On the number of maximum points of least energy solutions to a two-dimensional Hénon equation with large exponent

Futoshi Takahashi
Department of Mathematics, Osaka City University \& OCAMI
Sugimoto 3-3-138, Sumiyoshi-ku, Osaka, 558-8585, Japan
Tel: $(+81)(0) 6-6605-2508$
E-mail: futoshi@sci.osaka-cu.ac.jp

Abstract

In this note, we prove that least energy solutions of the twodimensional Hénon equation $$
-\Delta u=|x|^{2 \alpha} u^{p} \quad x \in \Omega, \quad u>0 \quad x \in \Omega, \quad u=0 \quad x \in \partial \Omega,
$$ where Ω is a smooth bounded domain in \mathbb{R}^{2} with $0 \in \Omega, \alpha \geq 0$ is a constant and $p>1$, have only one global maximum point when $\alpha>e-1$ and the nonlinear exponent p is sufficiently large. This answers positively to a recent conjecture by C. Zhao (preprint, 2011).

Keywords: Hénon equation, global maximum point, large exponent.
2010 Mathematics Subject Classifications: 35B40, 35J20, 35J25.

1. Introduction.

In this note we consider the problem

$$
\begin{cases}-\Delta u=|x|^{2 \alpha} u^{p} & x \in \Omega, \tag{1.1}\\ u>0 & x \in \Omega \\ u=0 & x \in \partial \Omega\end{cases}
$$

where Ω is a smooth bounded domain in \mathbb{R}^{2} with $0 \in \Omega, \alpha \geq 0$ is a constant and $p>1$. Since the Sobolev embedding $H_{0}^{1}(\Omega) \hookrightarrow L^{p+1}(\Omega)$ is compact for any $p>1$, we can obtain at least one solution of (1.1) by a standard variational method. In fact, let us consider the constrained minimization problem

$$
\begin{equation*}
S_{p}=\inf \left\{\left.\int_{\Omega}|\nabla v|^{2} d x\left|v \in H_{0}^{1}(\Omega), \int_{\Omega}\right| x\right|^{2 \alpha}|v|^{p+1} d x=1\right\} . \tag{1.2}
\end{equation*}
$$

Standard variational method implies that S_{p} is achieved by a positive function $v_{p} \in H_{0}^{1}(\Omega)$ and then $u_{p}=S_{p}^{1 /(p-1)} v_{p}$ solves (1.1). We call u_{p} a least energy solution to the problem (1.1).

When $\alpha=0$, several studies on the asymptotic behavior of least energy solutions u_{p} as $p \rightarrow \infty$ have been done in [4], [5], [3] and [1]. Recently, Chunyi Zhao [9] extended the study to the case when $\alpha>0$, and obtained some results. First he showed that for any $\alpha>0$, there exists $\delta>0$ such that the least energy solution u_{p} satisfies $1-\delta \leq\left\|u_{p}\right\|_{\infty} \leq \sqrt{e}+\delta$ for p large enough. To state his results further, we introduce some notations: Let x_{p} be a global maximum point of u_{p} and define $\varepsilon_{p}>0$ by the relation

$$
\varepsilon_{p}^{2}\left|x_{p}\right|^{2 \alpha} p\left\|u_{p}\right\|_{\infty}^{p-1}=1
$$

Also define the function $\tilde{u}_{p}: \Omega_{p}=\frac{\Omega-x_{p}}{\varepsilon_{p}} \rightarrow \mathbb{R}$ such that

$$
\tilde{u}_{p}(y)=\frac{p}{\left\|u_{p}\right\|_{\infty}}\left\{u_{p}\left(\varepsilon_{p} y+x_{p}\right)-u_{p}\left(x_{p}\right)\right\} .
$$

By using these symbols, the main result of C. Zhao reads as follows:
Theorem 1 (Chunyi Zhao [9]) Assume $\alpha>e-1$. Then $\varepsilon_{p} \rightarrow 0$ and $\Omega_{p} \rightarrow$ \mathbb{R}^{2} as $p \rightarrow \infty$. Also for any sequence $p_{n} \rightarrow \infty$ as $n \rightarrow \infty$, there exists a subsequence (again denoted by the same symbol) such that

$$
\begin{align*}
& \tilde{u}_{p_{n}}(y) \rightarrow U(y):=-2 \log \left(1+\frac{|y|^{2}}{8}\right) \quad \text { in } C_{l o c}^{2}\left(\mathbb{R}^{2}\right), \tag{1.3}\\
& \left|x_{p_{n}}\right|^{2+2 \alpha} p_{n}\left\|u_{p_{n}}\right\|_{\infty}^{p_{n}-1} \rightarrow \infty, \quad \operatorname{dist}\left(x_{p_{n}}, \partial \Omega\right)^{2} p_{n}\left\|u_{p_{n}}\right\|_{\infty}^{p_{n}-1} \rightarrow \infty \tag{1.4}
\end{align*}
$$

as $n \rightarrow \infty$. Moreover, the least energy solution u_{p} has at most two global maximum points in Ω for large p.

After obtaining these results, Zhao conjectured that u_{p} has only one global maximum point when p large in Theorem 1.

Main purpose of this note is to answer the conjecture affirmatively.
Theorem 2 Under the assumption of Theorem 1, the number of global maximum points of least energy solution u_{p} is exactly 1 for p large enough.

For the proof, we will use the Morse index characterization of least energy solutions and an argument of [6]. Relations between the number of blowingup points and the Morse indices of blowing-up solutions to a two-dimensional Liouville equation have been studied in [7], [8].

2. Proof of Theorem 2.

As in $\S 1$, let v_{p} denote a solution of (1.2), which may be chosen positive. Then v_{p} solves the equation

$$
-\Delta v_{p}=S_{p}|x|^{2 \alpha} v_{p}^{p} \quad x \in \Omega, \quad v_{p}>0 \quad x \in \Omega, \quad v_{p}=0 \quad x \in \partial \Omega .
$$

Let $u_{p}=S_{p}^{1 /(p-1)} v_{p}$ be a least energy solution to (1.1). First, we recall the well-known fact, which says that the Morse index of u_{p} is less than or equal to 1 for any $p>1$.

Lemma 3 Let $L_{p}=-\Delta_{x}-p|x|^{2 \alpha} u_{p}^{p-1}(x): H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$ denote the linearized operator around u_{p}. Then the second eigenvalue of L_{p}, denoted by $\lambda_{2}\left(L_{p}, \Omega\right)$, is nonnegative.

Proof. When $\alpha=0$, a proof of this lemma is shown, for example, in [2]. Proof in the case of $\alpha>0$ is similar. Here we recall it for the sake of completeness.

Let $\bar{L}_{p}=-\Delta_{x}-p S_{p}|x|^{2 \alpha} v_{p}^{p-1}(x): H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$ denote the linearized operator around v_{p}. Since $S_{p} v_{p}^{p-1}=u_{p}^{p-1}$, it is enough to show that the second eigenvalue of \bar{L}_{p}, denoted by $\lambda_{2}\left(\bar{L}_{p}, \Omega\right)$, is nonnegative. For this purpose, let us define

$$
f(t)=\frac{\int_{\Omega}\left|\nabla\left(v_{p}+t \varphi\right)\right|^{2} d x}{\left(\int_{\Omega}|x|^{2 \alpha}\left|v_{p}+t \varphi\right|^{p+1} d x\right)^{\frac{2}{p+1}}}
$$

for any $\varphi \in H_{0}^{1}(\Omega)$. By the minimality of v_{p}, we have $f^{\prime}(0)=0$ and $f^{\prime \prime}(0) \geq 0$. Calculation using $\int_{\Omega}|x|^{2 \alpha} v_{p}^{p+1} d x=1$ and $\int_{\Omega}\left|\nabla v_{p}\right|^{2} d x=S_{p}$ shows that

$$
\begin{aligned}
f^{\prime \prime}(0) & =2\left\{\int_{\Omega}|\nabla \varphi|^{2} d x-p S_{p} \int_{\Omega}|x|^{2 \alpha} v_{p}^{p-1} \varphi^{2} d x+(p-1) S_{p}\left(\int_{\Omega}|x|^{2 \alpha} v_{p}^{p} \varphi d x\right)^{2}\right\} \\
& =2\left(\bar{L}_{p} \varphi, \varphi\right)_{L^{2}(\Omega)}+2(p-1) S_{p}\left(\int_{\Omega}|x|^{2 \alpha} v_{p}^{p} \varphi d x\right)^{2}
\end{aligned}
$$

Combining this to a variational characterization of $\lambda_{2}\left(\bar{L}_{p}, \Omega\right)$, we have

$$
\begin{aligned}
& \lambda_{2}\left(\bar{L}_{p}, \Omega\right)=\sup _{L \subset H_{0}^{1}(\Omega), c o d i m L=1} \inf _{\varphi \in L} \frac{\left(\bar{L}_{p} \varphi, \varphi\right)_{L^{2}(\Omega)}}{\|\varphi\|_{L^{2}(\Omega)}^{2}} \\
& \geq \inf _{\varphi \in H_{0}^{1}(\Omega), \varphi \perp|x|^{2 \alpha} v_{p}^{p}} \frac{\left(\bar{L}_{p} \varphi, \varphi\right)_{L^{2}(\Omega)}}{\|\varphi\|_{L^{2}(\Omega)}^{2}}=\inf _{\varphi \in H_{0}^{1}(\Omega), \varphi \perp|x|^{2 \alpha} v_{p}^{p}} \frac{1}{2} \frac{f^{\prime \prime}(0)}{\|\varphi\|_{L^{2}(\Omega)}^{2}} \geq 0 .
\end{aligned}
$$

By using this fact, we prove Theorem 2 by a contradiction argument.
Proof of Theorem 2. Assume the contrary that there exist two global maximum points $x_{p_{n}}^{1}, x_{p_{n}}^{2}$ of $u_{p_{n}}, x_{p_{n}}^{i} \in \Omega,\left\|u_{p_{n}}\right\|_{\infty}=u_{p_{n}}\left(x_{p_{n}}^{i}\right),(i=1,2)$ for some sequence $p_{n} \rightarrow \infty$. Define $\varepsilon_{p_{n}}^{i}>0$ by the relation

$$
\begin{equation*}
\left(\varepsilon_{p_{n}}^{i}\right)^{2}\left|x_{p_{n}}^{i}\right|^{2 \alpha} p_{n}\left\|u_{p_{n}}\right\|_{\infty}^{p_{n}-1}=1, \tag{2.1}
\end{equation*}
$$

and the scaled functions

$$
\begin{align*}
\tilde{u}_{p_{n}}^{i}(y) & =\frac{p_{n}}{\left\|u_{p_{n}}\right\|_{\infty}}\left\{u_{p_{n}}\left(\varepsilon_{p_{n}}^{i} y+x_{p}^{i}\right)-u_{p_{n}}\left(x_{p_{n}}^{i}\right)\right\}, \tag{2.2}\\
y & \in \Omega_{p_{n}}^{i}:=\frac{\Omega-x_{p_{n}}^{i}}{\varepsilon_{p_{n}}^{i}}
\end{align*}
$$

for $i=1,2$. Now we assume $\alpha>e-1$, so all results of Theorem 1 hold true for $\tilde{u}_{p_{n}}^{i},(i=1,2)$. In particular, there exists a subsequence (denoted by the same symbol again) such that (1.3) holds for both $\tilde{u}_{p_{n}}^{i}$.

Next, we define elliptic operators

$$
\begin{equation*}
\tilde{L}_{p_{n}}^{i}=-\Delta_{y}-\left|\frac{\varepsilon_{p_{n}}^{i}}{\left|x_{p_{n}}^{i}\right|} y+\frac{x_{p_{n}}^{i}}{\left|x_{p_{n}}^{i}\right|}\right|^{2 \alpha}\left(1+\frac{\tilde{u}_{p_{n}}^{i}}{p_{n}}(y)\right)^{p_{n}-1}, \quad(i=1,2) \tag{2.3}
\end{equation*}
$$

acting on $H_{0}^{1}\left(\Omega_{p_{n}}^{i}\right)$. These operators are related to the operator $L_{p_{n}}$ by the formula

$$
\left.\left(\varepsilon_{p_{n}}^{i}\right)^{2} L_{p_{n}}\right|_{x=\varepsilon_{p_{n}}^{i} y+x_{p_{n}}^{i}}=\tilde{L}_{p_{n}}^{i}, \quad y \in \Omega_{p_{n}}^{i},
$$

for $i=1,2$. Also, eigenvalues are related with each other by the formula

$$
\begin{equation*}
\left(\varepsilon_{p_{n}}^{i}\right)^{2} \lambda_{j}\left(L_{p_{n}}, D\right)=\lambda_{j}\left(\tilde{L}_{p_{n}}^{i}, D_{p_{n}}^{i}\right), \quad D_{p_{n}}^{i}=\frac{D-x_{p_{n}}^{i}}{\varepsilon_{p_{n}}^{i}} \tag{2.4}
\end{equation*}
$$

where $\lambda_{j}\left(L_{p_{n}}, D\right)$ will denote a j-th eigenvalue of the operator $L_{p_{n}}$ acting on $H_{0}^{1}(D)$ for a domain D, etc.

Let $B(a, R)=B_{R}(a)$ denote an open ball of center $a \in \mathbb{R}^{2}$ with radius R. We prove the following:

Lemma 4 There exist disjoint balls $B^{i}(i=1,2)$, each ball is of the form $B\left(x_{p_{n}}^{i}, \varepsilon_{p_{n}}^{i} R\right)$ for some $R>0$, such that $\lambda_{1}\left(L_{p_{n}}, B^{i}\right)<0$ for $i=1,2$ when n sufficiently large.

Proof. For $R>0$, we define

$$
w_{R}(y)=2 \log \frac{8+R^{2}}{8+|y|^{2}} .
$$

Since $w_{R}=0$ on $\partial B_{R}(0)$, we see $w_{R} \in H_{0}^{1}\left(B_{R}(0)\right)$.
We will prove that $\left(\tilde{L}_{p_{n}}^{i} w_{R}, w_{R}\right)_{L^{2}\left(B_{R}(0)\right)}<0$ for $R>0$ sufficiently large and $B_{R}(0) \subset \Omega_{p_{n}}^{i}$. Indeed,

$$
\begin{aligned}
\left(\tilde{L}_{p_{n}}^{i} w_{R}, w_{R}\right)_{L^{2}\left(B_{R}(0)\right)} & =\int_{B_{R}(0)}\left|\nabla w_{R}\right|^{2} d y \\
& -\int_{B_{R}(0)}\left|\frac{\varepsilon_{p_{n}}^{i}}{\left|x_{p_{n}}^{i}\right|} y+\frac{x_{p_{n}}^{i}}{\left|x_{p_{n}}^{i}\right|}\right|^{2 \alpha}\left(1+\frac{\tilde{u}_{p_{n}}^{i}}{p_{n}}(y)\right)^{p_{n}-1} w_{R}^{2}(y) d y \\
& =: I_{1}-I_{2} .
\end{aligned}
$$

We see

$$
I_{1}=\int_{B_{R}(0)} \frac{16|y|^{2}}{\left(8+|y|^{2}\right)^{2}} d y=2 \pi \int_{0}^{R} \frac{16 r^{2}}{\left(8+r^{2}\right)^{2}} r d r=32 \pi\left[\log R+o_{R}(1)\right]
$$

where $o_{R}(1) \rightarrow 0$ as $R \rightarrow \infty$. As for I_{2}, (1.4) implies $\frac{\varepsilon_{p_{n}}^{i}}{\left|x_{p_{n}}^{i}\right|} \rightarrow 0$ as $n \rightarrow \infty$ even if $x_{p_{n}}^{i} \rightarrow 0$. Also $\frac{x_{p_{n}}^{i}}{\left|x_{p_{n}}^{i}\right|} \rightarrow \exists y_{0},\left|y_{0}\right|=1$ for a subsequence. Therefore by choosing a subsequence, we have

$$
\left|\frac{\varepsilon_{p_{n}}^{i}}{\left|x_{p_{n}}^{i}\right|} y+\frac{x_{p_{n}}^{i}}{\left|x_{p_{n}}^{i}\right|}\right|^{2 \alpha}\left(1+\frac{\tilde{u}_{p_{n}}^{i}}{p_{n}}(y)\right)^{p_{n}-1} \rightarrow e^{U(y)}
$$

in $C_{\text {loc }}^{2}\left(\mathbb{R}^{2}\right)$ by (1.3). Thus,

$$
\begin{aligned}
I_{2} & =\int_{B_{R}(0)}\left|\frac{\varepsilon_{p_{n}}^{i}}{\left|x_{p_{n}}^{i}\right|} y+\frac{x_{p_{n}}^{i}}{\left|x_{p_{n}}^{i}\right|}\right|^{2 \alpha}\left(1+\frac{\tilde{u}_{p_{n}}^{i}}{p_{n}}(y)\right)^{p_{n}-1} w_{R}^{2}(y) d y \\
& =\int_{B_{R}(0)} \frac{1}{\left(1+\frac{|y|^{2}}{8}\right)^{2}}\left\{\log \frac{8+R^{2}}{8+|y|^{2}}\right\}^{2} d y+o_{n}(1) \\
& =2 \pi \int_{0}^{R} \frac{r}{\left(1+\frac{r^{2}}{8}\right)^{2}}\left\{\log \left(8+R^{2}\right)-\log \left(8+r^{2}\right)\right\}^{2} d r+o_{n}(1) \\
& =2 \pi \cdot 8^{2}\left\{\log \left(8+R^{2}\right)\right\}^{2}\left[\frac{1}{16}+o_{R}(1)\right]+o_{n}(1) \\
& =32 \pi(\log R)^{2}\left[1+o_{R}(1)\right]+o_{n}(1),
\end{aligned}
$$

where we have used $\int_{0}^{\infty} \frac{r}{\left(8+r^{2}\right)^{2}} d r=\frac{1}{16}$. Hence we obtain

$$
\left(\tilde{L}_{p_{n}}^{i} w_{R}, w_{R}\right)_{L^{2}\left(B_{R}(0)\right)}=I_{1}-I_{2}=-32 \pi(\log R)^{2}\left[1+o_{R}(1)\right]<0
$$

by taking n sufficiently large first, and then $R>0$ large such that $B_{R}(0) \subset$ $\Omega_{p_{n}}^{i}$. This implies that the first eigenvalue of the operator $\tilde{L}_{p_{n}}^{i}$ on B_{R} is negative: $\lambda_{1}\left(\tilde{L}_{p_{n}}^{i}, B_{R}\right)<0$. By this and the scaling formula (2.4) proves the first half part of the Lemma.

Recall that, under the assumption considered here, the following estimate is proved in [9] Lemma 5.1:

$$
\frac{\left|x_{p}^{1}-x_{p}^{2}\right|}{\max \left\{\varepsilon_{p}^{1}, \varepsilon_{p}^{2}\right\}} \rightarrow \infty
$$

as $p \rightarrow \infty$. This implies that these two balls $B\left(x_{p_{n}}^{i}, \varepsilon_{p_{n}}^{i} R\right)$ are disjoint for n sufficiently large.

By Lemma 4, we have

$$
\begin{equation*}
\lambda_{1}\left(L_{p_{n}}, B^{i}\right)<0 \quad i=1,2 \tag{2.5}
\end{equation*}
$$

for n sufficiently large. On the other hand, a well known estimate of $\lambda_{2}\left(L_{p_{n}}, \Omega\right)$ claims

$$
\begin{equation*}
\lambda_{2}\left(L_{p_{n}}, \Omega\right) \leq \sum_{i=1}^{2} \lambda_{1}\left(L_{p_{n}}, B^{i}\right) . \tag{2.6}
\end{equation*}
$$

See, for example, [7] Appendix. From (2.5) and (2.6), we have $\lambda_{2}\left(L_{p_{n}}, \Omega\right)<0$ for n large, which contradicts to Lemma 3 .

Acknowledgments. Part of this work was done while the author visited Laboratoire de mathématiques, Université de Cergy-Pontoise, Cergy, France, in November 2011. This work was supported by JSPS Grant-in-Aid for Scientific Research (KAKENHI) (B), No. 23340038.

References

[1] Adimurthi, and M. Grossi: Asymptotic estimates for a two-dimensional problem with polynomial nonlinearity, Proc. Amer. Math. Soc., 132(4) (2003) 1013-1019.
[2] C. S. Lin: Uniqueness of least energy solutions to a semilinear elliptic equation in \mathbb{R}^{2}, Manuscripta Math., 84 (1994) 13-19.
[3] K. El Mehdi, and M. Grossi. Asymptotic estimates and qualitative properties of an elliptic problem in dimension two, Advances in Nonlinear Stud., 4(1) (2004) 15-36.
[4] X. Ren, and J. Wei: On a two-dimensional elliptic problem with large exponent in nonlinearity, Trans. Amer. Math. Soc., 343 (2) (1994) 749 763.
[5] X. Ren, and J. Wei: Single-point condensation and least-energy solutions, Proc. Amer. Math. Soc., 124 (1) (1996) 111-120.
[6] F. Takahashi: Morse indices and the number of maximum points of some solutions to a two-dimensional elliptic problem, Archiv der Math., 93 (2009) 191-197.
[7] F. Takahashi: Blow up points and the Morse indices of solutions to the Liouville equation in two-dimension, to appear in Advances in Nonlinear Studies
[8] F. Takahashi: Blow up points and the Morse indices of solutions to the Liouville equation: inhomogeneous case, submitted
[9] C. Zhao: Some results on two-dimensional Hénon equation with large exponent in nonlinearity, preprint

