COMPLETELY INTEGRABLE TORUS ACTIONS ON COMPLEX MANIFOLDS WITH FIXED POINTS

HIROAKI ISHIDA AND YAEL KARSHON

Abstract

We show that if a holomorphic n dimensional compact torus action on a compact connected complex manifold of complex dimension n has a fixed point then the manifold is equivariantly biholomorphic to a smooth toric variety.

1. Introduction

We begin by recalling some notions from the theory of toric varieties.
We work in the vector space $\operatorname{Lie}\left(S^{1}\right)^{n} \cong \mathbb{R}^{n}$ with the lattice $\operatorname{Hom}\left(S^{1},\left(S^{1}\right)^{n}\right) \cong \mathbb{Z}^{n}$. Here, we identify $\operatorname{Lie}\left(S^{1}\right)$ with \mathbb{R} such that the exponential map $\exp : \mathbb{R} \rightarrow S^{1}$ is $t \mapsto e^{2 \pi i t}$.

A unimodular fan is a finite set Δ of convex polyhedral cones with the following properties.
(1) A face of a cone in Δ is also a cone in Δ.
(2) The intersection of two cones in Δ is a common face.
(3) Every cone in Δ is unimodular, i.e., it has the form $\operatorname{pos}\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ where $\lambda_{1}, \ldots, \lambda_{k}$ is part of a \mathbb{Z}-basis of the lattice. Here, pos denotes the positive span: the set of linear combinations with non-negative coefficients. ${ }^{\text {II }}$
A fan Δ is complete if the union of the cones in Δ is all of $\operatorname{Lie}\left(S^{1}\right)^{n}$.
The theory of toric varieties associates to a unimodular fan Δ a complex manifold M_{Δ} with a holomorphic $\left(\mathbb{C}^{*}\right)^{n}$-action with the following properties.
(1) The fixed points in M_{Δ} are in bijection with the n-dimensional cones in Δ.
(2) Let p be a fixed point in M_{Δ}. Then the isotropy weights at p are a \mathbb{Z}-basis to the lattice $\operatorname{Hom}\left(\left(S^{1}\right)^{n}, S^{1}\right) \subset\left(\operatorname{Lie}\left(S^{1}\right)^{n}\right)^{*}$. Moreover, let $\lambda_{1}, \ldots, \lambda_{n}$ be the dual basis; then the cone in Δ that corresponds to p is $\operatorname{pos}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.
(3) The manifold M_{Δ} is compact if and only if the fan Δ is complete.

Date: March 19, 2012.
2010 Mathematics Subject Classification. Primary 14M25, Secondary 32M05, 57S25.
Key words and phrases. Torus action, complex manifold, toric manifold.
The first author is supported by JSPS Research Fellowships for Young Scientists. This work is partially supported by the JSPS Institutional Program for Young Researcher Overseas Visits "Promoting international young researchers in mathematics and mathematical sciences led by OCAMI".

The second author is partially supported by the Natural Sciences and Engineering Research Council of Canada.
${ }^{1}$ This property of a cone or a fan is also described in the literature by the adjectives smooth, non-singular, regular, and Delzant.

For the details of the construction and the proof of these properties, we refer the reader to the book [2] by Cox, Little, and Schenck.

In fact, M_{Δ} is an algebraic variety. Moreover, every smooth complex algebraic variety that is equipped with an algebraic $\left(\mathbb{C}^{*}\right)^{n}$-action with an open dense free orbit is isomorphic to some M_{Δ}. (The proof of this fact appeared in the book [6] by Kempf, Knudsen, Mumford, and Saint-Donat and in the article [9] by Miyake and Oda and relies on a lemma of Sumihiro [[10]]; see Corollary 3.1.8 in [2].) Our main theorem is a complex analytic variant of this result:

Theorem 1. Let M be a connected complex manifold of complex dimension n, equipped with a faithful action of the torus $\left(S^{1}\right)^{n}$ by biholomorphisms. If M is compact and the action has fixed points, then there exists a unimodular fan Δ and an $\left(S^{1}\right)^{n}$-equivariant biholomorphism of M_{Δ} with M.

Remark 2.

(1) Our theorem gives a negative answer to a question that was raised by Buchstaber and Panov in [【, Problem 5.23].

Let M be a closed $2 n$ dimensional manifold with an $\left(S^{1}\right)^{n}$-action that is locally standard: every orbit has a neighbourhood that is equivariantly diffeomorphic, up to an automorphism of $\left(S^{1}\right)^{n}$, to an invariant open subset of \mathbb{C}^{n} with the standard $\left(S^{1}\right)^{n}$ action. Also assume that the quotient $M /\left(S^{1}\right)^{n}$ is diffeomorphic, as a manifold with corners, to a simple convex polytope P in \mathbb{R}^{n}. Such manifolds, introduced in [3] and studied in the toric topology community, are called quasi-toric manifolds ${ }^{\text {B }}$.

The question of Buchstaber and Panov is whether there exists a non-toric quasitoric manifold that admits an $\left(S^{1}\right)^{n}$-invariant complex structure.
(2) Our theorem strengthens an earlier result of Ishida and Masuda, that if a closed complex manifold of complex dimension n admits an $\left(S^{1}\right)^{n}$-action, and if its odddegree cohomology groups vanish, then the Todd genus of the manifold is equal to one. See [5, Theorem 1.1 and Remark 1.2].
(3) It is necessary to assume that the action has fixed points: the complex torus $\mathbb{C}^{*} /(z \sim$ $2 z$) has a holomorphic S^{1}-action, induced from multiplication on \mathbb{C}^{*}, but it is not a toric variety.
(4) It is necessary to assume that the manifold is compact: the open unit disc in \mathbb{C} with the natural circle action has a fixed point, but it is not a toric variety: the circle action does not extend to a \mathbb{C}^{*}-action.

[^0]
2. The complexified action

Let the torus $\left(S^{1}\right)^{n}$ act on a complex manifold M by biholomorphisms. If the manifold M is compact, then the $\left(S^{1}\right)^{n}$-action extends to a $\left(\mathbb{C}^{*}\right)^{n}$-action that is holomorphic not only in the sense that each element of $\left(\mathbb{C}^{*}\right)^{n}$ acts by a biholomorphism but also in the sense that the action map $\left(\mathbb{C}^{*}\right)^{n} \times M \rightarrow M$ is holomorphic. See, e.g., [4, Theorem 4.4]. For the convenience of the reader, we briefly recall here some of the details of this standard construction.

Let ξ_{1}, \ldots, ξ_{n} be the fundamental vector fields of the $\left(S^{1}\right)^{n}$-action with respect to the coordinate one-dimensional subtori. Let $J: T M \rightarrow T M$ be the multiplication by $\sqrt{-1}$. We claim that the vector fields $-J \xi_{1}, \ldots,-J \xi_{n}$ are holomorphic (in the sense that their flows preserve the complex structure) and commute with each other and with the vector fields ξ_{i}.

Because the $\left(S^{1}\right)^{n}$-action preserves J and ξ_{j}, it preserves $-J \xi_{j}$, for each j. So the vector fields $-J \xi_{j}$ commute with the vector fields ξ_{i} that generate this action. Because J is a complex structure, its Nijenhaus tensor, $N(Z, W):=2([J Z, J W]-J[Z, J W]-J[J Z, W]-[Z, W])$, vanishes. Setting $Z=\xi_{i}$ and $W=\xi_{j}$, we get that $\left[J \xi_{i}, J \xi_{j}\right]=J\left[\xi_{i}, J \xi_{j}\right]+J\left[J \xi_{i}, \xi_{j}\right]+\left[\xi_{i}, \xi_{j}\right]$, and each of the three terms on the right hand side is zero. So the vector fields $-J \xi_{j}$ commute with each other. A vector field Y is holomorphic if and only if $[Y, J W]=J[Y, W]$ for each vector W; see [Z, Proposition 2.10 in Chapter IX]. Set $Y:=-J \xi_{i}$ and W arbitrary; because $J Y\left(=\xi_{i}\right)$ is holomorphic, $[J Y, J W]=J[J Y, W]$; by the vanishing of the Nijenhaus tensor,

$$
\begin{aligned}
0=N(J Y, W) & =2([-Y, J W]-J[J Y, J W]-J[-Y, W]-[J Y, W]) \\
& =2([-Y, J W]-J[-Y, W]),
\end{aligned}
$$

so Y is holomorphic.
If M is compact, the vector fields $-J \xi_{1}, \ldots,-J \xi_{n}$ are complete, and we get an $\mathbb{R}^{2 n}$-action, $\mathbb{R}^{2 n} \times M \rightarrow M$, via

$$
\left(\sum_{i=1}^{2 n} a_{i} \mathbf{e}_{i}, x\right) \mapsto c_{x}(1),
$$

where $c_{x}(r)$ is the integral curve of the vector field $\sum_{i=1}^{n}-a_{i} J \xi_{i}+a_{n+i} \xi_{i}$ with $c_{x}(0)=x$. This action descends to a $\left(\mathbb{C}^{*}\right)^{n}$-action by biholomorphisms that extends the given $\left(S^{1}\right)^{n}$-action. Finally, the action map $\left(\mathbb{C}^{*}\right)^{n} \times M \rightarrow M$ is holomorphic, because its differential, which at the point (z, m) is the map $\mathbb{C}^{n} \times T_{m} M \rightarrow T_{z \cdot m} M$ that takes $\left(2 \pi\left(r_{1}+i \theta_{1}, \ldots, r_{n}+i \theta_{n}\right), v\right)$ to $\sum_{j}-\left.r_{j} J \xi_{j}\right|_{z \cdot m}+\left.\theta_{j} \xi_{j}\right|_{z \cdot m}+z_{*} v$, is complex linear.

Remark 3. In the next section we will see that if there exists a fixed point then the extended $\left(\mathbb{C}^{*}\right)^{n}$-action is faithful. In general, the extended $\left(\mathbb{C}^{*}\right)^{n}$-action might not be faithful.

Example 4. Let $\left(S^{1}\right)^{n}$ act on \mathbb{C}^{n} with weights $\alpha_{1}, \ldots, \alpha_{n}$:

$$
g \cdot\left(z_{1}, \ldots, z_{n}\right)=\left(g^{\alpha_{1}} z_{1}, \ldots, g^{\alpha_{n}} z_{n}\right),
$$

where $g^{\alpha_{i}}=g_{1}^{\alpha_{i 1}} \ldots g_{n}^{\alpha_{i n}}$ for $g=\left(g_{1}, \ldots, g_{n}\right) \in\left(S^{1}\right)^{n}$ and the isotropy weight $\alpha_{i}=\left(\alpha_{i 1}, \ldots, \alpha_{\text {in }}\right) \in$ \mathbb{Z}^{n}. Then the complexified action is given by the same formula applied to $g=\left(g_{1}, \ldots, g_{n}\right) \in$ $\left(\mathbb{C}^{*}\right)^{n}$.

3. Structures near fixed points

Let M be a complex manifold of complex dimension n. Let the torus $\left(S^{1}\right)^{n}$ act on M faithfully by biholomorphisms. Let p be a point in M that is fixed by the $\left(S^{1}\right)^{n}$-action. Let $\alpha_{1}, \ldots, \alpha_{n}$ be the isotropy weights at p.

We begin with a local result:
Lemma 5. There exists an $\left(S^{1}\right)^{n}$-invariant neighbourhood U_{p} of p in M, an $\left(S^{1}\right)^{n}$-invariant neighbourhood \widetilde{U}_{p} of the origin in $T_{p} M$, and an $\left(S^{1}\right)^{n}$-equivariant biholomorphism $\varphi_{p}: U_{p} \rightarrow$ \widetilde{U}_{p} whose differential at p is the identity map on $T_{p} M$.

Here, $\mathbb{C}_{\alpha_{i}}$ denotes the one dimensional complex vector space \mathbb{C} with the $\left(S^{1}\right)^{n}$-action that is obtained by composing the homomorphism $\left(S^{1}\right)^{n} \rightarrow S^{1}$ that is encoded by the weight α_{i} with the standard action of S^{1} on \mathbb{C} by scalar multiplication.

Proof. Let $\varphi: U \rightarrow \widetilde{U} \subseteq \mathbb{C}^{n}$ be a local holomorphic chart near p with $\varphi(p)=0$. Identifying \mathbb{C}^{n} with $T_{p} M$ via the differential

$$
(d \varphi)_{p}: T_{p} M \rightarrow T_{0} \mathbb{C}^{n} \cong \mathbb{C}^{n},
$$

we get a biholomorphism

$$
\varphi^{\prime}: U \rightarrow \widetilde{U}^{\prime} \subseteq T_{p} M
$$

whose differential at p is the identity map on $T_{p} M$. We want to obtain such a biholomorphism that is also equivariant.

Set

$$
U^{\prime}:=\bigcap_{g \in\left(S^{1}\right)^{n}} g U .
$$

Clearly, U^{\prime} is invariant and contains p. We now show that U^{\prime} is open. The complement of U^{\prime} is the image of the closed subset $\left(S^{1}\right)^{n} \times(M \backslash U)$ of $\left(S^{1}\right)^{n} \times M$ under the action map $\left(S^{1}\right)^{n} \times M \rightarrow M$. Because $\left(S^{1}\right)^{n}$ is compact, the action map is proper. Being proper means that the preimage of every compact set is compact; when the target space M is a manifold ${ }^{\text {(I }}$ it implies that the map is closed. Thus, the complement $M \backslash U^{\prime}$ is closed, and so U^{\prime} is open.

To obtain an equivariant chart, we average φ^{\prime} : let

$$
\widetilde{\varphi}:=\int_{g \in\left(S^{1}\right)^{n}}\left(g \circ \varphi^{\prime} \circ g^{-1}\right) d g: U^{\prime} \rightarrow T_{p} M,
$$

[^1]where $d g$ is Haar measure on $\left(S^{1}\right)^{n}$. The map $\widetilde{\varphi}$ is holomorphic and $\left(S^{1}\right)^{n}$-equivariant. Moreover, its differential at p is the identity map on $T_{p} M$. By the implicit function theorem, $\widetilde{\varphi}$ restricts to a biholomorphism from some smaller open neighbourhood $U^{\prime \prime}$ of p in M to an open neighbourhood of the origin in $T_{p} M$. The restriction of $\bar{\varphi}$ to the invariant neighbourhood $U_{p}:=\bigcap_{g \in\left(S^{1}\right)^{n}} g \cdot U^{\prime \prime}$ of p in M satisfies the requirements of the lemma.

Corollary 6. There exists an $\left(S^{1}\right)^{n}$-equivariant local holomorphic chart

$$
\varphi_{p}: U_{p} \rightarrow \mathbb{D}^{n}
$$

from an invariant open neighbourhood U_{p} of p to a polydisc \mathbb{D}^{n} in $\mathbb{C}_{\alpha_{1}} \oplus \ldots \oplus \mathbb{C}_{\alpha_{n}}$.
Proof. By the definition of the isotropy weights, there exists a complex linear $\left(S^{1}\right)^{n}$-equivariant isomorphism between the tangent space $T_{p} M$ and the representation $\mathbb{C}_{\alpha_{1}} \oplus \ldots \oplus \mathbb{C}_{\alpha_{n}}$. Corollary 6 then follows from Lemma \rrbracket by restricting the chart to the preimage of a polydisc.

We would like to extend the chart of Corollary 6 to a chart whose image is all of \mathbb{C}^{n}. We can do this when the $\left(S^{1}\right)^{n}$ extends to a $\left(\mathbb{C}^{*}\right)^{n}$-action; for example, if the manifold is compact; by "sweeping" by the ($\left.\mathbb{C}^{*}\right)^{n}$-action.

Lemma 7. Suppose that the $\left(S^{1}\right)^{n}$-action extends to a $\left(\mathbb{C}^{*}\right)^{n}$-action. Then there exists an invariant open neighbourhood V_{p} of p in M and an $\left(S^{1}\right)^{n}$-equivariant biholomorphism of V_{p} with $\mathbb{C}_{\alpha_{1}} \oplus \ldots \oplus \mathbb{C}_{\alpha_{n}}$.

Proof. Let $\varphi_{p}: U_{p} \rightarrow \mathbb{D}^{n}$ be an $\left(S^{1}\right)^{n}$-equivariant holomorphic local chart, as in Corollary 6. Because φ_{p} is $\left(S^{1}\right)^{n}$-equivariant and holomorphic, it intertwines the restriction to U_{p} of the vector fields that generate the complexified $\left(\mathbb{C}^{*}\right)^{n}$-action on M with the restriction to \mathbb{D}^{n} of the vector fields that generate the complexified $\left(\mathbb{C}^{*}\right)^{n}$-action on $\mathbb{C}^{n}=\mathbb{C}_{\alpha_{1}} \oplus \cdots \oplus \mathbb{C}_{\alpha_{n}}$. This, and the fact that φ_{p} is a diffeomorphism between U_{p} and \mathbb{D}^{n}, implies that φ_{p} also intertwines the partial flows on U_{p} and on \mathbb{D}^{n} that are generated by these vector fields; in particular it intertwines the domains of definition of these partial flows.

For each $t \in \mathbb{R}$, let g_{t} be the element of $\left(\mathbb{C}^{*}\right)^{n}$ that acts on \mathbb{C}^{n} as scalar multiplication by e^{-t}, and let $\eta \in \operatorname{Lie}\left(\mathbb{C}^{*}\right)^{n}$ be the generator of the one-parameter subgroup $t \mapsto g_{t}$. Because $e^{-t} \mathbb{D}^{n} \subset \mathbb{D}^{n}$ for all $t \geq 0$, and because φ_{p} intertwines the domains of definition of the partial flows on U_{p} and on \mathbb{D}^{n} that correspond to η, we get that $g_{t} U_{p} \subset U_{p}$ for all $t \geq 0$. So, for every $t \geq 0$, the domain of definition of the $\left(S^{1}\right)^{n}$-equivariant biholomorphism

$$
\varphi_{p}^{(t)}:=\left(g_{t}\right)^{-1} \circ \varphi_{p} \circ g_{t}: g_{-t} U_{p} \rightarrow e^{t} \mathbb{D}^{n}
$$

contains U_{p}. Here, $g_{t}: g_{-t} U_{p} \rightarrow U_{p}$ and $g_{t}: e^{t} \mathbb{D}^{n} \rightarrow \mathbb{D}^{n}$ are given by the complexified actions on M and on \mathbb{C}^{n}. By the choice of g_{t}, the latter map is multiplication by e^{-t}.

Moreover, because φ_{p} intertwines the partial flows that correspond to η and these partial flows are defined for all $t \geq 0$, the restriction to U_{p} of $\varphi_{p}^{(t)}$ coincides with φ_{p} for all $t \geq 0$. Substituting $t-s$ instead of t, we get that the maps $\varphi_{p}^{(t)}$ and $\varphi_{p}^{(s)}$ agree whenever they are
both defined. Thus, all these maps fit together into a map

$$
\bigcup_{t \geq 0} \varphi_{p}^{(t)}: V_{p} \rightarrow \mathbb{C}_{\alpha_{1}} \oplus \ldots \oplus \mathbb{C}_{\alpha_{n}}
$$

where $V_{p}=\bigcup_{t \geq 0} g_{-t} U_{p}$. This map is onto, because its image is the union of the sets $e^{t} \mathbb{D}^{n}$ over all $t \geq 0$. The map is one to one, because it is one to one on each $g_{-t} U_{p}$, and for every two points in the domain there exists a $t \geq 0$ such that the points are both in $g_{-t} U_{p}$. Because V_{p} is covered by $\left(S^{1}\right)^{n}$-invariant open sets $g_{-t} U_{p}$ on which the map is an $\left(S^{1}\right)^{n}$-equivariant biholomorphism, we deduce that the map is itself an $\left(S^{1}\right)^{n}$-equivariant biholomorphism, as required.

4. Obtaining a fan

Let M be a complex manifold of complex dimension n, let the torus $\left(S^{1}\right)^{n}$ act on M faithfully by biholomorphisms, and assume that this action extends to a holomorphic $\left(\mathbb{C}^{*}\right)^{n}$ action. Moreover, assume that the action has at least one fixed point.

In Lemma \square we assigned to every fixed point p in M an open subset V_{p} that is biholomorphic to \mathbb{C}^{n}. By assumption, there exists at least one fixed point. So the union of the sets V_{p} over these fixed points,

is nonempty. We fix a connected component of this union and denote it X.
Remark 8. We would like to know that if M connected then the union of the sets V_{p} is all of M. We do not know how to prove this directly; we do not even know if it is always true. We will eventually show that if M is compact and connected then X is compact; so in this case X must coincides with M, and the union of the sets V_{p} is indeed all of M.

The connected components of the fixed point sets of the circle subgroups of $\left(S^{1}\right)^{n}$ are closed complex submanifolds of X. If such a submanifold has complex codimension one, then, in analogy with the toric topology literature, we call it a characteristic submanifold of X (cf. [8, p. 240]).

Because X is a union of finitely many $V_{p} \mathrm{~s}$ and each V_{p} has only finitely many characteristic submanifolds, there are only finitely many characteristic submanifolds in X. Denote them

$$
X_{1}, \ldots, X_{m}
$$

Let T_{i} be the subgroup of T that fixes X_{i}. If a compact group acts faithfully on a connected manifold then at every fixed point the linear isotropy representation is faithful. Therefore, the linear isotropy representation of T_{i} at any point q of X_{i} is faithful. Because T_{i} acts holomorphically and fixes X_{i}, we get a faithful representation of T_{i} on the one dimensional complex space $T_{q} X / T_{q} X_{i}$. This gives an injection $T_{i} \rightarrow S^{1}$, where S^{1} acts on $T_{q} X / T_{q} X_{i}$ by scalar multiplication. By continuity, this injection is independent of the
choice of point q in X_{i}. Because, by assumption, T_{i} contains a circle subgroup of T, this injection is an isomorphism. Let

$$
\lambda_{i}: S^{1} \rightarrow T_{i} \subset\left(S^{1}\right)^{n}
$$

be the inverse of this isomorphism, composed with the inclusion map into $\left(S^{1}\right)^{n}$.
We define an abstract simplicial complex:

$$
\Sigma:=\left\{I \subseteq\{1, \ldots, m\} \mid X_{I}:=\bigcap_{i \in I} X_{i} \neq \emptyset\right\} .
$$

To each simplex $I \in \Sigma$ we assign the cone

$$
C_{I}:=\operatorname{pos}\left(\lambda_{i} \mid i \in I\right):=\left\{\sum_{i \in I} a_{i} \lambda_{i} \mid a_{i} \geq 0\right\}
$$

in $\operatorname{Lie}\left(S^{1}\right)^{n}$.
Example 9. Take \mathbb{C}^{n} with coordinates z_{1}, \ldots, z_{n}. Let $\left(S^{1}\right)^{n}$ act on it with weights $\alpha_{1}, \ldots, \alpha_{n} \in$ $\operatorname{Hom}\left(\left(S^{1}\right)^{n}, S^{1}\right) \subset\left(\operatorname{Lie}\left(S^{1}\right)^{n}\right)^{*}$. Suppose that the action is faithful; then $\alpha_{1}, \ldots, \alpha_{n}$ are a \mathbb{Z} basis of $\operatorname{Hom}\left(\left(S^{1}\right)^{n}, S^{1}\right)$. The characteristic submanifolds are the coordinate hyperplanes $\left\{z_{i}=0\right\}$ for $i=1, \ldots, n$. The homomorphisms $\lambda_{1}, \ldots, \lambda_{n}$ are the basis to $\operatorname{Hom}\left(S^{1},\left(S^{1}\right)^{n}\right) \subset$ $\operatorname{Lie}\left(S^{1}\right)^{n}$ that is dual to $\alpha_{1}, \ldots, \alpha_{n}$.

Recall that a cone in $\operatorname{Lie}\left(S^{1}\right)^{n}$ is unimodular if it is generated by part of a \mathbb{Z}-basis of $\operatorname{Hom}\left(S^{1},\left(S^{1}\right)^{n}\right)$.

Returning to our general case -
Lemma 10. The cones C_{I}, for $I \in \Sigma$, are unimodular.
Proof. Let $I \in \Sigma$. By the definition of Σ, this means that the intersection $\bigcap_{i \in I} X_{i}$ is nonempty. Let q be a point in this intersection. Let p be a fixed point such that $q \in V_{p}$. Because V_{p} is isomorphic to some $\mathbb{C}_{\alpha_{1}} \oplus \ldots \oplus \mathbb{C}_{\alpha_{n}}$ on which the action is faithful, the lemma follows from Example 9 .

Every V_{p} contains an open dense free $\left(\mathbb{C}^{*}\right)^{n}$ orbit. For any two V_{p} s that are in the connected component X, these orbits coincide. Thus, there exists a unique free $\left(\mathbb{C}^{*}\right)^{n}$ orbit in X, it is open and dense, and it is contained in every V_{p} that is contained in X.

Fix a point q in the free $\left(\mathbb{C}^{*}\right)^{n}$ orbit in X. For any $\xi \in \operatorname{Lie}\left(S^{1}\right)^{n}$, consider the curve

$$
c_{q}^{\xi}: \mathbb{R} \rightarrow X
$$

that is given by

$$
c_{q}^{\xi}(r):=\exp (-r J \xi) \cdot q \quad \text { for } r \in \mathbb{R}
$$

where exp: $\operatorname{Lie}\left(\mathbb{C}^{*}\right)^{n} \rightarrow\left(\mathbb{C}^{*}\right)^{n}$ is the exponential map and where J denotes multiplication by i in $\operatorname{Lie}\left(\mathbb{C}^{*}\right)^{n}$.

Denote by C_{I}^{0} the relative interior of the cone C_{I}. Denote

$$
X_{I}^{0}=\bigcap_{i \in I} X_{i} \backslash \bigcap_{j \notin I} X_{j} .
$$

Lemma 11. Let $\xi \in \operatorname{Lie}\left(S^{1}\right)^{n}$ and $I \in \Sigma$. Then $\xi \in C_{I}^{0}$ if and only if the curve $c_{q}^{\xi}(r)$ converges as $r \rightarrow-\infty$ to a point q^{\prime} in X_{I}^{0}. Moreover, in this case the limit point q^{\prime} belongs to V_{p} for every p such that $V_{p} \cap X_{I} \neq \emptyset$.

Proof. Suppose that $\xi \in C_{I}^{0}$. By the definition of Σ, X_{I} is nonempty. Let p be such that V_{p} meets X_{I}. Without loss of generality assume that $I=\{1, \ldots, k\}$ and that the characteristic submanifolds that meet V_{p} are X_{1}, \ldots, X_{n}. Let $\alpha_{1}, \ldots, \alpha_{n}$ denote the isotropy weights at p. The assumption that $\xi \in C_{I}^{0}$ exactly means that $\left\langle\xi, \alpha_{i}\right\rangle$ is positive for $i=1, \ldots, k$ and zero for $i=k+1, \ldots, n$. Fix an isomorphism $\left(z_{1}, \ldots, z_{n}\right): V_{p} \rightarrow \mathbb{C}^{n}=\mathbb{C}_{\alpha_{1}} \oplus \ldots \oplus \mathbb{C}_{\alpha_{n}}$ such that $z_{i}(q)=1$ for all i. In these coordinates, the curve $c_{q}^{\xi}(r)$ is represented as

$$
\left(z_{1}, \ldots, z_{n}\right)\left(c_{q}(r)\right)=\left(e^{2 \pi r\left(\xi, \alpha_{1}\right\rangle}, \ldots, e^{2 \pi r\left\langle\xi, \alpha_{n}\right\rangle}\right) .
$$

As r approaches $-\infty$, the curve in \mathbb{C}^{n} approaches the point $(\underbrace{0, \ldots, 0}_{k}, \underbrace{1, \ldots, 1}_{n-k})$. On the other hand, the coordinates take each intersection $V_{p} \cap X_{i}$ to the coordinate hyperplane $\left\{\left(z_{1}, \ldots, z_{n}\right) \mid z_{i}=0\right\}$, and they take the intersection $V_{p} \cap X_{I}^{0}$ to the set $\left\{\left(z_{1}, \ldots, z_{n}\right) \mid z_{i}=\right.$ 0 iff $1 \leq i \leq k\}$. So the curve approaches a point in $V_{p} \cap X_{I}^{0}$, as required.

Now suppose that the curve $c_{q}^{\xi}(r)$ converges as $r \rightarrow-\infty$ to a point in X_{I}^{0}. Let p be such that this limit point is contained in V_{p}. As before, without loss of generality assume that $I=\{1, \ldots, k\}$ and that the characteristic submanifolds that meet V_{p} are exactly X_{1}, \ldots, X_{n}; fix an isomorphism $\left(z_{1}, \ldots, z_{n}\right): V_{p} \rightarrow \mathbb{C}^{n}=\mathbb{C}_{\alpha_{1}} \oplus \ldots \oplus \mathbb{C}_{\alpha_{n}}$ such that $z_{i}(q)=1$ for all i; the curve $c_{q}^{\xi}(r)$ is represented as $\left(z_{1}, \ldots, z_{n}\right)\left(c_{q}(r)\right)=\left(e^{2 \pi r\left\langle\xi, \alpha_{1}\right\rangle}, \ldots, e^{2 \pi r\left\langle\xi, \alpha_{n}\right\rangle}\right)$. Because the curve approaches a limit as $r \rightarrow-\infty$, the pairings $\left\langle\xi, \alpha_{i}\right\rangle$ are nonnegative for all $i=1, \ldots, n$. Because this limit is in X_{I}^{0}, the pairings are positive for every $i \in I$ and they vanish for every $i \in\{1, \ldots, n\} \backslash I$. Thus, $\xi \in C_{I}^{0}$ as required.
Corollary 12. (1) For every $I, J \in \Sigma$, if $I \neq J$, then $C_{I}^{0} \cap C_{J}^{0}=\emptyset$.
(2) For every $I, J \in \Sigma$,

$$
C_{I} \cap C_{J}=C_{I \cap J} .
$$

(3) The collection of cones

$$
\Delta:=\left\{C_{I} \mid I \in \Sigma\right\}
$$

is a fan, that is, every face of every cone in Δ is itself in Δ, and the intersection of every two cones in Δ is a common face.

Proof. Part (1) follows from Lemma \mathbb{D}^{1} because the sets X_{I}^{0} are disjoint. Part (3) follows from Part (2).

For Part (2), we only need to show the inclusion $C_{I} \cap C_{J} \subseteq C_{I \cap J}$, because the opposite inclusion is trivial. Let $\xi \in C_{I} \cap C_{J}$. Let $I^{\prime} \subset I$ and $J^{\prime} \subset J$ be the subsets such that $\xi \in C_{I^{\prime}}^{0}$
and $\xi \in C_{J^{\prime}}^{0}$ ．Then $C_{I^{\prime}}^{0} \cap C_{J^{\prime}}^{0} \neq \emptyset$ ．By Part（1），$I^{\prime}=J^{\prime}$ ．Let $L=I^{\prime}=J^{\prime}$ ．Then $L \subset I \cap J$ ，and $\xi \in C_{L}^{0} \subset C_{I \cap J}$ ．
Lemma 13．For every $I \in \Sigma$ ，the set X_{I} is an $\left(S^{1}\right)^{n}$－invariant smooth closed complex submanifold of X of complex codimension $|I|$ ，it is connected，and it contains a fixed point．

Proof．Fix $I \in \Sigma$ ．
Because each of the sets X_{i} ，for $i \in I$ ，is closed in X ，so is the intersection X_{I} of these sets．

Because X is the union of open subsets V_{p} ，and because every intersection $V_{p} \cap X_{I}$ is an $\left(S^{1}\right)^{n}$－invariant complex submanifold of codimension $|I|$ in V_{p} ，we deduce that X_{I} is itself an $\left(S^{1}\right)^{n}$－invariant complex submanifold of codimension $|I|$ in X ．It remains to show that X_{I} is connected and contains a fixed point．

Choose any $\xi \in C_{I}^{0}$（for example，we may take $\xi=\sum_{i \in I} \lambda_{i}$ ），and choose any q in the free $\left(\mathbb{C}^{*}\right)^{n}$ orbit in X ．By Lemma \mathbb{D} ，the curve $c_{q}^{\xi}(r)$ converges as $r \rightarrow-\infty$ ；let q^{\prime} be its limit．Also by Lemma ■l for every p such that $V_{p} \cap X_{I} \neq \emptyset$ ，the limit point q^{\prime} belongs to V_{p} ．Because X_{I} is the union over such p of the subsets $V_{p} \cap X_{I}$ ，and because each of these subsets is connected and contains q^{\prime} ，the union X_{I} is connected．Also，every p such that $V_{p} \cap X_{I} \neq \emptyset$ belongs to $V_{p} \cap X_{I}$ ；because the set of such p s is nonempty，X_{I} contains a fixed point．

Corollary 14．In the fan Δ ，every cone is contained in an n dimensional cone．
Proof．Every cone in the fan has the form C_{I} for some $I \in \Sigma$ ．By Lemma ■3，the set X_{I} contains a fixed point；let p be such a fixed point．Since V_{p} was chosen as in Lemma \square ，by Example 9 there exist exactly n characteristic submanifolds，say，X_{j} for $j \in J \subset\{1, \ldots, m\}$ with $|J|=n$ ，that pass through p ．Then $J \in \Sigma$ ，and C_{J} is an n dimensional cone in Δ that contains C_{I} ．

5．Isomorphism of the subset X with a toric manifold

Let M be a complex manifold of complex dimension n ，let the torus $\left(S^{1}\right)^{n}$ act on M faithfully by biholomorphisms，and assume that this action extends to a holomorphic $\left(\mathbb{C}^{*}\right)^{n}$－ action．Moreover，assume that the action has at least one fixed point．

In Section $⿴ 囗 十 ⺝$ we described an open subset X of M and a unimodular fan Δ ．Let M_{Δ} be the toric variety that is associated to the fan Δ ．

Lemma 15．There exists an $\left(S^{1}\right)^{n}$－equivariant biholomorphism between M_{Δ} and X ．
We recall some properties of the set X and the fan Δ ．Let F denote the fixed point set in X ．For every fixed point $p \in F$ ，let $\alpha_{p, 1}, \ldots, \alpha_{p, n}$ denote the isotropy weights of the torus action at p ．
（1）The set X is the union over $p \in F$ of subsets V_{p} ，such that each V_{p} is an invariant open neighbourhood of p that is equivariantly biholomorphic to the linear repre－ sentation $\mathbb{C}_{\alpha_{p, 1}}, \ldots, \mathbb{C}_{\alpha_{p, n}}$ ．
(2) The n-dimensional cones in Δ are in bijection with the fixed point sets $p \in F$, and the cone corresponding to the fixed point p is $\operatorname{pos}\left(\lambda_{i_{1}}, \ldots, \lambda_{i_{n}}\right)$, where $\lambda_{i_{1}}, \ldots, \lambda_{i_{n}}$ is a basis of $\operatorname{Lie}\left(S^{1}\right)^{n}$ that is dual to the basis $\alpha_{p, 1}, \ldots, \alpha_{p, n}$ of $\left(\operatorname{Lie}\left(S^{1}\right)^{n}\right)^{*}$.
The toric variety M_{Δ} that is associated to the fan Δ has similar properties: it is the union over $p \in F$ of invariant subsets V_{p}^{\prime}, and every V_{p}^{\prime} is equivariantly biholomorphic to $\mathbb{C}_{\alpha_{p, 1}} \oplus \ldots \oplus \mathbb{C}_{\alpha_{p, n}}$.

Lemma $\sqrt{\boxed{5}}$ follows immediately from these properties of X and M_{Δ}, by the following lemma.

Lemma 16. Let X and X^{\prime} be complex manifolds of complex dimension n, equipped with holomorphic $\left(\mathbb{C}^{*}\right)^{n}$-actions. Suppose that there exist open dense $\left(\mathbb{C}^{*}\right)^{n}$ orbits O in X and O^{\prime} in X^{\prime}. Suppose that there exist invariant open subsets V_{p} in X and V_{p}^{\prime} in X^{\prime}, both indexed by $p \in F$, such that X is the union of the sets V_{p} and X^{\prime} is the union of the sets V_{p}^{\prime}, and that for each $p \in F$ there exists an equivariant biholomorphism $\varphi_{p}: V_{p} \rightarrow V_{p}^{\prime}$. Then X is equivariantly biholomorphic to X^{\prime}.

Proof. Necessarily, O is contained in each V_{p} and O^{\prime} is contained in each V_{p}^{\prime}. Fix a point q in O and a point q^{\prime} in O^{\prime}. After possibly composing each φ_{p} by the action of an element of $\left(\mathbb{C}^{*}\right)^{n}$, we may assume that $\varphi_{p}(q)=q^{\prime}$ for each $p \in F$. So, for each p and $\tilde{p} \in F$, the maps φ_{p} and $\varphi_{\tilde{p}}$ coincide at the point q. By equivariance, φ_{p} and $\varphi_{\tilde{p}}$ coincide on all of O; by continuity, they coincide on the entire overlap $V_{p} \cap V_{\tilde{p}}$. Thus, the φ_{p} fit together into a map

$$
\varphi=\bigcup_{p} \varphi_{p}: X \rightarrow X^{\prime} .
$$

This map is holomorphic, equivariant, and onto. Similarly, the inverses $\psi_{p}:=\varphi_{p}{ }^{-1}$ fit together into a map

$$
\psi=\bigcup_{p} \psi_{p}: X^{\prime} \rightarrow X
$$

We have that $\psi \circ \varphi=\operatorname{id}_{X}$ and $\varphi \circ \psi=\operatorname{id}_{X^{\prime}}$; thus, $\varphi: X \rightarrow X^{\prime}$ is an equivariant biholomorphism, as required.

6. The compact case

Let M be a complex manifold of complex dimension n, with a faithful $\left(S^{1}\right)^{n}$-action, with fixed points.

Suppose that M is compact. In Section \square we extended the $\left(S^{1}\right)^{n}$-action to a holomorphic $\left(\mathbb{C}^{*}\right)^{n}$-action. In Section 4 we chose an open subset X of M of a particular form and we associated to it a fan Δ.

Lemma 17. The fan Δ is complete.
We begin by proving a special case:

Lemma 18. Let M^{\prime} be a complex manifold of complex dimension one, equipped with a faithful holomorphic action of S^{1} with at least one fixed point. Suppose that M^{\prime} is compact and connected. Then M^{\prime} is equivariantly biholomorphic to $\mathbb{C P}^{1}$ with a standard \mathbb{C}^{*}-action.

Proof. Consider the S^{1}-action on M^{\prime}. Near a fixed point, it is isomorphic to the restriction of either the standard S^{1}-action on \mathbb{C} or the opposite S^{1}-action on \mathbb{C} to an invariant neighbourhood of the origin in \mathbb{C}.

Consider the flow that is generated by $-J \xi$, where ξ generates the S^{1}-action. If the S^{1} action near a fixed point is standard, then the trajectories of this flow converge to the fixed point as their parameter approaches $-\infty$. If the S^{1}-action near a fixed point is opposite from standard, then the trajectories of this flow converge to the fixed point as their parameter approaches ∞.

Outside the fixed point set, the action is free. The quotient M^{\prime} / S^{1} is ${ }^{[8]}$ a real one-manifold with boundary; its boundary is exactly the image of the fixed point set. Because M^{\prime} is compact and contains a fixed point, and by the classification of one-manifolds, the quotient M^{\prime} / S^{1} must be a closed segment.

The flow on M^{\prime} that is generated by $-J \xi$ descends to a flow on the interior of M^{\prime} / S^{1} that does not have fixed points. For each boundary component, the flow approaches that component either as its parameter approaches ∞ or as the parameter approaches $-\infty$. Necessarily, it approaches one boundary component when the parameter approaches ∞ and it approaches the other boundary component when the parameter approaches $-\infty$.

The corresponding fan must then be equal to the fan of $\mathbb{C P}^{1}$, and the manifold is equivariantly biholomorphic to $\mathbb{C P}^{1}$ by Lemma \mathbb{D}^{16}.

We now return to the setup of Lemma [17: We have a complex manifold M of complex dimension n, with a faithful $\left(S^{1}\right)^{n}$-action, with fixed points. We assume that M is compact. We chose an open subset X of M of a particular form and we associated to it a fan Δ.

Lemma 19. Every $n-1$ dimensional cone in Δ is a common face of two n dimensional cones in Δ.

Proof. Let C_{I} be an $n-1$ dimensional cone in Δ, corresponding to the subset $I=\left\{i_{1}, \ldots, i_{n-1}\right\}$ of $\{1, \ldots, m\}$.

Let T_{I} be the codimension one subtorus of $\left(S^{1}\right)^{n}$ that is generated by the circles T_{i} for $i \in I$. By Lemma [3, X_{I} is a connected complex manifold of dimension one, equipped with a faithful holomorphic action of the circle $\left(S^{1}\right)^{n} / T_{I}$ with at least one fixed point. We will now show that X_{I} is compact, and will deduce Lemma $\mathbb{1 9}$ from Lemma $\boxed{\pi 8}$.

First note that X_{I} is a connected component of the fixed point set of T_{I} in X. This follows from the facts that X_{I} is connected (by Lemma [13) and that, for every V_{p} in X, if the intersection $V_{p} \cap X_{I}$ is nonempty then it is a connected component of the fixed point set of T_{I} in V_{p}. Let N denote the connected component of the fixed point set of T_{I} in M that contains X_{I}. As in any holomorphic torus action on a complex manifold, N is a

[^2]$\left(S^{1}\right)^{n}$-invariant closed complex submanifold of M. By examining N near a point of X_{I}, we deduce that N has complex dimension one. Because N is closed in M and M is compact, N is compact. By Lemma $\mathbb{8}, N$ is equivariantly biholomorphic to $\mathbb{C P}^{1}$ with a standard action of the circle $\left(S^{1}\right)^{n} / T_{I}$. In particular, N contains two fixed points; denote them p^{\prime} and $p^{\prime \prime}$. At least one of these fixed points is in X_{I}, by Lemma $\llbracket 3$. The intersection $V_{p^{\prime}} \cap N$, being a $\left(\mathbb{C}^{*}\right)^{n}$-invariant neighbourhood of p^{\prime} in N, must be all of $N \backslash\left\{p^{\prime \prime}\right\}$. Similarly, the intersection $V_{p^{\prime \prime}} \cap N$, is all of $N \backslash\left\{p^{\prime}\right\}$. Thus, the intersection $V_{p^{\prime}} \cap V_{p^{\prime \prime}}$ is nonempty. Because at least one of the sets $V_{p^{\prime}}$ and $V_{p^{\prime \prime}}$ is contained in X, and because X is a connected component of the union of the sets V_{p}, we deduce that X contains both $V_{p^{\prime}}$ and $V_{p^{\prime \prime}}$. Thus, N is entirely contained in X, and so N must be equal to X_{I}. Thus, X_{I} is equivariantly biholomorphic to $\mathbb{C P}{ }^{1}$ with a standard action of the circle $\left(S^{1}\right)^{n} / T_{I}$. This implies the result of Lemma $\mathbb{1 0}$.

We are now ready to prove Lemma [7].
Proof of Lemma $\left[\square \backslash\right.$ Let $|\Delta|$ denote the union of the cones in Δ, and let $\left|\Delta^{n-2}\right|$ denote the union of the cones in Δ that have codimension ≥ 2. The complement $\operatorname{Lie}\left(S^{1}\right)^{n} \backslash\left|\Delta^{n-2}\right|$ is connected, open, and dense in $\operatorname{Lie}\left(S^{1}\right)^{n}$.

By Lemma $\boxed{10}$, the union of the relative interiors of the faces of Δ of dimension $(n-1)$ and of dimension n is open in $\operatorname{Lie}\left(S^{1}\right)^{n}$. This union is $|\Delta| \backslash\left|\Delta^{n-2}\right|$. Thus, $|\Delta| \backslash\left|\Delta^{n-2}\right|$ is also open in $\operatorname{Lie}\left(S^{1}\right)^{n} \backslash\left|\Delta^{n-2}\right|$.

But because $|\Delta|$ is closed in $\operatorname{Lie}\left(S^{1}\right)^{n}$, we also have that $|\Delta| \backslash\left|\Delta^{n-2}\right|$ is closed in $\operatorname{Lie}\left(S^{1}\right)^{n} \backslash$ $\left|\Delta^{n-2}\right|$.

Because $|\Delta| \backslash\left|\Delta^{n-2}\right|$ is open and closed in $\operatorname{Lie}\left(S^{1}\right)^{n} \backslash\left|\Delta^{n-2}\right|$ and $\operatorname{Lie}\left(S^{1}\right)^{n} \backslash\left|\Delta^{n-2}\right|$ is connected, we deduce that $|\Delta| \backslash\left|\Delta^{n-2}\right|$ is either empty or is equal to all of $\operatorname{Lie}\left(S^{1}\right)^{n} \backslash\left|\Delta^{n-2}\right|$.

Because, by assumption, M has a fixed point, Δ has at least one n dimensional cone, so $|\Delta| \backslash\left|\Delta^{n-2}\right|$ is not empty. So $|\Delta| \backslash\left|\Delta^{n-2}\right|$ is equal to all of $\operatorname{Lie}\left(S^{1}\right)^{n} \backslash\left|\Delta^{n-2}\right|$. Taking the closures, we deduce that $|\Delta|=\operatorname{Lie}\left(S^{1}\right)^{n}$, as required.

We are now ready to prove our main theorem.
Proof of Theorem L Lemma gives an equivariant biholomorphism

$$
\varphi: M_{\Delta} \rightarrow X
$$

By Lemma [7], the fan Δ is complete. This implies that the toric variety M_{Δ} is compact. So X must be compact. Because M is Hausdorff and connected, and X is a subset that is both compact and open, X is all of M. So φ defines an equivariant biholomorphism from M_{Δ} to M, as required.

Acknowledgment. We thank Ignasi Mundet i Riera for a counterexample to a statement that, if true, would have simplified our proof (see Remark []).

References

[1] V. E. Buchstaber and T. E. Panov, Torus Actions and Their Applications in Topology and Combinatorics, University Lecture series, vol. 24, Amer. Math. Soc., Providence, R.I., 2002.
[2] David A. Cox, John B. Little, and Henry K. Schenck, Toric varieties, Graduate Studies in Mathematics 124, American Mathematical Society, 2011.
[3] Michael W. Davis and Tadeusz Januszkiewicz, Convex polytopes, Coxeter orbifolds, and torus actions, Duke Math. J. vol. 62 no. 2 (1991), 417-451.
[4] Victor Guillemin and Shlomo Sternberg, Geometric quantization and multiplicities of group representations, Invent. Math. 67 (1982), 515-538.
[5] H. Ishida and M. Masuda, Todd genera of complex torus manifolds, arXiv:1203.3129.
[6] G. Kempf, F. Knudsen, D. Mumford, and B. Saint-Donat, Toroidal Embeddings I, Lecture Notes in Math. 339, Springer, Berlin, 1973.
[7] S. Kobayashi and K. Nomizu, Foundation of Differential Geometry Volume II, Interscience Publishers, John Willey \& Sons, Inc., New York-London-Sydney, 1969.
[8] M. Masuda, Unitary toric manifolds, multi-fans and equivariant index, Tohoku Math. J. 51 (1999), 237-265.
[9] K. Miyake and T. Oda, Almost homogeneous algebraic varieties under algebraic torus action, in: Manifolds - Tokyo 1973 (Proc. Internat. Conf. Tokyo, 1973), (A. Hattori, Ed.)), Univ. Tokyo Press, Tokyo, 1975, 373-381.
[10] H. Sumihiro, Equivariant completion, I, II, J. Math. Kyoto Univ. 14, 1-28; 15 (1975), 573-605.
Osaka City University Advanced Mathematical Institute, Sumiyoshi-ku, Osaka 558-8585, Japan.
E-mail address: ishida@sci.osaka-cu.ac.jp
Dept. of Mathematics, University of Toronto, 40 St.George Street, Toronto Ontario M5S 2E4, Canada
E-mail address: karshon@math.toronto.edu

[^0]: ${ }^{2}$ A map from $M /\left(S^{1}\right)^{n}$ to P is a diffeomorphism of manifolds with corners if and only if it is a homeomorphism and, for every real valued function on P, the function extends to a smooth function on \mathbb{R}^{n} if and only if its pullback to M is smooth. For every $k \in\{0, \ldots, n\}$, a diffeomorphism carries the k dimensional orbits in M to the relative interiors of the k dimensional faces of P.
 ${ }^{3}$ Davis-Januszkiewicz [3] used the term toric manifold, but this term was already used in the literature to mean a smooth toric variety, so Buchstaber-Panov [四] introduced instead the term quasitoric manifold.

[^1]: ${ }^{4}$ In fact, it is enough to assume that the target space is Hausdorff and compactly generated. Compactly generated means that a subset is closed if and only if its intersection with every compact set K is closed in K; this property holds if the space is locally compact or if the space is metrizable.

[^2]: ${ }^{5}$ Here, "is" means that there exists a unique manifold-with-boundary structure on M^{\prime} / S^{1} such that a function is smooth if and only if its pullback to M^{\prime} is smooth.

