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HIROAKI ISHIDA AND YAEL KARSHON

Abstract. We show that if a holomorphic n dimensional compact torus action on a com-
pact connected complex manifold of complex dimension n has a fixed point then the man-
ifold is equivariantly biholomorphic to a smooth toric variety.

1. Introduction

We begin by recalling some notions from the theory of toric varieties.
We work in the vector space Lie(S 1)n � Rn with the lattice Hom(S 1, (S 1)n) � Zn. Here,

we identify Lie(S 1) with R such that the exponential map exp: R→ S 1 is t 7→ e2πit.
A unimodular fan is a finite set ∆ of convex polyhedral cones with the following prop-

erties.
(1) A face of a cone in ∆ is also a cone in ∆.
(2) The intersection of two cones in ∆ is a common face.
(3) Every cone in ∆ is unimodular, i.e., it has the form pos(λ1, . . . , λk) where λ1, . . . , λk

is part of a Z-basis of the lattice. Here, pos denotes the positive span: the set of
linear combinations with non-negative coefficients.1

A fan ∆ is complete if the union of the cones in ∆ is all of Lie(S 1)n.
The theory of toric varieties associates to a unimodular fan ∆ a complex manifold M∆

with a holomorphic (C∗)n-action with the following properties.
(1) The fixed points in M∆ are in bijection with the n-dimensional cones in ∆.
(2) Let p be a fixed point in M∆. Then the isotropy weights at p are a Z-basis to the

lattice Hom((S 1)n, S 1) ⊂ (Lie(S 1)n)∗. Moreover, let λ1, . . . , λn be the dual basis;
then the cone in ∆ that corresponds to p is pos(λ1, . . . , λn).

(3) The manifold M∆ is compact if and only if the fan ∆ is complete.
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For the details of the construction and the proof of these properties, we refer the reader to
the book [2] by Cox, Little, and Schenck.

In fact, M∆ is an algebraic variety. Moreover, every smooth complex algebraic variety
that is equipped with an algebraic (C∗)n-action with an open dense free orbit is isomorphic
to some M∆. (The proof of this fact appeared in the book [6] by Kempf, Knudsen, Mum-
ford, and Saint-Donat and in the article [9] by Miyake and Oda and relies on a lemma of
Sumihiro [10]; see Corollary 3.1.8 in [2].) Our main theorem is a complex analytic variant
of this result:

Theorem 1. Let M be a connected complex manifold of complex dimension n, equipped
with a faithful action of the torus (S 1)n by biholomorphisms. If M is compact and the
action has fixed points, then there exists a unimodular fan ∆ and an (S 1)n-equivariant
biholomorphism of M∆ with M.

Remark 2.

(1) Our theorem gives a negative answer to a question that was raised by Buchstaber
and Panov in [1, Problem 5.23].

Let M be a closed 2n dimensional manifold with an (S 1)n-action that is locally
standard: every orbit has a neighbourhood that is equivariantly diffeomorphic, up to
an automorphism of (S 1)n, to an invariant open subset ofCn with the standard (S 1)n-
action. Also assume that the quotient M/(S 1)n is diffeomorphic, as a manifold with
corners, to a simple convex polytope P in Rn.2 Such manifolds, introduced in [3]
and studied in the toric topology community, are called quasi-toric manifolds3.

The question of Buchstaber and Panov is whether there exists a non-toric qua-
sitoric manifold that admits an (S 1)n-invariant complex structure.

(2) Our theorem strengthens an earlier result of Ishida and Masuda, that if a closed
complex manifold of complex dimension n admits an (S 1)n-action, and if its odd-
degree cohomology groups vanish, then the Todd genus of the manifold is equal to
one. See [5, Theorem 1.1 and Remark 1.2].

(3) It is necessary to assume that the action has fixed points: the complex torus C∗/(z ∼
2z) has a holomorphic S 1-action, induced from multiplication on C∗, but it is not a
toric variety.

(4) It is necessary to assume that the manifold is compact: the open unit disc in C with
the natural circle action has a fixed point, but it is not a toric variety: the circle
action does not extend to a C∗-action.

2 A map from M/(S 1)n to P is a diffeomorphism of manifolds with corners if and only if it is a homeomor-
phism and, for every real valued function on P, the function extends to a smooth function on Rn if and only
if its pullback to M is smooth. For every k ∈ {0, . . . , n}, a diffeomorphism carries the k dimensional orbits in
M to the relative interiors of the k dimensional faces of P.

3 Davis-Januszkiewicz [3] used the term toric manifold, but this term was already used in the literature to
mean a smooth toric variety, so Buchstaber-Panov [1] introduced instead the term quasitoric manifold.



TORUS ACTIONS ON COMPLEX MANIFOLDS 3

2. The complexified action

Let the torus (S 1)n act on a complex manifold M by biholomorphisms. If the manifold
M is compact, then the (S 1)n-action extends to a (C∗)n-action that is holomorphic not only
in the sense that each element of (C∗)n acts by a biholomorphism but also in the sense
that the action map (C∗)n × M → M is holomorphic. See, e.g., [4, Theorem 4.4]. For
the convenience of the reader, we briefly recall here some of the details of this standard
construction.

Let ξ1, . . . , ξn be the fundamental vector fields of the (S 1)n-action with respect to the
coordinate one-dimensional subtori. Let J : T M → T M be the multiplication by

√
−1. We

claim that the vector fields −Jξ1, . . . ,−Jξn are holomorphic (in the sense that their flows
preserve the complex structure) and commute with each other and with the vector fields ξi.

Because the (S 1)n-action preserves J and ξ j, it preserves −Jξ j, for each j. So the vector
fields −Jξ j commute with the vector fields ξi that generate this action. Because J is a com-
plex structure, its Nijenhaus tensor, N(Z,W) := 2 ([JZ, JW] − J[Z, JW] − J[JZ,W] − [Z,W]),
vanishes. Setting Z = ξi and W = ξ j, we get that [Jξi, Jξ j] = J[ξi, Jξ j]+ J[Jξi, ξ j]+ [ξi, ξ j],
and each of the three terms on the right hand side is zero. So the vector fields −Jξ j com-
mute with each other. A vector field Y is holomorphic if and only if [Y, JW] = J[Y,W] for
each vector W; see [7, Proposition 2.10 in Chapter IX]. Set Y := −Jξi and W arbitrary;
because JY(= ξi) is holomorphic, [JY, JW] = J[JY,W]; by the vanishing of the Nijenhaus
tensor,

0 = N(JY,W) = 2 ([−Y, JW] − J[JY, JW] − J[−Y,W] − [JY,W])
= 2([−Y, JW] − J[−Y,W]),

so Y is holomorphic.
If M is compact, the vector fields −Jξ1, . . . ,−Jξn are complete, and we get an R2n-action,

R2n × M → M, via  2n∑
i=1

aiei, x

 7→ cx(1),

where cx(r) is the integral curve of the vector field
∑n

i=1 −aiJξi + an+iξi with cx(0) = x. This
action descends to a (C∗)n-action by biholomorphisms that extends the given (S 1)n-action.
Finally, the action map (C∗)n × M → M is holomorphic, because its differential, which at
the point (z,m) is the map Cn × TmM → Tz·mM that takes (2π(r1 + iθ1, . . . , rn + iθn), v) to∑

j −r jJξ j|z·m + θ jξ j|z·m + z∗v, is complex linear.

Remark 3. In the next section we will see that if there exists a fixed point then the extended
(C∗)n-action is faithful. In general, the extended (C∗)n-action might not be faithful.

Example 4. Let (S 1)n act on Cn with weights α1, . . . , αn:

g · (z1, . . . , zn) = (gα1z1, . . . , gαnzn),



4 H. ISHIDA AND Y. KARSHON

where gαi = gαi1
1 . . . gαin

n for g = (g1, . . . , gn) ∈ (S 1)n and the isotropy weight αi = (αi1, . . . , αin) ∈
Zn. Then the complexified action is given by the same formula applied to g = (g1, . . . , gn) ∈
(C∗)n.

3. Structures near fixed points

Let M be a complex manifold of complex dimension n. Let the torus (S 1)n act on M
faithfully by biholomorphisms. Let p be a point in M that is fixed by the (S 1)n-action. Let
α1, . . . , αn be the isotropy weights at p.

We begin with a local result:

Lemma 5. There exists an (S 1)n-invariant neighbourhood Up of p in M, an (S 1)n-invariant
neighbourhood Ũp of the origin in TpM, and an (S 1)n-equivariant biholomorphism φp : Up →
Ũp whose differential at p is the identity map on TpM.

Here, Cαi denotes the one dimensional complex vector space Cwith the (S 1)n-action that
is obtained by composing the homomorphism (S 1)n → S 1 that is encoded by the weight αi

with the standard action of S 1 on C by scalar multiplication.

Proof. Let φ : U → Ũ ⊆ Cn be a local holomorphic chart near p with φ(p) = 0. Identifying
Cn with TpM via the differential

(dφ)p : TpM → T0C
n � Cn,

we get a biholomorphism
φ′ : U → Ũ′ ⊆ TpM

whose differential at p is the identity map on TpM. We want to obtain such a biholomor-
phism that is also equivariant.

Set
U′ :=

∩
g∈(S 1)n

gU.

Clearly, U′ is invariant and contains p. We now show that U′ is open. The complement of
U′ is the image of the closed subset (S 1)n × (M r U) of (S 1)n × M under the action map
(S 1)n × M → M. Because (S 1)n is compact, the action map is proper. Being proper means
that the preimage of every compact set is compact; when the target space M is a manifold4

it implies that the map is closed. Thus, the complement M r U′ is closed, and so U′ is
open.

To obtain an equivariant chart, we average φ′: let

φ̃ :=
∫

g∈(S 1)n
(g ◦ φ′ ◦ g−1) dg : U′ → TpM,

4 In fact, it is enough to assume that the target space is Hausdorff and compactly generated. Compactly
generated means that a subset is closed if and only if its intersection with every compact set K is closed in
K; this property holds if the space is locally compact or if the space is metrizable.
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where dg is Haar measure on (S 1)n. The map φ̃ is holomorphic and (S 1)n-equivariant.
Moreover, its differential at p is the identity map on TpM. By the implicit function the-
orem, φ̃ restricts to a biholomorphism from some smaller open neighbourhood U′′ of p
in M to an open neighbourhood of the origin in TpM. The restriction of φ̃ to the invariant
neighbourhood Up :=

∩
g∈(S 1)n

g · U′′ of p in M satisfies the requirements of the lemma. �

Corollary 6. There exists an (S 1)n-equivariant local holomorphic chart

φp : Up → Dn

from an invariant open neighbourhood Up of p to a polydisc Dn in Cα1 ⊕ . . . ⊕ Cαn .

Proof. By the definition of the isotropy weights, there exists a complex linear (S 1)n-equivariant
isomorphism between the tangent space TpM and the representation Cα1 ⊕ . . .⊕Cαn . Corol-
lary 6 then follows from Lemma 5 by restricting the chart to the preimage of a polydisc. �

We would like to extend the chart of Corollary 6 to a chart whose image is all of Cn.
We can do this when the (S 1)n extends to a (C∗)n-action; for example, if the manifold is
compact; by “sweeping” by the (C∗)n-action.

Lemma 7. Suppose that the (S 1)n-action extends to a (C∗)n-action. Then there exists an
invariant open neighbourhood Vp of p in M and an (S 1)n-equivariant biholomorphism of
Vp with Cα1 ⊕ . . . ⊕ Cαn .

Proof. Let φp : Up → Dn be an (S 1)n-equivariant holomorphic local chart, as in Corol-
lary 6. Because φp is (S 1)n-equivariant and holomorphic, it intertwines the restriction to
Up of the vector fields that generate the complexified (C∗)n-action on M with the restriction
toDn of the vector fields that generate the complexified (C∗)n-action on Cn = Cα1⊕· · ·⊕Cαn .
This, and the fact that φp is a diffeomorphism between Up and Dn, implies that φp also in-
tertwines the partial flows on Up and on Dn that are generated by these vector fields; in
particular it intertwines the domains of definition of these partial flows.

For each t ∈ R, let gt be the element of (C∗)n that acts on Cn as scalar multiplication by
e−t, and let η ∈ Lie(C∗)n be the generator of the one-parameter subgroup t 7→ gt. Because
e−tDn ⊂ Dn for all t ≥ 0, and because φp intertwines the domains of definition of the partial
flows on Up and on Dn that correspond to η, we get that gtUp ⊂ Up for all t ≥ 0. So, for
every t ≥ 0, the domain of definition of the (S 1)n-equivariant biholomorphism

φ(t)
p := (gt)−1 ◦ φp ◦ gt : g−tUp → etDn

contains Up. Here, gt : g−tUp → Up and gt : etDn → Dn are given by the complexified
actions on M and on Cn. By the choice of gt, the latter map is multiplication by e−t.

Moreover, because φp intertwines the partial flows that correspond to η and these partial
flows are defined for all t ≥ 0, the restriction to Up of φ(t)

p coincides with φp for all t ≥ 0.
Substituting t − s instead of t, we get that the maps φ(t)

p and φ(s)
p agree whenever they are
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both defined. Thus, all these maps fit together into a map∪
t≥0

φ(t)
p : Vp → Cα1 ⊕ . . . ⊕ Cαn ,

where Vp =
∪

t≥0 g−tUp. This map is onto, because its image is the union of the sets etDn

over all t ≥ 0. The map is one to one, because it is one to one on each g−tUp, and for every
two points in the domain there exists a t ≥ 0 such that the points are both in g−tUp. Because
Vp is covered by (S 1)n-invariant open sets g−tUp on which the map is an (S 1)n-equivariant
biholomorphism, we deduce that the map is itself an (S 1)n-equivariant biholomorphism, as
required. �

4. Obtaining a fan

Let M be a complex manifold of complex dimension n, let the torus (S 1)n act on M
faithfully by biholomorphisms, and assume that this action extends to a holomorphic (C∗)n-
action. Moreover, assume that the action has at least one fixed point.

In Lemma 7 we assigned to every fixed point p in M an open subset Vp that is biholo-
morphic to Cn. By assumption, there exists at least one fixed point. So the union of the sets
Vp over these fixed points, ∪

p∈M(S 1)n

Vp,

is nonempty. We fix a connected component of this union and denote it X.

Remark 8. We would like to know that if M connected then the union of the sets Vp is all
of M. We do not know how to prove this directly; we do not even know if it is always true.
We will eventually show that if M is compact and connected then X is compact; so in this
case X must coincides with M, and the union of the sets Vp is indeed all of M.

The connected components of the fixed point sets of the circle subgroups of (S 1)n are
closed complex submanifolds of X. If such a submanifold has complex codimension one,
then, in analogy with the toric topology literature, we call it a characteristic submanifold
of X (cf. [8, p. 240]).

Because X is a union of finitely many Vps and each Vp has only finitely many character-
istic submanifolds, there are only finitely many characteristic submanifolds in X. Denote
them

X1, . . . , Xm.

Let Ti be the subgroup of T that fixes Xi. If a compact group acts faithfully on a con-
nected manifold then at every fixed point the linear isotropy representation is faithful.
Therefore, the linear isotropy representation of Ti at any point q of Xi is faithful. Be-
cause Ti acts holomorphically and fixes Xi, we get a faithful representation of Ti on the
one dimensional complex space TqX/TqXi. This gives an injection Ti → S 1, where S 1 acts
on TqX/TqXi by scalar multiplication. By continuity, this injection is independent of the
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choice of point q in Xi. Because, by assumption, Ti contains a circle subgroup of T , this
injection is an isomorphism. Let

λi : S 1 → Ti ⊂ (S 1)n

be the inverse of this isomorphism, composed with the inclusion map into (S 1)n.
We define an abstract simplicial complex:

Σ :=

I ⊆ {1, . . . ,m}
∣∣∣ XI :=

∩
i∈I

Xi , ∅
 .

To each simplex I ∈ Σ we assign the cone

CI := pos(λi | i ∈ I) :=

∑
i∈I

aiλi

∣∣∣ ai ≥ 0


in Lie(S 1)n.

Example 9. TakeCn with coordinates z1, . . . , zn. Let (S 1)n act on it with weights α1, . . . , αn ∈
Hom((S 1)n, S 1) ⊂ (Lie(S 1)n)∗. Suppose that the action is faithful; then α1, . . . , αn are a Z-
basis of Hom((S 1)n, S 1). The characteristic submanifolds are the coordinate hyperplanes
{zi = 0} for i = 1, . . . , n. The homomorphisms λ1, . . . , λn are the basis to Hom(S 1, (S 1)n) ⊂
Lie(S 1)n that is dual to α1, . . . , αn.

Recall that a cone in Lie(S 1)n is unimodular if it is generated by part of a Z-basis of
Hom(S 1, (S 1)n).

Returning to our general case –

Lemma 10. The cones CI , for I ∈ Σ, are unimodular.

Proof. Let I ∈ Σ. By the definition of Σ, this means that the intersection
∩

i∈I Xi is
nonempty. Let q be a point in this intersection. Let p be a fixed point such that q ∈ Vp.
Because Vp is isomorphic to some Cα1 ⊕ . . .⊕Cαn on which the action is faithful, the lemma
follows from Example 9. �

Every Vp contains an open dense free (C∗)n orbit. For any two Vps that are in the con-
nected component X, these orbits coincide. Thus, there exists a unique free (C∗)n orbit in
X, it is open and dense, and it is contained in every Vp that is contained in X.

Fix a point q in the free (C∗)n orbit in X. For any ξ ∈ Lie(S 1)n, consider the curve

cξq : R→ X

that is given by
cξq(r) := exp(−rJξ) · q for r ∈ R

where exp: Lie(C∗)n → (C∗)n is the exponential map and where J denotes multiplication
by i in Lie(C∗)n.
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Denote by C0
I the relative interior of the cone CI . Denote

X0
I =
∩
i∈I

Xi r
∩
j<I

X j.

Lemma 11. Let ξ ∈ Lie(S 1)n and I ∈ Σ. Then ξ ∈ C0
I if and only if the curve cξq(r)

converges as r → −∞ to a point q′ in X0
I . Moreover, in this case the limit point q′ belongs

to Vp for every p such that Vp ∩ XI , ∅.

Proof. Suppose that ξ ∈ C0
I . By the definition of Σ, XI is nonempty. Let p be such that Vp

meets XI . Without loss of generality assume that I = {1, . . . , k} and that the characteristic
submanifolds that meet Vp are X1, . . . , Xn. Let α1, . . . , αn denote the isotropy weights at p.
The assumption that ξ ∈ C0

I exactly means that ⟨ξ, αi⟩ is positive for i = 1, . . . , k and zero
for i = k + 1, . . . , n. Fix an isomorphism (z1, . . . , zn) : Vp → Cn = Cα1 ⊕ . . . ⊕ Cαn such that
zi(q) = 1 for all i. In these coordinates, the curve cξq(r) is represented as

(z1, . . . , zn)(cq(r)) = (e2πr⟨ξ,α1⟩, . . . , e2πr⟨ξ,αn⟩).

As r approaches −∞, the curve in Cn approaches the point (0, . . . , 0︸  ︷︷  ︸
k

, 1, . . . , 1︸  ︷︷  ︸
n−k

). On the

other hand, the coordinates take each intersection Vp ∩ Xi to the coordinate hyperplane
{(z1, . . . , zn) | zi = 0}, and they take the intersection Vp ∩ X0

I to the set {(z1, . . . , zn) | zi =

0 iff 1 ≤ i ≤ k}. So the curve approaches a point in Vp ∩ X0
I , as required.

Now suppose that the curve cξq(r) converges as r → −∞ to a point in X0
I . Let p be such

that this limit point is contained in Vp. As before, without loss of generality assume that
I = {1, . . . , k} and that the characteristic submanifolds that meet Vp are exactly X1, . . . , Xn;
fix an isomorphism (z1, . . . , zn) : Vp → Cn = Cα1 ⊕ . . . ⊕ Cαn such that zi(q) = 1 for all i;
the curve cξq(r) is represented as (z1, . . . , zn)(cq(r)) = (e2πr⟨ξ,α1⟩, . . . , e2πr⟨ξ,αn⟩). Because the
curve approaches a limit as r → −∞, the pairings ⟨ξ, αi⟩ are nonnegative for all i = 1, . . . , n.
Because this limit is in X0

I , the pairings are positive for every i ∈ I and they vanish for every
i ∈ {1, . . . , n} r I. Thus, ξ ∈ C0

I as required. �

Corollary 12. (1) For every I, J ∈ Σ, if I , J, then C0
I ∩C0

J = ∅.
(2) For every I, J ∈ Σ,

CI ∩CJ = CI∩J.

(3) The collection of cones
∆ :=

{
CI

∣∣∣ I ∈ Σ }
is a fan, that is, every face of every cone in ∆ is itself in ∆, and the intersection of
every two cones in ∆ is a common face.

Proof. Part (1) follows from Lemma 11 because the sets X0
I are disjoint. Part (3) follows

from Part (2).
For Part (2), we only need to show the inclusion CI ∩ CJ ⊆ CI∩J, because the opposite

inclusion is trivial. Let ξ ∈ CI ∩ CJ. Let I′ ⊂ I and J′ ⊂ J be the subsets such that ξ ∈ C0
I′
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and ξ ∈ C0
J′ . Then C0

I′ ∩C0
J′ , ∅. By Part (1), I′ = J′. Let L = I′ = J′. Then L ⊂ I ∩ J, and

ξ ∈ C0
L ⊂ CI∩J. �

Lemma 13. For every I ∈ Σ, the set XI is an (S 1)n-invariant smooth closed complex
submanifold of X of complex codimension |I|, it is connected, and it contains a fixed point.

Proof. Fix I ∈ Σ.
Because each of the sets Xi, for i ∈ I, is closed in X, so is the intersection XI of these

sets.
Because X is the union of open subsets Vp, and because every intersection Vp ∩ XI is an

(S 1)n-invariant complex submanifold of codimension |I| in Vp, we deduce that XI is itself
an (S 1)n-invariant complex submanifold of codimension |I| in X. It remains to show that
XI is connected and contains a fixed point.

Choose any ξ ∈ C0
I (for example, we may take ξ =

∑
i∈I λi), and choose any q in the

free (C∗)n orbit in X. By Lemma 11, the curve cξq(r) converges as r → −∞; let q′ be its
limit. Also by Lemma 11, for every p such that Vp ∩ XI , ∅, the limit point q′ belongs to
Vp. Because XI is the union over such p of the subsets Vp ∩ XI , and because each of these
subsets is connected and contains q′, the union XI is connected. Also, every p such that
Vp ∩ XI , ∅ belongs to Vp ∩ XI; because the set of such ps is nonempty, XI contains a fixed
point. �

Corollary 14. In the fan ∆, every cone is contained in an n dimensional cone.

Proof. Every cone in the fan has the form CI for some I ∈ Σ. By Lemma 13, the set XI

contains a fixed point; let p be such a fixed point. Since Vp was chosen as in Lemma 7, by
Example 9 there exist exactly n characteristic submanifolds, say, X j for j ∈ J ⊂ {1, . . . ,m}
with |J| = n, that pass through p. Then J ∈ Σ, and CJ is an n dimensional cone in ∆ that
contains CI . �

5. Isomorphism of the subset X with a toric manifold

Let M be a complex manifold of complex dimension n, let the torus (S 1)n act on M
faithfully by biholomorphisms, and assume that this action extends to a holomorphic (C∗)n-
action. Moreover, assume that the action has at least one fixed point.

In Section 4 we described an open subset X of M and a unimodular fan ∆. Let M∆ be
the toric variety that is associated to the fan ∆.

Lemma 15. There exists an (S 1)n-equivariant biholomorphism between M∆ and X.

We recall some properties of the set X and the fan ∆. Let F denote the fixed point set
in X. For every fixed point p ∈ F, let αp,1, . . . , αp,n denote the isotropy weights of the torus
action at p.

(1) The set X is the union over p ∈ F of subsets Vp, such that each Vp is an invariant
open neighbourhood of p that is equivariantly biholomorphic to the linear repre-
sentation Cαp,1 , . . . ,Cαp,n .
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(2) The n-dimensional cones in ∆ are in bijection with the fixed point sets p ∈ F, and
the cone corresponding to the fixed point p is pos(λi1 , . . . , λin), where λi1 , . . . , λin is
a basis of Lie(S 1)n that is dual to the basis αp,1, . . . , αp,n of (Lie(S 1)n)∗.

The toric variety M∆ that is associated to the fan ∆ has similar properties: it is the
union over p ∈ F of invariant subsets V ′p, and every V ′p is equivariantly biholomorphic to
Cαp,1 ⊕ . . . ⊕ Cαp,n .

Lemma 15 follows immediately from these properties of X and M∆, by the following
lemma.

Lemma 16. Let X and X′ be complex manifolds of complex dimension n, equipped with
holomorphic (C∗)n-actions. Suppose that there exist open dense (C∗)n orbits O in X and O′
in X′. Suppose that there exist invariant open subsets Vp in X and V ′p in X′, both indexed
by p ∈ F, such that X is the union of the sets Vp and X′ is the union of the sets V ′p, and
that for each p ∈ F there exists an equivariant biholomorphism φp : Vp → V ′p. Then X is
equivariantly biholomorphic to X′.

Proof. Necessarily, O is contained in each Vp and O′ is contained in each V ′p. Fix a point
q in O and a point q′ in O′. After possibly composing each φp by the action of an element
of (C∗)n, we may assume that φp(q) = q′ for each p ∈ F. So, for each p and p̃ ∈ F, the
maps φp and φp̃ coincide at the point q. By equivariance, φp and φp̃ coincide on all of O;
by continuity, they coincide on the entire overlap Vp ∩ Vp̃. Thus, the φp fit together into a
map

φ =
∪

p

φp : X → X′.

This map is holomorphic, equivariant, and onto. Similarly, the inverses ψp := φp
−1 fit

together into a map

ψ =
∪

p

ψp : X′ → X.

We have that ψ ◦ φ = idX and φ ◦ ψ = idX′; thus, φ : X → X′ is an equivariant biholomor-
phism, as required. �

6. The compact case

Let M be a complex manifold of complex dimension n, with a faithful (S 1)n-action, with
fixed points.

Suppose that M is compact. In Section 2 we extended the (S 1)n-action to a holomorphic
(C∗)n-action. In Section 4 we chose an open subset X of M of a particular form and we
associated to it a fan ∆.

Lemma 17. The fan ∆ is complete.

We begin by proving a special case:
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Lemma 18. Let M′ be a complex manifold of complex dimension one, equipped with a
faithful holomorphic action of S 1 with at least one fixed point. Suppose that M′ is compact
and connected. Then M′ is equivariantly biholomorphic to CP1 with a standard C∗-action.

Proof. Consider the S 1-action on M′. Near a fixed point, it is isomorphic to the restric-
tion of either the standard S 1-action on C or the opposite S 1-action on C to an invariant
neighbourhood of the origin in C.

Consider the flow that is generated by −Jξ, where ξ generates the S 1-action. If the S 1-
action near a fixed point is standard, then the trajectories of this flow converge to the fixed
point as their parameter approaches −∞. If the S 1-action near a fixed point is opposite from
standard, then the trajectories of this flow converge to the fixed point as their parameter
approaches∞.

Outside the fixed point set, the action is free. The quotient M′/S 1 is5 a real one-manifold
with boundary; its boundary is exactly the image of the fixed point set. Because M′ is
compact and contains a fixed point, and by the classification of one-manifolds, the quotient
M′/S 1 must be a closed segment.

The flow on M′ that is generated by −Jξ descends to a flow on the interior of M′/S 1

that does not have fixed points. For each boundary component, the flow approaches that
component either as its parameter approaches∞ or as the parameter approaches −∞. Nec-
essarily, it approaches one boundary component when the parameter approaches ∞ and it
approaches the other boundary component when the parameter approaches −∞.

The corresponding fan must then be equal to the fan of CP1, and the manifold is equiv-
ariantly biholomorphic to CP1 by Lemma 16. �

We now return to the setup of Lemma 17: We have a complex manifold M of complex
dimension n, with a faithful (S 1)n-action, with fixed points. We assume that M is compact.
We chose an open subset X of M of a particular form and we associated to it a fan ∆.

Lemma 19. Every n − 1 dimensional cone in ∆ is a common face of two n dimensional
cones in ∆.

Proof. Let CI be an n−1 dimensional cone in∆, corresponding to the subset I = {i1, . . . , in−1}
of {1, . . . ,m}.

Let TI be the codimension one subtorus of (S 1)n that is generated by the circles Ti for
i ∈ I. By Lemma 13, XI is a connected complex manifold of dimension one, equipped with
a faithful holomorphic action of the circle (S 1)n/TI with at least one fixed point. We will
now show that XI is compact, and will deduce Lemma 19 from Lemma 18.

First note that XI is a connected component of the fixed point set of TI in X. This
follows from the facts that XI is connected (by Lemma 13) and that, for every Vp in X, if
the intersection Vp ∩ XI is nonempty then it is a connected component of the fixed point
set of TI in Vp. Let N denote the connected component of the fixed point set of TI in
M that contains XI . As in any holomorphic torus action on a complex manifold, N is a

5 Here, “is” means that there exists a unique manifold-with-boundary structure on M′/S 1 such that a
function is smooth if and only if its pullback to M′ is smooth.
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(S 1)n-invariant closed complex submanifold of M. By examining N near a point of XI , we
deduce that N has complex dimension one. Because N is closed in M and M is compact, N
is compact. By Lemma 18, N is equivariantly biholomorphic to CP1 with a standard action
of the circle (S 1)n/TI . In particular, N contains two fixed points; denote them p′ and p′′.
At least one of these fixed points is in XI , by Lemma 13. The intersection Vp′ ∩ N, being a
(C∗)n-invariant neighbourhood of p′ in N, must be all of Nr{p′′}. Similarly, the intersection
Vp′′ ∩ N, is all of N r {p′}. Thus, the intersection Vp′ ∩ Vp′′ is nonempty. Because at least
one of the sets Vp′ and Vp′′ is contained in X, and because X is a connected component of
the union of the sets Vp, we deduce that X contains both Vp′ and Vp′′ . Thus, N is entirely
contained in X, and so N must be equal to XI. Thus, XI is equivariantly biholomorphic to
CP1 with a standard action of the circle (S 1)n/TI . This implies the result of Lemma 19. �

We are now ready to prove Lemma 17.

Proof of Lemma 17. Let |∆| denote the union of the cones in ∆, and let |∆n−2| denote the
union of the cones in ∆ that have codimension ≥ 2. The complement Lie(S 1)n r |∆n−2| is
connected, open, and dense in Lie(S 1)n.

By Lemma 19, the union of the relative interiors of the faces of ∆ of dimension (n − 1)
and of dimension n is open in Lie(S 1)n. This union is |∆| r |∆n−2|. Thus, |∆| r |∆n−2| is also
open in Lie(S 1)n r |∆n−2|.

But because |∆| is closed in Lie(S 1)n, we also have that |∆|r |∆n−2| is closed in Lie(S 1)nr
|∆n−2|.

Because |∆| r |∆n−2| is open and closed in Lie(S 1)n r |∆n−2| and Lie(S 1)n r |∆n−2| is
connected, we deduce that |∆| r |∆n−2| is either empty or is equal to all of Lie(S 1)n r |∆n−2|.

Because, by assumption, M has a fixed point, ∆ has at least one n dimensional cone,
so |∆| r |∆n−2| is not empty. So |∆| r |∆n−2| is equal to all of Lie(S 1)n r |∆n−2|. Taking the
closures, we deduce that |∆| = Lie(S 1)n, as required. �

We are now ready to prove our main theorem.

Proof of Theorem 1. Lemma 16 gives an equivariant biholomorphism

φ : M∆ → X.

By Lemma 17, the fan ∆ is complete. This implies that the toric variety M∆ is compact. So
X must be compact. Because M is Hausdorff and connected, and X is a subset that is both
compact and open, X is all of M. So φ defines an equivariant biholomorphism from M∆ to
M, as required. �
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