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Abstract. After fixing a marking (V,W ) of a quasifuchsian punctured
torus group G, the complex length λV and the complex twist τV,W

parameters define a holomorphic embedding of the quasifuchsian space
QF of punctured tori into C2. It is called the complex Fenchel-Nielsen
coordinates of QF . For c ∈ C, let Qγ,c be the affine subspace of C2

defined by the linear equation λV = c. Then we can consider the linear
slice Lc of QF by QF ∩ Qγ,c which is a holomorphic slice of QF . For
any positive real value c, Lc always contains the so called Bers-Maskit
slice BMγ,c defined in [4]. In this paper we show that if c is sufficiently
small, then Lc coincides with BMγ,c whereas Lc has other components
besides BMγ,c when c is sufficiently large. We also observe the scaling
property of Lc.

1. Introduction

The quasifuchsian space QF of once punctured tori can be embedded in
C2 = {(λ, τ)} by the complex Fenchel-Nielsen coordinates (c.f. [4, 8, 14, 15]).
By varying the complex twist τ and keeping the complex length λ being fixed
as a positive real value c, we can define the linear slice Lc ⊂ C of QF . In
this paper we investigate the global properties of Lc realized in the complex
plane. To state our results, recall that Lc has a component containing the
open interval (2,+∞) which was studied in [4] and also in [6, 14]. In this
paper we call this component the standard component and the others non-
standard. We will show

Theorem 5.1. There exists some positive constant c0 such that for any c
satisfying 0 < c < c0, Lc coincides with the standard component.

Theorem 6.1. There exists some positive constant c1 such that for any c
satisfying c > c1, Lc contains non-standard components.

In section 7, we also consider the scaling property of Lc.

Corollary 7.3. Linear slice has an asymptotic scaling constant.

See Figure 1 for theorem 5.1 and Figure 2 and 3 for theorem 6.1 and
corollary 7.3. The parameters used in the figures are explained in 4.1.

Let us describe some historical background of our subject. A marked
quasifuchsian punctured torus group G is a free marked two generator dis-
crete subgroup of PSL2(C) such that the commutator of the generators is
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parabolic, and the regular set Ω consists of two non-empty simply connected
invariant components Ω±. Quasifuchsian space QF is the space of marked
quasifuchsian punctured torus groups modulo conjugation in PSL2(C). The
convex core C/G has two boundary components ∂C±/G each of which is a
once-punctured torus and admits an intrinsic hyperbolic structure making
it a pleated surface.

In their seminal paper [4] L. Keen and C. Series defined the Bers-Maskit
slice BMµ,c for a fixed measured lamination µ and c > 0, as the subset of
QF on which the bending lamination of ∂C−/G and µ belong to the same
projective class and the length of µ in ∂C−/G is equal to c. By using their
theory of pleating coordinates, they showed that BMµ,c is simply connected.
J. Parker and J. Parkkonen also studied these slices for the case that µ is
a rational lamination (they call them the λ-slices), and considered a gen-
eralization of I. Kra’s plumbing construction and degeneration of BMµ,c to
the Maskit slice M (c.f. [14]). The first author and J. Parkkonen further
studied BMµ,c; they showed that the boundary of BMµ,c is a Jordan curve
which is cusped at a countable dense set of points (c.f. [6]). In this papaer
we would like to study the outside of BMµ,c in Lc and its scaling property.

This paper is organized as follows. In section 2 we will review the basic
notions of the quasifuchsian spaceQF of once punctured tori and its pleating
varieties following [4]. The complex Fenchel-Nielsen coordinates of QF will
be introduced in section 3, and we will define the main subject of this paper,
the linear slice Lc of QF in section 4. In sections 5 and 6 we will study
connected components of Lc and prove our main theorems. And in the last
section we will observe the asymptotic self similarity of Lc.

We are grateful to Caroline Series for showing us the preprint [13] of
Otal, and Raquel Diaz for explaining us her idea in section 6. It was fruitful
for us to discuss with them in Nara in January 2000; in practice this work
was almost done during their stay in Japan. We also wish to thank Hideki
Miyachi for enjoyable conversations with him on the topic in section 7, and
Kentaro Ito and Sara Maloni for telling their interests in our paper recently.

The first author was partially supported by Grant-in-Aid for Scientific Re-
search(C) (19540194), Ministry of Education, Science and Culture of Japan.

2. The quasifuchsian space QF and rational pleating varieties

2.1. Punctured torus groups and their pleating data.

2.1.1. Marking. Let S be an oriented once-punctured torus. Any pair of
simple closed loops on S that intersect exactly once are free generators of
π1(S). Let (α, β) be such an ordered pair of free generators, chosen so that
their commutator αβα−1β−1 represents a positively oriented loop around
the puncture. The ordered pair (α, β) is called a marking.

2.1.2. QF and F . A punctured torus group is a discrete subgroup G ⊂
PSL(2,C) that is the image of a faithful representation ρ of π1(S) such that
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the image of the loop around the puncture is parabolic. If (α, β) is a marking
of S, and if A = ρ(α), B = ρ(β), then the commutator K = ABA−1B−1 is
parabolic and the ordered pair (A,B) = (ρ(α), ρ(β)) is called a marking of
G.

The group G is quasifuchsian if the regular set Ω(G) consists of two non-
empty simply connected invariant components Ω±(G). The limit set Λ(G)
is topologically a circle. Quasifuchsian space QF is the space of marked
quasifuchsian punctured torus groups modulo conjugation in PSL(2,C); it
has a holomorphic structure induced from the natural holomorphic structure
of SL(2,C).

LetR(π1(S)) be the set of PSL(2,C)-conjugacy classes of representations
ρ of π1(S) such that the image of the loop around the puncture is parabolic.
Considering the compact open topology on R(π1(S)), Minsky showed that
the closure of QF in R(π1(S)) is equal to D(π1(S)), the set of punctured
torus groups modulo conjugation in PSL(2,C) (c.f. [12]).

Fuchsian space F is the subset of QF such that the components Ω± are
round disks. It is canonically isomorphic to the Teichmüller space of marked
conformal structures on S.

The quotients Ω±(G)/G are punctured tori with conformal structures,

and hence also with orientations inherited from Ĉ; we assume that the
orientations of Ω+(G)/G and S agree whereas those of Ω−(G)/G and S are
opposite.

A point q ∈ QF represents an equivalence class of marked groups in
PSL(2,C). We choose once and for all a triple of distinct points in Ĉ and
let G = G(q) denote the representative normalized so that the repelling and
attracting fixed points of A and the fixed point of K are equal to the fixed
triple points in Ĉ. If it is clear from the context, for readability, we suppress
the dependence on q.

2.2. Simple closed curves.

2.2.1. Enumeration. Denote by C(S), the set of free unoriented homotopy
classes of simple closed non-boundary parallel curves on S. As is well known,
this set can be naturally identified with Q̂ = Q∪∞. One way to see this is as
follows; Let L denote the integer latticem+in,m, n ∈ Z ⊂ C. Topologically
S is the quotient of the punctured plane Ci = C− L by the natural action
of Gi = 〈Â, B̂i〉 ≡ Z2 by the horizontal and vertical translations. A straight
line of rational slope in C − L projects onto a simple closed curve on the
marked punctured torus Si = Ci/Gi, and the projection of all lines of the
same rational slope with the same orientation are homotopic. We denote
the unoriented homotopy class obtained by projecting the line of slope −q/p
by [L(p/q)]. Relative to our choice of marking, [L(p/q)] is in the homology
class of α−pβq or αpβ−q on Si, where α, β are projections of the horizontal
and vertical lines corresponding to Â, B̂ respectively. Setting 1/0 = ∞, we
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obtain that the map Q̂ → C(S) defined by p/q 7→ [L(p/q)] which is well-
defined and bijective. The reason for the choice of convention that [L(p/q)]
corresponds to α−pβq, is the following; if we identify the Teichmüller space
Teich(S) of once punctured tori with the upper half plane H, then one can

easily compute that the boundary point p/q ∈ R̂ is the point where the
extremal length of curves in the class [L(p/q)] has shrunk to zero.

2.2.2. Special word Wp/q. Suppose that ρ : π1(S) → G ⊂ PSL2(C) is a
quasifuchsian punctured torus group, marked as usual by generators A =
ρ(α), B = ρ(β). We denote the unique geodesic in the homotopy class of
ρ([L(p/q)]) in H3/G by γp/q. In particular, for q ∈ QF , γp/q(q) represents

the corresponding geodesic in H3/G(q).

For each p/q ∈ Q̂, we can find an explicit word Wp/q in the marked
generators 〈α, β〉 of π1(S) representing [L(p/q)] as follows. The words are
generated from the initial data

W0/1 = β, W1/0 = α−1

by the formula

W(p+r)/(q+s) =Wr/sWp/q,

whenever p/q < r/s and ps − qr = −1. We denote by Wp/q(q) the corre-
sponding special word in G(q).

2.3. Rational pleating varieties.

2.3.1. The pleating loci. We are now ready to discuss the convex hull bound-
ary and the pleating locus. Let q ∈ QF and let G = G(q) be the cor-
responding marked quasifuchsian group with the regular set and the limit
set Ω(G),Λ(G) respectively. The 3-manifold H3/G is homeomorphic to
S × (0, 1). The surfaces Ω(G)/G at infinity form the boundary S × {0, 1}.
Let ∂C(G) be the boundary of the hyperbolic convex hull of Λ(G) in H3;
it is clearly invariant under the action of G. The nearest point retraction
Ω(G) → ∂C(G), defined by mapping x ∈ Ω(G) to the unique point of contact
with ∂C(G) of the largest horoball in H3 centered at x with interior disjoint
from ∂C(G), can easily be modified to a G-equivariant homeomorphism.
We denote two connected components of ∂C(G) corresponding to Ω±(G)
by ∂C±(G) respectively. Thus each component ∂C±(G)/G is topologically
a punctured torus. (In the special case in which G is Fuchsian, ∂C(G) is
a flat plane whose two sides serve as a substitute for the two components
∂C±(G).)
∂C±(G)/G are pleated surfaces in H3/G. More precisely, there are com-

plete hyperbolic surfaces S±, each homeomorphic to S, and maps f± : S± →
H3/G, such that every point in S± is in the interior of some geodesic arc
which is mapped by f± to a geodesic arc in H3/G, and such that f± induce
isomorphisms π1(S) → G. Further, f± are isometries onto their images
with the path metric induced from H3 (c.f. [16]). The bending or pleating
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locus of ∂C±(G)/G consists of those points of S± contained in the interior
of one and only one geodesic arc which is mapped by f± to a geodesic arc
in H3/G. For G non-Fuchsian, the pleating loci are geodesic laminations,
meaning that they are unions of pairwise disjoint simple closed geodesics
on S±. We denote these laminations by | pl±(q)|, and usually identify such
a lamination with its image under f± in H3/G. A geodesic lamination is
called rational if it consists entirely of closed leaves. We concentrate on the
special case in which at least one of the pleating loci is rational in this sense.
Since the maximum number of pairwise disjoint simple closed curves on a
punctured torus is one, such a lamination consists of a single simple closed
geodesic and is therefore of the form γp/q(q) for some p/q ∈ Q̂.

2.3.2. Rational pleating varieties and hyperbolic loci. Given p/q ∈ Q̂, we set

P±
p/q = {q ∈ QF : |pl±(q)| = γp/q(q)} and Pp/q = P+

p/q ∪ P−
p/q.

We call these sets the p/q-pleating varieties.

For any p/q ∈ Q̂, consider the trace TrWp/q of the special word Wp/q

associated to p/q defined in 2.2.2. For q ∈ R(π1(S)), we may consider the
function Tp/q(q) = TrWp/q(q) as a rational function on R(π1(S)). We define
the hyperbolic locus of Tp/q to be the set

Hp/q = {q ∈ R(π1(S)) : Tp/q(q) ∈ R, |Tp/q(q)| > 2}.
Then the next result is fundamental (c.f. Proposition 22 in [4]).

Proposition 2.1. Pp/q ⊂ Hp/q. �

3. The complex Fenchel-Nielsen coordinates of QF

3.1. The complex length of a loxodromic element. The complex trans-
lation length λM ∈ C/2πiZ of M ∈ PSL(2,C) is given by the equation

(1) ±TrM = 2 coshλM/2,

where TrM is the trace of M and we choose the sign so that <λM ≥ 0.
The complex length is invariant under conjugation by Möbius transfor-

mations and has the following geometric interpretation, provided M is not
parabolic; let x be a point on the axis AxM of M and let v̄ be a vector
normal to AxM at x. Then <λM is the hyperbolic distance between x and
M(x) and =λM is the angle mod 2π between M(v̄) and the parallel trans-
port of v̄ to M(x), measured facing the attracting fixed point M+ of M . In
particular, if M is loxodromic then <λM > 0 and if M is purely hyperbolic
then in addition =λM ∈ 2πZ.

For q ∈ QF and γ ∈ C(S), we denote the element in the group G(q)
representing γ by W (q). Because the trace is a conjugation invariant, the
complex translation length λW (q) depends only on q and is independent of
the normalization of G(q). We want to define the complex length λγ(q) =
λW (q) as a holomorphic function on QF with values in C, not C/2πiZ. To
do this, we choose the branch that is real valued on F . Since λγ 6= 0 on
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QF this choice uniquely determines a holomorphic function λγ : QF → C.
From now on, the term “complex length” will always refer to this branch.

We remark that <λγ(q) is the hyperbolic length of γ in H3/G(q).

3.2. The complex Fenchel-Nielsen coordinates. The complex Fenchel-
Nielsen parameters were introduced in [8, 15] as a generalization toQF of the
classical Fenchel-Nielsen coordinates for Fuchsian groups. Here we briefly
summarize the main points as applied to the case of a punctured torus S.

Let G = 〈A,B〉 be a marked quasifuchsian punctured torus group con-
structed from a pair of marked generators α, β of π1(S) as described in 2.1.
The complex Fenchel-Nielsen coordinates (λA, τA,B) for G = 〈A,B〉 are ob-
tained as follows; the parameter λA ∈ C/2πiZ is the complex translation
length of the generator A = ρ(α), or equivalently the complex length λα.
The twist parameter τA,B ∈ C/2πiZ measures the complex shear when the
axis AxB−1AB is identified with the axis AxA by B. More precisely, if
the common perpendicular δ to AxB−1AB and AxA meets these axes in
points Y,X respectively, then <τA,B is the signed distance from X to B(Y )
and =τA,B is the angle between δ and the parallel translate of B(δ) along
AxA to X, measured facing towards the attracting fixed point of A. The
conventions for measuring the signed distance and the angle are explained
in more detail in [3].

As shown in [14, 8, 3], given the parameters λA, τA,B, and fixed a normal-
ization, one can explicitly write down the matrix generators for a marked
two generator group G(λA, τA,B) ⊂ PSL(2,C) in which the commutator
[A,B] is parabolic as follows:

A =

(
cosh(λ2 ) cosh(λ2 ) + 1

cosh(λ2 )− 1 cosh(λ2 )

)
,

B =

(
cosh( τ2 ) coth(

λ
4 ) − sinh( τ2 )

− sinh( τ2 ) cosh( τ2 ) tanh(
λ
4 )

)
.

This group may or may not be discrete. The matrix coefficients of G
depend holomorphically on the parameters. The construction thus defines a
holomorphic embedding of QF into a subset of C/2πiZ×C/2πiZ, in which
Fuchsian space F is identified with the image of R2.

We want to lift this to an embedding into C2. In 3.1 we discussed how
to lift the length function λA on QF to a holomorphic function on C. We
can similarly lift the twist parameter τA,B by specifying that it will be real
valued on F .

On F , the real valued parameters λA, τA,B reduce to the classical Fenchel-
Nielsen parameters lA, tA,B defined by the above construction with λA the
hyperbolic translation length lA of A and τA,B the twist parameter tA,B.

3.3. Rational quakebends and pleated surfaces. Clearly, the complex
Fenchel-Nielsen coordinates can be made relative to any marking V,W of G.
As described in detail in section 5 of [3], for fixed λ ∈ R+ and τ ∈ C, the
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complex Fenchel-Nielsen coordinates relative to V,W determines a pleated
surface ψ : D → H3. We review this process.

Write V for the set of all lifts of the simple closed curve γ corresponding to
V to D. Since γ is simple, V consists of a set of pairwise disjoint geodesics in
D, namely the axis of V and all of its conjugates. These axes in V partition
D into pieces Pi. The map ψ is defined in such a way that ψ is an isometry
on each axis in V and on each closed piece Pi. Let x, y ∈ D − V and let β
be an oriented geodesic from x to y. Let P0, P1, ..., Pk be the pieces cut in
order by β, that meet along axes α1, α2, ..., αk ∈ V. Orient αi so that, in
D, Pi−1 lies to the left of αi and Pi to the right. Let Xi = β ∩ αi and let
v̄i, w̄i be tangent vectors to ψ(Pi−1 ∩ β) and ψ(Pi ∩ β) at ψ(Xi), oriented
in the direction inherited from β, so that v̄i points out of ψ(Pi−1) and w̄i

points into ψ(Pi). Let v̄′i, w̄
′
i be the projections of v̄i, w̄i onto the directions

orthogonal to the image of the bending axis at ψ(Xi). Then =τ is the angle
from v̄i to w̄i measured facing along ψ(αi). We embed D in the hyperbolic
ball model B3 of H3 as the equatorial plane such that the origins in D and
in B3 coincide. We arrange that the axes of V and WVW−1 in G(λ,<τ) lie
in the boundary of a piece P0 contained in D. We then choose ψ to be the
identity on P0. We set Dγ(λ, τ) = ψ(D) for the image of the pleated surface
in B3. Then ψ induces the group isomorphism ψ∗ : G(λ,<τ) → G(λ, τ)
satisfying that ψ(g(z)) = ψ∗(g)(ψ(z)) for g ∈ G(λ,<τ) and z ∈ D.

The next proposition explains the relation between ψ and the bending
locus of ∂C−(G(q)) for q ∈ QF .

Proposition 3.1. For q ∈ QF , let (λ, τ) be the complex Fenchel-Nielsen
coordinates relative to marked generators (V,W ) of G(q), and let γ be the
simple closed curve corresponding to V . Assume that V is purely hyperbolic
and let ψ : D → H3 be the pleated surface defined above. Then ψ is a
homeomorphism if and only if | pl−(q)| = γ.

Proof: First suppose that ψ is a homeomorphism. Then the boundary of
Dγ(λ, τ) is Λ(G(q)). Dγ(λ, τ) divides H3 into two domains; one of which
is convex, hence contains C(G(q)). Moreover Dγ(λ, τ) contains the axis of
V and all of its conjugates in G(q), and the complement of them consist of
totally geodesic pieces. Therefore it is one of the component of ∂C(G(q)) and
from the bending construction in the above argument, it should be equal to
∂C−(G(q)) (c.f. section 7.1 in [3]).

Next suppose that | pl−(q)| = γ. Then ∂C−(G(q)) consists of the axis of V
and all of its conjugates in G(q), and totally geodesic pieces. The stabilizer
subgroup of each totally geodesic piece is conjugate to the Fuchsian subgroup
〈V,WVW−1〉. Therefore we can construct the pleated surface satisfying that
Dγ(λ, τ) = ∂C−(G(q)), which implies that ψ is a homeomorphism. �
3.4. Rational quakebend planes. Let (λV , τV,W ) ⊂ C2 be the complex
Fenchel-Nielsen coordinates relative to marked generators (V,W ) of G, and
let γ be the simple closed curve corresponding to V . Assume that V is
purely hyperbolic and let c be the hyperbolic length of γ in H3/G.
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We denote the slice {(c, τ) ∈ C2 |τ ∈ C} by Qγ,c and call it the rational
quakebend plane.

Clearly, Qγ,c meets F along the earthquake path (c.f. [4]). The quakebend
parameter τ is a holomorphic coordinate on Qγ,c.

On Qγ,c, the quakebend parameter τ and TrW are related by

TrW = 2 coth(
c

2
) cosh(

τ

2
).

OnQγ,c, TrW is a holomorphic function of τ , branched at τ = 2πin (n ∈ Z).
(see figure 5.1 in [14]). When TrV is real, QF ∩ Qγ,c is contained in the
strip

{τ ∈ C | − πi < =τ < πi}
from the argument in 3.3. TrW takes the right half strip

{τ ∈ C | <τ > 0, −πi < =τ < πi}
conformally onto the right half plane C+ minus the interval (0, 2 coth( c2)]
where the interval {τ ∈ C | <τ = 0, −1 < =τ < 1} in the imaginary axis
is folded at the origin by TrW and its image is (0, 2 coth( c2)]. We remark
that QF ∩Qγ,c is also periodic under the action of the Dehn twist (A,B) 7→
(A,AnB), and symmetric under the holomorphic involution τ 7→ −τ .

4. The linear slice Lc

4.1. Definition. For q ∈ R(π1(S)), a marked group G(q) = 〈A,B〉 modulo
conjugation in PSL(2,C) is uniquely determined by TrA,TrB and TrAB.
In fact, ignoring marking, G(q) modulo conjugation in PSL(2,C) is deter-
mined only by TrA and TrB (more precisely, the pair (TrA,TrB) deter-
mines a marked group 〈A,B〉 or 〈A,B−1〉modulo conjugation in PSL(2,C)).
As an application of the Jorgensen’s theory on the combinatorial structure
of the Ford domain of a punctured torus group, there is an algorithm roughly
answering whether G(q) is a geometrically finite discrete group or not from
the data (TrA,TrB) (c.f. [1]). Especially fixing TrA = c, then we can use
this algorithm to draw the picture of

Dc = {TrB ∈ C+ | G(q) = 〈A,B〉 is a geometrically finite discrete group}.
We call this set the discrete locus. Let Qγ,c be the rational quakebend plane
in the complex Fenchel-Nielsen coordinates relative to the corresponding
marked generators (A,B) of G where we assume that c = λA(q) is real.
The linear slice Lc in the right half plane C+, which is the image of QF ∩
Qγ,c under TrB. Because QF is open in C2 in complex Fenchel-Nielsen
coordinates and TrB is a open map on Qγ,c, Lc is open in C+. Then from
the definition of Dc and Lc, Lc is a subset of the interior of Dc.

Proposition 4.1. The interior of Dc is equal to Lc.

Proof: It is enough to show that any point q0 of Dc, not contained in Lc is
a boundary point of Dc. First suppose that G(q0) is not a free group. Then
some word, say g(q0) is trivial in G(q0). Then applying the Jorgensen’s
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inequality for the subgroup H(q0) generated by g and K = [A,B], we can
see that if we take a small neighborhood U of q0, for any point q of U
except q0, H(q) is not discrete which means that G(q) is also indiscrete.
Therefore q0 is an isolated point of Dc. Next suppose that G(q0) is free,
hence geometrically finite non-quasifuchsian punctured torus group. Then
it must be a cusp (c.f. [12]). Hence there is some word, say g(q) which is
parabolic in G(q0). Since Tr g is a holomorphic function of TrB, it is a open
map, hence there is a path in the TrB-plane starting from q0 such that on
this path g is elliptic. Therefore this path is outside of Dc. This implies that
q0 is a boundary point of Dc. �

From this result, we can see Lc as the interior Dc and study them ex-
perimentally. Figures at the end of this paper drown by the second author
show computer-generated linear slices, revealing some global properties. The
black region corresponds to the discrete locus. In the first picture, TrA is
fixed at 2 and TrB ranges in the square of width 4 centered at TrB = 2 so
that we see the familiar picture of the Maskit slice. By setting TrA = 2.5,
we get the second picture. In Figure 2 and 3, the value of TrA is fixed at
8 and 100 respectively while changing the ranges of TrB. The width of the
squares are 16, 32, 128 and 128, 2560, 12800 respectively. We can clearly
see the “rough self similarity” of the pictures between figures 3 and 5 and
between figures 6 and 8, with which we will discuss in section 7.

4.2. Connected components of Lc.

Proposition 4.2. For any c > 0, Lc has a component containing an open
interval (2,+∞).

Proof: There exists a component in QF ∩Qγ,c containing F ∩Qγ,c the real
line which is periodic under the action of the Dehn twist B 7→ AnB and
symmetric under τ 7→ −τ (c.f. [4, 14]. see also [11]). Then its image under
TrB is the required component. �

This component is called the BM-slice in [4] and also called the λ-slice
in [14]. In this paper we call this component of Lc the standard component,
and call the other components the non-standard components if they exist.
Because of the existence of the standard component which contains the
critical value of TrB, if there is a non-standard component, it is a conformal
image of a component of QF ∩Qγ,c under the map TrB. Therefore we can
consider that Lc describes the picture of QF ∩Qγ,c. Next result shows that
topologically every component is a disk.

Proposition 4.3. Each component of Lc is simply connected.

Proof: This is a consequence of a result of McMullen [11] that QF is disk
convex in R(π1(S)), that is, for any continuous map f : ∆ → R(π1(S))
whose restriction to the unit disk ∆ is holomorphic, f(∂∆) ⊂ QF implies
f(∆) ⊂ QF . �



10 YOHEI KOMORI AND YASUSHI YAMASHITA

Remark 4.4. (The Maskit slice)
If we consider the limiting case where c = 0, we can no longer consider the
complex Fenchel-Nielsen coordinates. But by using TrB we can realize the
part of the boundary of QF defined by the condition that A is parabolic. Then
the standard component defined above corresponds to the so-called Maskit
slice M.

5. Non-existence of non-standard components

5.1. Otal’s result.

Theorem 5.1. There is some positive constant c0 such that for any c sat-
isfying 0 < c < c0, Lc coincides with the standard component.

This is an immediate consequence of the following result due to J. P. Otal [13].

Theorem 5.2. (c.f. corollaire 9.1 in [13])
There exists a positive constant c0 such that for a marked quasifuchsian
punctured torus group G(q) and V ∈ G(q) representing a simple closed geo-
desic γ in H3/G(q), if V is purely hyperbolic and the hyperbolic length λγ(q)
of γ is less than c0, then γ is a bending locus of ∂C(G(q)).

Following the proof of proposition 9 in [13], we will give a proof of theo-
rem 5.2 to estimate c0 in the next subsection 5.2.

Suppose that γ is not the bending locus of ∂C(G(q)). Then the pleated
surface ψ is not a homeomorphism by proposition 3.1. Let H be a Fuchsian
subgroup 〈V,WVW−1〉 where (V,W ) is a marking of G(q). Denote the
totally geodesic plane whose boundary ∂D contains Λ(H) by D ⊂ H3. Let
P be the convex hull of Λ(H) in D ⊂ H3. Then g(P ) is the convex hull of
Λ(gHg−1) in g(D) ⊂ H3. Now we have a following claim.

Proposition 5.3. If the pleated surface ψ is not a homeomorphism, then
there exists g ∈ G(q) such that P and g(P ) intersect transversally in the
axis of V .

To show this proposition, we need two lemmas.

Lemma 5.4. For g ∈ G(q), gHg−1∩H is trivial or cyclic subgroup generated
by gV g−1. �
Lemma 5.5. For g ∈ G(q), Λ(gHg−1) ∩ Λ(H) is empty or fixed points of
gV g−1.

Proof: H and gHg−1 are Fuchsian subgroups of a quasifuchsian group G(q).
From a theorem of Suskind (see theorem 3.14 in [10]),

Λ(gHg−1) ∩ Λ(H) = Λ(gHg−1 ∩H).

Hence it concludes the proof by using lemma 5.4. �

Now we can show proposition 5.3. Since we assume that ψ is not a
homeomorphism, there exists g ∈ G such that the interior of P and the
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interior of g(P ) intersect transversally. Then from lemma 5.5, Λ(gHg−1) ∩
Λ(H) is empty. Therefore the axis of V cuts g(P ) transversally. �

Now we assume that c0 is smaller than the Margulis constant. Then the
interior of g(P ) cut the Margulis tube T with radius r along the axis of V
transversally. Hence now we have a geodesic disk ∆ = T ∩ g(P ) on g(P ).

Lemma 5.6. The hyperbolic area of ∆ is bigger than 4π sinh2(r/2).

Proof: If g(P ) intersects the axis of V orthogonally, then ∆ is a hyperbolic
disk of radius r, hence the hyperbolic area of it is 4π sinh2(r/2). If g(P )
intersects the axis of V not orthogonally, then ∆ contains a hyperbolic disk
of radius r, hence the hyperbolic area of ∆ is bigger than 4π sinh2(r/2). �

Now we can give a proof of theorem 5.2. By the Margulis lemma, ∆
projects into the image of g(P ) in H3/G(q) injectively, whereas the image
of g(P ) in H3/G has its hyperbolic area 2π since it is the isometric image of
a punctured cylinder. Therefore if the hyperbolic length of γ in H3/G(q) is
sufficiently small, we can take a radius r of the Margulis tube T satisfying
4π sinh2(r/2) ≥ 2π, which is a contradiction. This concludes the theorem.
�
5.2. A lower bound of c0. Following [9], we have a formula of the radius
of a Margulis tube.

Proposition 5.7. (c.f. theorem in section 3 of [9])
For q ∈ QF , assume that V ∈ G(q) representing a simple closed geodesic
γ in H3/G(q), which is purely hyperbolic. If the hyperbolic length λγ of γ

satisfies coshλγ <
√
2, then there is a Margulis tube with radius r satisfying

sinh2(r) =
1

2
(

√
3− 2 coshλγ

coshλγ − 1
− 1).

�
The inequality 4π sinh2(r/2) ≥ 2π and the above formula give us a lower

bound of c0.

Corollary 5.8. cosh−1 48+5
√
2

49 ≈ 0.493 ≤ c0. �

6. Existence of non-standard components

Theorem 6.1. There is some positive constant c1 such that for any c sat-
isfying c > c1, Lc contains non-standard components.

To prove this theorem, we use the Earle slice E of punctured tori studied
in [5, 7]. This idea is due to Raquel Diaz. We review notations of E (c.f. [7]).
The Earle slice E of QF is the set of G(q) = 〈A,B〉 satisfying the following
symmetry; there exists an elliptic element of order 2 such that EAE = B.
Then E is a holomorphic slice of QF and considering the conformal struc-
ture of Ω+(G(q))/G(q), it is naturally isomorphic to the Teichmüller space
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of punctured tori. Any element of E can be represented by the following
matrices in SL(2,C) of the form A = Ad, B = Bd, d ∈ C− {0}, where

Ad =

(
d2+1
d

d3

2d2+1
2d2+1

d d

)
, Bd =

(
d2+1
d − d3

2d2+1

−2d2+1
d d

)
.

The complex parameter d gives a holomorphic embedding of E into the right
half plane C+ and we assume that E is embedded in C+. Then E contains
the positive real line R+ which is the Fuchsian locus E ∩ F of E . Put
C+

d′ = {d ∈ C+|< d > d′}. To show theorem 6.1, we need lemmas.

Lemma 6.2. There is a positive constant d0 such that for any d′ > d0, the
hyperbolic locus H2/1 of T2/1(d) = TrW2/1(d) satisfies

(H2/1 −R+) ∩C+
d′ 6= ∅.

Proof: We remark that W2/1 = A−2B. Then we can check our claim by
direct calculation. �

Lemma 6.3. There is a positive constant d1 such that the 2/1-pleating
variety P2/1 satisfies

P2/1 ∩ E ⊂ C+ −C+
d1
.

Proof: In [7], it is shown that Pp/q ∩ E is equal to two components of

Hp/q −R+ terminating to the unique critical point of TrWp/q on R+ (c.f.
theorem 5.1 in [7]). Then we can check our claim by direct calculation. �

Lemma 6.4. (c.f. [5]) There is a positive constant d2 such that

C+
d2

⊂ E .

�

Now we can prove theorem 6.1. There is a positive constant c1 such
that for any c > c1, there is d ∈ E such that the word A−2B is purely
hyperbolic and λW2/1

(d) = c, but d is not contained in P2/1. This concludes
the theorem. �
Remark: To estimate c1, we need to know the size of the round disk
contained in E tangent to the boundary ∂E of E at the origin (see [5]).

Comparing with the results in section 5 and 6, we have the following
conjecture supported by numerical experiences by the second author.

Conjecture 6.5. There exists a unique c0 such that Lc coincides with the
standard component for any c ≤ c0, while Lc contains infinitely many non-
standard components for any c > c0.
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7. Scaling property of Lc

In the final section we will study the self-similar phenomena of Lc which
we can observe from figures of Lc in this paper. First we remark that Lc

has analytic automorphisms coming from Dehn twists.

Proposition 7.1. (A,B) ∈ Lc implies (A,AnB) ∈ Lc for all n ∈ Z.

Proof: The automorphism of G defined by (A,B) 7→ (A,AnB) is a Dehn
twist along A which preserves QF and Qγ,c. �

Next result is easy to prove, but it induces the asymptotic self similarity
of Lc.

Proposition 7.2.

lim
n→∞

TrAnB

TrAn−1B
= TrA ·

1 +
√

1− ( 2
TrA)

2

2
,

which is the attractive fixed point of the map TrA− 1
z .

Proof: The following trace identity is well known:

TrAnB = TrA · TrAn−1B − TrAn−2B.

Divide both sides by (TrA)n and put xn := TrAnB
(TrA)n . Then we have

xn = xn−1 −
1

(TrA)2
xn−2.

Moreover put yn := xn
xn−1

, then

yn = 1− 1

(TrA)2
1

yn−1
.

Finally put zn := TrA · yn, then

zn = TrA− 1

zn−1
.

Since A is purely hyperbolic, the linear fractional transformation

w = TrA− 1

z

is also purely hyperbolic, hence all points besides the repelling fixed point

of A converge to the attracting fixed point of A, TrA ·
1+

√
1−( 2

TrA
)2

2 . From

the above arguments, zn = TrAnB
TrAn−1B

converges to this point. �

Corollary 7.3. Linear slice has an asymptotic scaling constant TrA·
1+

√
1−( 2

TrA
)2

2 .
�
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Figure 1. Maskit slice (left) and TrA = 2.5 slice (right)

Figure 2. TrA = 8 linear slices with ranges 16(left), 32(cen-
ter), 128(right)

Figure 3. TrA = 100 linear slices with ranges 128(left),
2560(center), 12800(right)

Remark 7.4. When A tends to be parabolic,

lim
n→∞

TrAnB

TrAn−1B
= 1,

which relates to the fact that the Maskit slice is invariant under translations.

Remark 7.5. Even if A is loxodromic, Lc has this scaling property. Hence
we can also see that the figure 10 in [11] also has such scaling property.
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