_1 - I_2. \end{split}$$

We observe that

$$I_1 = \int_{B_R(0)} \frac{16|y|^2}{(8+|y|^2)^2} dy = 2\pi \int_0^R \frac{16r^2}{(8+r^2)^2} r dr = 32\pi \left[\log R + o_R(1)\right],$$

where $o_R(1) \to 0$ as $R \to \infty$. On the other hand, we have

$$\begin{split} I_2 &= \int_{B_R(0)} V(\delta_n^i y + x_n^i) e^{\tilde{u}_n(y)} w_R^2(y) dy \\ &= V(a_i) \int_{B_R(0)} \frac{1}{\left(1 + \frac{V(a_i)}{8} |y|^2\right)^2} \left\{ \log \frac{8 + R^2}{8 + |y|^2} \right\}^2 dy + o_n(1) \\ &= 2\pi V(a_i) \int_0^R \frac{r}{\left(1 + \frac{V(a_i)}{8} r^2\right)^2} \left\{ \log(8 + R^2) - \log(8 + r^2) \right\}^2 dr + o_n(1) \\ &= 2\pi V(a_i) \cdot 8^2 \left\{ \log(8 + R^2) \right\}^2 \left[\frac{1}{16V(a_i)} + o_R(1) \right] + o_n(1) \\ &= 32\pi \left(\log R \right)^2 \left[1 + o_R(1) \right] + o_n(1), \end{split}$$

where we have used (4) and

$$\int_0^R \frac{r}{(8+cr^2)^2} dr = \int_0^\infty \frac{r}{(8+cr^2)^2} dr + o_R(1) = \frac{1}{16c} + o_R(1)$$

for c > 0. Thus we obtain

$$(\tilde{L}_{n}^{i}w_{R}, w_{R})_{L^{2}(B_{R})} = I_{1} - I_{2} = -32\pi \left(\log R\right)^{2} \left[1 + o_{R}(1)\right] < 0$$

by taking *n* sufficiently large first, and then R > 0 large such that $B_R(0) \subset B_{\rho/\delta_n^i}(0)$. This implies that the first eigenvalue of the operator \tilde{L}_n^i on B_R is negative: $\lambda_1(\tilde{L}_n^i, B_R) < 0$. By this and the scaling formula (5) proves the first half part of the Lemma. The fact that these balls $B_{\delta_n^i R}(x_n^i)$ are disjoint follows from the strict

The fact that these balls $B_{\delta_n^i R}(x_n^i)$ are disjoint follows from the strict concavity of the limit functions $U^i(y) = -2\log(1 + \frac{V(a_i)}{8}|y|^2)$; see [13].

6

By Lemma 2.1, we have *m* open balls $B^1, \dots, B^m, B^i = B_{\delta_n^i R}(x_n^i)$, which are disjoint, and

$$\lambda_1(L_n, B^i) < 0 \quad \text{for } i = 1, \cdots, m.$$

On the other hand, it is easy to see that

$$\lambda_m(L_n,\Omega) \le \sum_{i=1}^m \lambda_1(L_n,B^i)$$

holds; see for example, [13]. Combining these inequalities, we have $\lambda_m(L_n, \Omega) < 0$. Therefore by the definition of the Morse index of u_n , we have $m \leq i_M(u_n)$. This proves Theorem 2.

Acknowledgments. Part of this work was supported by JSPS Grantin-Aid for Scientific Research (B), No. 23340038.

References

- M. Ben Ayed, K. El Mehdi, and M. Grossi: Asymptotic behavior of least energy solutions of a biharmonic equation in dimension four, Indiana Univ. Math. J. 55 (2006) 1723–1750.
- [2] H. Brezis, and F. Merle: Uniform estimates and blow-up behavior for solutions of $-\Delta u = V(x)e^u$ in two dimensions, Comm. Partial Differential Equations **16** (1991) 1223–1253.
- [3] E. Caglioti, P.L. Lions, C. Marchioro, and M. Pulvirenti: A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description, I & II. Comm. Math. Phys. 143 (1992) 501-525 & 174 (1995) 229-260.
- [4] S.Y.A. Chang, and P.C. Yang: Prescribing Gaussian curvature on S², Acta Math. 159 (1987) 215–259.
- [5] E. Chen, and C. Li: Classification of solutions of some nonlinear elliptic equations, Duke Math. J. 63(3) (1991) 615-622.
- [6] M. del Pino, M. Kowalczyk and M. Musso: Singular limits in Liouville-type equations, Calc. Var. and Partial Differential Equations 24 (2005) 47-81.
- [7] P. Esposito, M. Grossi and A. Pistoia: On the existence of blowing-up solutions for a mean field equation, Ann. I. H. Poincaré 22 (2005) 227–257.
- [8] Y. Y. Li: Harnack type inequality: the method of moving planes, Commun. Math. Phys. 200 (1999) 421–444.
- [9] Y. Y. Li, and I. Shafrir: Blow-up analysis for solutions of $-\Delta u = Ve^u$ in dimension two, Indiana Univ. Math. J. **43** (1994) 1255–1270.
- [10] L. Ma, and J. Wei: Convergence for a Liouville equation, Comment. Math. Helv. 76 (2001) 506–514.

- [11] K. Nagasaki, and T. Suzuki: Asymptotic analysis for two-dimensional elliptic eigenvalue problems with exponentially dominated nonlinearities, Asymptotic Anal. 3 (1990) 173–188.
- [12] M. Struwe, and G. Tarantello: On multivortex solutions in Chern-Simons gauge theories, Boll. Unione Mat. Ital. Sez. B. 8 (1998) 109–121.
- [13] F. Takahashi: Blow up points and the Morse indices of solutions to the Liouville equation in two-dimension, to appear in Advances in Nonlinear Studies

Department of Mathematics, Osaka City University & Osaka City University Advanced Mathematical Institute Sumiyoshi-ku, Osaka, 558-8585, Japan

E-mail address: futoshi@sci.osaka-cu.ac.jp