Morse indices and the number of blow up points of blowing-up solutions for a Liouville equation with singular data

Futoshi Takahashi
Department of Mathematics, Osaka City University
\& Osaka City University Advanced Mathematical Institute
Sumiyoshi-ku, Osaka, 558-8585, Japan
Tel: $(+81)(0) 6-6605-2508$
E-mail: futoshi@sci.osaka-cu.ac.jp

Abstract

Let $\Omega \subset \mathbb{R}^{2}$ be a smooth bounded domain and let $\Gamma=\left\{p_{1}, \cdots, p_{N}\right\} \subset$ Ω be the set of prescribed points. Consider the Liouville type equation

$$
-\Delta u=\lambda \Pi_{j=1}^{N}\left|x-p_{j}\right|^{2 \alpha_{j}} V(x) e^{u} \quad \text { in } \Omega, \quad u=0 \quad \text { on } \partial \Omega,
$$

where $\alpha_{j}(j=1, \cdots, N)$ are positive numbers, $V(x)>0$ is a given smooth function on $\bar{\Omega}$, and $\lambda>0$ is a parameter. Let $\left\{u_{n}\right\}$ be a blowing up solution sequence for $\lambda=\lambda_{n} \downarrow 0$ having the m-points blow up set $S=\left\{q_{1}, \cdots, q_{m}\right\} \subset$ Ω, i.e.,

$$
\lambda_{n} \Pi_{j=1}^{N}\left|x-p_{j}\right|^{2 \alpha_{j}} V(x) e^{u_{n}} d x \rightharpoonup \sum_{i=1}^{m} b_{i} \delta_{q_{i}}
$$

in the sense of measures, where $b_{i}=8 \pi$ if $q_{i} \notin \Gamma, b_{i}=8 \pi\left(1+\alpha_{j}\right)$ if $q_{i}=p_{j}$ for some $p_{j} \in \Gamma$. We show that the number of blow up points m is less than or equal to the Morse index of u_{n} for n sufficiently large, provided $\alpha_{j} \in(0,+\infty) \backslash \mathbb{N}$ for all $j=1, \cdots, N$. This is a generalization of the result [14] in which nonsingular case ($\alpha_{j}=0$ for all j) was studied.

Keywords: Liouville equation, blow up points, singular data, concentration compactness result, Morse indices.

2010 Mathematics Subject Classifications: 35B40, 35J20, 35J25.

1 Introduction

Let Ω be a smooth bounded domain in \mathbb{R}^{2} and $\lambda>0$ is a parameter. Motivated by some physical problems in selfdual Gauge Field Theories such as

Chern-Simons vortex theories or others (see [12], [15]), some researchers are interested in the analysis of the problem

$$
\begin{cases}-\Delta v=\lambda e^{v}-4 \pi \sum_{j=1}^{N} \alpha_{j} \delta_{p_{j}} & \text { in } \Omega \tag{1.1}\\ v=0 & \text { on } \partial \Omega\end{cases}
$$

where $\Gamma=\left\{p_{1}, \cdots, p_{N}\right\} \subset \Omega$ is the set of prescribed singular sources (called "vortices"), δ_{p} is a Dirac mass supported at p, and $\alpha_{j}>0$.

If we introduce the Green's function of $-\Delta$ acting on $H_{0}^{1}(\Omega)$:

$$
\begin{cases}-\Delta_{x} G(x, p)=\delta_{p} & \text { for } x \in \Omega \\ G(x, p)=0 & \text { for } x \in \partial \Omega\end{cases}
$$

and write $G(x, p)=\frac{1}{2 \pi} \log |x-p|^{-1}+H(x, p)$, where $H(x, p)$ is the regular part of G, then the problem (1.1) is equivalent to

$$
\begin{cases}-\Delta u=\lambda \Pi_{j=1}^{N}\left|x-p_{j}\right|^{2 \alpha_{j}} V(x) e^{u} & \text { in } \Omega \tag{1.2}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $u=v+4 \pi \sum_{j=1}^{N} \alpha_{j} G\left(x, p_{j}\right)$ and $V(x)=e^{-4 \pi \sum_{j=1}^{N} \alpha_{j} H\left(x, p_{j}\right)}$ is a smooth positive function on $\bar{\Omega}$. By this reason, we are led to consider the problem (1.2) for general smooth positive functions V. In this case, the study of asymptotic behavior of solutions u_{n} for $\lambda=\lambda_{n} \rightarrow+0$ in (1.2) was done by P . Esposito in [5] (see also [6] [7]), which extends the results of [9], [10] where the regular case ($\alpha_{j}=0, \forall j$) was considered.

Theorem 1 (P. Esposito) Let V be a smooth positive function on $\bar{\Omega}$ and set $K(x)=\Pi_{j=1}^{N}\left|x-p_{j}\right|^{2 \alpha_{j}} V(x)$. Let $\left\{\lambda_{n}\right\}$ be a sequence of positive numbers with $\lambda_{n} \rightarrow 0$ and let $\left\{u_{n}\right\}$ be a solution sequence of (1.2) for $\lambda=\lambda_{n}$ such that

$$
\Sigma_{n}=\lambda_{n} \int_{\Omega} K(x) e^{u} d x=O(1) \quad \text { as } n \rightarrow \infty
$$

Then the following alternative holds:
(i) If $\Sigma_{n} \rightarrow 0$ as $n \rightarrow \infty$, then $u_{n} \rightarrow 0$ in $C^{2, \alpha}(\Omega)$ for some $\alpha \in(0,1)$ and u_{n} coincides with the unique minimal solution of (1.2).
(ii) If $\Sigma_{n} \rightarrow L$ for some $L \neq 0$, then (up to subsequence) there exists a nonempty finite set $S=\left\{q_{1}, \cdots, q_{m}\right\} \subset \Omega$ (blow up set) such that $\left\{u_{n}\right\}$ is uniformly bounded in $L_{\text {loc }}^{\infty}(\bar{\Omega} \backslash \mathcal{S})$, and

$$
\begin{align*}
& \lambda_{n} K(x) e^{u_{n}} d x \rightharpoonup \sum_{i=1}^{m} b_{i} \delta_{q_{i}} \quad \text { in the sense of measures, } \tag{1.3}\\
& u_{n} \rightarrow \sum_{i=1}^{m} b_{i} G\left(\cdot, q_{i}\right) \quad \text { in } C_{l o c}^{2}(\bar{\Omega} \backslash \mathcal{S}) \tag{1.4}
\end{align*}
$$

as $n \rightarrow \infty$, where $b_{i}=8 \pi$ if $q_{i} \notin \Gamma, b_{i}=8 \pi\left(1+\alpha_{j}\right)$ if $q_{i}=p_{j}$ for some $p_{j} \in \Gamma$.
Furthermore, as for the location of blow up points in the case (ii), we have the following:
If $S \cap \Gamma=\phi$, then $\left(q_{1}, \cdots, q_{m}\right)$ is a critical point for the function

$$
\mathcal{F}\left(x_{1}, \cdots, x_{m}\right)=\sum_{i=1}^{m} H\left(x_{i}, x_{i}\right)+\sum_{i, j=1, i \neq j}^{m} G\left(x_{i}, x_{j}\right)+\frac{1}{4 \pi} \sum_{i=1}^{m} \log K\left(x_{i}\right) .
$$

If $S \cap \Gamma=\left\{p_{j_{1}}, \cdots, p_{j_{s}}\right\}$ and $S \backslash \Gamma=\left\{q_{i_{1}}, \cdots, q_{i_{k}}\right\}$ with $s+k=m$, then $\left(q_{i_{1}}, \cdots, q_{i_{k}}\right)$ is a critical point for the function

$$
\tilde{\mathcal{F}}\left(x_{1}, \cdots, x_{k}\right)=\mathcal{F}\left(x_{1}, \cdots, x_{k}\right)+\mathcal{G}\left(x_{1}, \cdots, x_{k} ; p_{j_{1}}, \cdots, p_{j_{s}}\right)
$$

where

$$
\mathcal{G}\left(x_{1}, \cdots, x_{k} ; a_{1}, \cdots, a_{s}\right)=\frac{1}{4 \pi}\left(\sum_{i=1}^{k} \sum_{j=1}^{s} 8 \pi\left(1+\alpha_{j}\right) G\left(x_{i}, a_{j}\right)\right) .
$$

Also, as a vice versa of Theorem 1, Esposito constructed blowing up solutions with a prescribed blow up set S under the additional assumption that $\alpha_{j} \in(0,+\infty) \backslash \mathbb{N}$ for all $j=1, \cdots, N$; see [6].

In the following, let $i_{M}(u)$ denote the Morse index of a solution u of (1.2), i.e., the number of negative eigenvalues of the operator $L_{u}=-\Delta-\lambda K(x) e^{u}$. acting on $H_{0}^{1}(\Omega)$.

Now, we state the main result of this note, which is a generalization of [13] [14] in this case.

Theorem 2 Let $\left\{u_{n}\right\}$ be a solution sequence of (1.2) for $\lambda=\lambda_{n}$ with $\Sigma_{n}=$ $O(1)$ as $n \rightarrow \infty$ and let $S=\left\{q_{1}, \cdots, q_{m}\right\}$ be its blow up set (possibly $S=\phi$). Assume $\alpha_{j} \in(0,+\infty) \backslash \mathbb{N}$ for all $j=1, \cdots, N$. Then $m \leq i_{M}\left(u_{n}\right)$ for n sufficiently large.

As a corollary, we obtain the following assertion.
Corollary 3 Let $\left\{u_{n}\right\}$ be a solution sequence of (1.2) for $\lambda=\lambda_{n}$ with $\Sigma_{n}=$ $O(1)$ as $n \rightarrow \infty$. Assume $\alpha_{j} \in(0,+\infty) \backslash \mathbb{N}$ for all $j=1, \cdots, N$ and the Morse index $i_{M}\left(u_{n}\right)=1$ for any n large. Then the number of blow up points of $\left\{u_{n}\right\}$ is exactly 1 .

Proof. By Theorem 2 and the assumption that $i_{M}\left(u_{n}\right)=1$ for n large, we see that the number of blow up points $\sharp S$ is 0 or 1 for the sequence $\left\{u_{n}\right\}$. However, if $\sharp S=0$, then $\left\{u_{n}\right\}$ is uniformly bounded and $\Sigma_{n} \rightarrow 0$. Thus by Theorem 1, u_{n} coincides with the minimal solution u_{n} of (1.2) for n large. It is well known that the minimal solution $\underline{u_{n}}$ is stable and its Morse index is exactly 0 . This contradicts to the assumption $i_{M}\left(u_{n}\right)=1$, thus we have $\sharp S=1$.

2 Proof of Theorem 2

In this section, we prove Theorem 2 along the line of [13], [14]. Analytical tools needed for the study of singular Liouville equations are provided in Tarantello's nice book [12]. In the proof, we need a concentrationcompactness alternative result of Bartolucci and Tarantello ([2], [3], see also [12]: Proposition 5.4.32), which we recall here in the following form.

Proposition 4 Let v_{n} satisfy

$$
\begin{aligned}
& -\Delta v_{n}=|x-p|^{2 \alpha} W_{n}(x) e^{v_{n}} \quad \text { in } B_{1}(p) \subset \mathbb{R}^{2} \\
& \int_{B_{r}(p)}|x-p|^{2 \alpha} W_{n} e^{v_{n}} d x \leq C \quad \text { for some } r \in(0,1]
\end{aligned}
$$

where $\alpha>0$ and W_{n} is a C^{1} function on $B_{1}(p)$ such that

$$
0<b_{1} \leq W_{n} \leq b_{2}, \quad\left|\nabla W_{n}\right| \leq A \quad \text { in } B_{1}(p)
$$

for some $b_{1}, b_{2}, A>0$ uniformly in n.
Then there exists $\delta \in(0,1]$ and a subsequence of v_{n} (denoted by the same symbol), for which only one of the following alternatives hold:
(a) v_{n} is bounded uniformly in $L_{l o c}^{\infty}\left(B_{\delta}(p)\right)$;
(b) $\sup _{\Omega^{\prime}} v_{n} \rightarrow-\infty$ for every $\Omega^{\prime} \subset \subset B_{\delta}(p)$;
(c) there exists $z_{n} \in B_{1}(p)$ such that $z_{n} \rightarrow p$ and $v_{n}\left(z_{n}\right) \rightarrow+\infty$, while $\sup _{\Omega^{\prime}} v_{n} \rightarrow-\infty$ for every $\Omega^{\prime} \subset \subset B_{\delta}(p) \backslash\{p\}$ and $|x-p|^{2 \alpha} W_{n} e^{v_{n}} \rightharpoonup \beta \delta_{p}$ in the sense of measures in $B_{\delta}(p)$ with $\beta \geq 4 \pi$. Furthermore if $W_{n} \rightarrow$ W in $C_{\text {loc }}^{0}$ for some W, then $\beta \geq 8 \pi$.

Let $\left\{u_{n}\right\}$ be a solution sequence to (1.2) for $\lambda=\lambda_{n}$ with $\Sigma_{n}=O(1)$ as $n \rightarrow \infty$. If $\Sigma_{n} \rightarrow 0$, then $S=\phi$ and we have nothing to prove. Thus we consider the case (ii) of Theorem 1, and we have a blow up set $\mathcal{S}=$ $\left\{q_{1}, \cdots, q_{m}\right\} \subset \Omega$ for (a subsequence of) $\left\{u_{n}\right\}$.

Let $L_{n}=-\Delta_{x}-\lambda_{n} K(x) e^{u_{n}(x)} .: H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$ be the linearized operator around u_{n} and let $\lambda_{j}\left(L_{n}, D\right)$ denote the j-th eigenvalue of L_{n} acting on $H_{0}^{1}(D)$ for a regular subdomain $D \subset \Omega$. Next is the key in the proof of Theorem 2.

Claim: There exist m disjoint open balls $\left\{B^{i}\right\}_{i=1}^{m}$, each $B^{i} \subset \subset \Omega$, such that $\lambda_{1}\left(L_{n}, B^{i}\right)<0$ for any $i \in\{1, \cdots, m\}$ and for n large .

Assuming for the moment the validity of Claim, we prove Theorem 2. Indeed, by Claim, there exist m open balls B^{1}, \cdots, B^{m} which are disjoint, such that

$$
\lambda_{1}\left(L_{n}, B^{i}\right)<0 \quad \text { for } i=1, \cdots, m .
$$

On the other hand, it is well known that

$$
\lambda_{m}\left(L_{n}, \Omega\right) \leq \sum_{i=1}^{m} \lambda_{1}\left(L_{n}, B^{i}\right)
$$

holds; see, for example, the Appendix of [13]. Combining these inequalities, we have $\lambda_{m}\left(L_{n}, \Omega\right)<0$. Therefore by the definition of the Morse index of u_{n}, we have $m \leq i_{M}\left(u_{n}\right)$. This proves Theorem 2.

In the following, we will prove Claim. Let $S \backslash \Gamma=\left\{q_{i_{1}}, \cdots, q_{i_{k}}\right\}$. Since $K(x)=\Pi_{j=1}^{N}\left|x-p_{j}\right|^{2 \alpha_{j}} V(x)$ is strictly positive smooth function near any $q \in S \backslash \Gamma$, the argument in [14], which uses a concentration-compactness result of [4] [8], works well around $q \in S \backslash \Gamma$. Thus we can find r disjoint balls $\left\{B_{l}^{\prime}\right\}_{l=1}^{k}$ with the desired property. We refer the reader to [14] [13].

Next, we consider blow up points in $S \cap \Gamma=\left\{p_{j_{1}}, \cdots, p_{j_{s}}\right\}$ and, for simplicity, we relabel $S \cap \Gamma=\left\{p_{1}, \cdots, p_{s}\right\}$. We choose $r>0$ sufficiently small such that $B_{r}\left(p_{i}\right) \subset \subset \Omega,\left\{B_{r}\left(p_{i}\right)\right\}_{i=1}^{s}$ are disjoint, and p_{i} is the only blow up point of u_{n} in $B_{r}\left(p_{i}\right)$ for all i. Let $x_{n}^{i} \in B_{r}\left(p_{i}\right)$ be a point such that

$$
u_{n}\left(x_{n}^{i}\right)=\max _{B_{r}\left(p_{i}\right)} u_{n}(x) \rightarrow+\infty, \quad x_{n}^{i} \rightarrow p_{i}(i=1, \cdots, s),
$$

as $n \rightarrow \infty$.
Now, let us define $\delta_{n}^{i}>0$ and $\tilde{u}_{n}^{i}: B_{r / \delta_{n}^{i}}(0) \rightarrow \mathbb{R}$ so that

$$
\begin{aligned}
& \left(\delta_{n}^{i}\right)^{2 \alpha_{i}+2} \lambda_{n} e^{u_{n}\left(p_{i}\right)}=1, \\
& \tilde{u}_{n}^{i}(y)=u_{n}\left(\delta_{n}^{i} y+p_{i}\right)-u_{n}\left(p_{i}\right), \quad y \in B_{r / \delta_{n}^{i}}(0)
\end{aligned}
$$

for $i \in\{1, \cdots, s\}$.
First, we prove
Lemma $5 \delta_{n}^{i} \rightarrow 0$ as $n \rightarrow \infty$.
Proof. Define $v_{n}(x)=u_{n}(x)+\log \lambda_{n}$. Then v_{n} satisfies

$$
-\Delta v_{n}=\left|x-p_{i}\right|^{2 \alpha_{i}} \hat{K}_{i}(x) e^{v_{n}} \quad \text { in } B_{r}\left(p_{i}\right), \quad v_{n}=u_{n}+\log \lambda_{n} \quad \text { on } \partial B_{r}\left(p_{i}\right)
$$

where $K(x)=\left|x-p_{i}\right|^{2 \alpha_{i}} \hat{K}_{i}(x), \hat{K}_{i}(x)=\Pi_{j=1, j \neq i}^{N}\left|x-p_{j}\right|^{2 \alpha_{j}} V(x)$. Note that \hat{K}_{i} is a smooth, strictly positive function on $B_{r}\left(p_{i}\right)$. Also, Theorem 1 (1.3), (1.4) implies that

$$
\begin{equation*}
\left|x-p_{i}\right|^{2 \alpha_{i}} \hat{K}_{i}(x) e^{v_{n}} d x \rightharpoonup 8 \pi\left(1+\alpha_{i}\right) \delta_{p_{i}} \tag{2.1}
\end{equation*}
$$

in the sense of measures on $B_{r}\left(p_{i}\right)$ and

$$
\begin{equation*}
\max _{\partial B_{r}\left(p_{i}\right)} v_{n}(x)-\min _{\partial B_{r}\left(p_{i}\right)} v_{n}(x)=\max _{\partial B_{r}\left(p_{i}\right)} u_{n}(x)-\min _{\partial B_{r}\left(p_{i}\right)} u_{n}(x)=O(1) \tag{2.2}
\end{equation*}
$$

as $n \rightarrow \infty$. Recall the assumption $\alpha_{i} \notin \mathbb{N}$ for all i. Therefore, we can apply Proposition 5.6.50 and Corollary 5.4.24 in [12] to v_{n} to conclude that

$$
\sup _{B_{\rho}\left(p_{i}\right)}\left\{v_{n}(x)+\left(2 \alpha_{i}+1\right) \log \left|x-p_{i}\right|\right\} \leq C
$$

for any $\rho<r$, which implies $\left(\frac{\left|x_{n}^{i}-p_{i}\right|}{\delta_{n}^{i}}\right)^{2\left(\alpha_{i}+1\right)} \leq e^{C}$, and

$$
\begin{equation*}
v_{n}\left(p_{i}\right)=\max _{B_{r}\left(p_{i}\right)} v_{n}+O(1) \tag{2.3}
\end{equation*}
$$

as $n \rightarrow \infty$. Thus $u_{n}\left(p_{i}\right)=u_{n}\left(x_{n}^{i}\right)+O(1) \rightarrow \infty$ for any $i=1, \cdots, s$ as $n \rightarrow \infty$.

Now, we claim that $v_{n}\left(p_{i}\right) \rightarrow+\infty$ as $n \rightarrow \infty$ for any $i \in\{1, \cdots, s\}$. Indeed, assume the contrary that there exists $i \in\{1, \cdots, s\}$ and a subsequence (denoted by the same symbol) such that
(i) $v_{n}\left(p_{i}\right) \rightarrow-\infty$, or
(ii) $v_{n}\left(p_{i}\right) \rightarrow C$ for some $C \in \mathbb{R}$.

When (i) happens, we see by (2.3) that

$$
\int_{B_{r}\left(p_{i}\right)} K(x) e^{v_{n}(x)} d x \leq e^{\max _{B_{r}\left(p_{i}\right)} v_{n}} \int_{B_{r}\left(p_{i}\right)} K(x) d x=e^{v_{n}\left(p_{i}\right)+O(1)} \int_{B_{r}\left(p_{i}\right)} K(x) d x \rightarrow 0
$$

as $n \rightarrow \infty$. On the other hand, since p_{i} is the only blow up point of $\left\{u_{n}\right\}$ in $B_{r}\left(p_{i}\right),(2.1)$ implies

$$
\lim _{n \rightarrow \infty} \int_{B_{r}\left(p_{i}\right)} K(x) e^{v_{n}} d x \geq 8 \pi\left(1+\alpha_{i}\right)
$$

which leads to a contradiction.
When (ii) happens, again by (2.3), we see $\max _{B_{r}\left(p_{i}\right)} v_{n}=v_{n}\left(x_{n}^{i}\right)=O(1)$ as $n \rightarrow \infty$. Since $x_{n}^{i} \rightarrow p_{i}$ as $n \rightarrow \infty$, this case can happen only when the alternative (a) in Proposition 4 occurs: $\left\{v_{n}\right\}$ is bounded in $L_{l o c}^{\infty}\left(B_{r}\left(p_{i}\right)\right)$. On the other hand, since $u_{n}=O(1)$ locally on $B_{r}\left(p_{i}\right) \backslash\left\{p_{i}\right\}$ by (1.4), $v_{n}=$ $u_{n}+\log \lambda_{n} \rightarrow-\infty$ on any compact set in $B_{r}\left(p_{i}\right) \backslash\left\{p_{i}\right\}$. This again leads to a contradiction and we have proved the claim. Now, since $\left(\delta_{n}^{i}\right)^{2\left(1+\alpha_{i}\right)}=\frac{1}{e^{v_{n}\left(p_{i}\right)}}$, we obtain the lemma.

Incidentally, by (2.1), (2.2) and (2.3), we can apply Theorem 5.6.51 in [12], see also [1], to v_{n} to obtain the following pointwise estimate

$$
\left|v_{n}(x)-\log \frac{e^{v_{n}\left(p_{i}\right)}}{\left(1+\frac{1}{8\left(\alpha_{i}+1\right)^{2}} c_{i} e^{v_{n}\left(p_{i}\right)}\left|x-p_{i}\right|^{2\left(\alpha_{i}+1\right)}\right)^{2}}\right| \leq C \quad \text { for } x \in B_{r}\left(p_{i}\right),
$$

which is equivalent to

$$
\left|u_{n}(x)-\log \frac{e^{u_{n}\left(p_{i}\right)}}{\left.\left(\left.1+\frac{\lambda_{n}}{8\left(\alpha_{i}+1\right)^{2}} c_{i} e^{u_{n}\left(p_{i}\right)} \right\rvert\, x-p_{i}\right)^{2\left(\alpha_{i}+1\right)}\right)^{2}}\right| \leq C \quad \text { for } x \in B_{r}\left(p_{i}\right),
$$

where $c_{i}=\hat{K}_{i}\left(p_{i}\right)$.
Going back to the proof of Theorem 2, we see that \tilde{u}_{n}^{i} satisfies

$$
\left\{\begin{array}{l}
-\Delta \tilde{u}_{n}^{i}=|y|^{2 h a l p h a_{i}} \hat{K}_{i}\left(\delta_{n}^{i} y+p_{i}\right) e^{\tilde{u}_{n}^{i}} \quad \text { in } B_{r / \delta \delta_{n}^{i}}(0), \\
\hat{K}_{i}\left(\delta_{n}^{i} y+p_{i}\right) \rightarrow c_{i}=\hat{K}_{i}\left(p_{i}\right) \text { uniformly in } C_{l o c}^{0}\left(\mathbb{R}^{2}\right), \\
\tilde{u}_{n}^{i}(0)=0, \max _{B_{r / \delta n}^{i}(0)} \tilde{u}_{n}^{i}=u_{n}\left(x_{n}^{i}\right)-u_{n}\left(p_{i}\right)=O(1), \\
\int_{B_{r / \delta_{n}^{i}}(0)}|y|^{2 \alpha_{i}} \hat{K}_{i}\left(\delta_{n}^{i} y+p_{i}\right) e^{\tilde{u}_{n}^{i}} d y=O(1), \quad(n \rightarrow \infty)
\end{array}\right.
$$

The third equation comes from (2.3).
At this stage, we can apply Lemma 5.4.21 in [12] to \tilde{u}_{n}^{i} to confirm that \tilde{u}_{n}^{i} is uniformly bounded in $L_{l o c}^{\infty}\left(\mathbb{R}^{2}\right)$ and along a subsequence,

$$
\begin{equation*}
\tilde{u}_{n}^{i} \rightarrow U^{i}(y) \text { in } C_{l o c}^{2}\left(\mathbb{R}^{2}\right) \text { as } n \rightarrow \infty, \tag{2.4}
\end{equation*}
$$

where U^{i} satisfies

$$
\left\{\begin{array}{l}
-\Delta U^{i}=c_{i}|y|^{2 \alpha_{i}} e^{U^{i}} \quad \text { in } \mathbb{R}^{2}, \\
U^{i}(0)=0, \\
\int_{\mathbb{R}^{2}}|y|^{2 \alpha_{i}} e^{U^{i}} d y<+\infty
\end{array}\right.
$$

By a classification result of Prajapat and Tarantello [11] and the assumption $\alpha_{i} \notin \mathbb{N}$, we have

$$
U^{i}(y)=-2 \log \left(1+\frac{c_{i}}{8\left(\alpha_{i}+1\right)^{2}}|y|^{2\left(\alpha_{i}+1\right)}\right) \quad \text { for } i=1, \cdots, s
$$

Now, we define

$$
\tilde{L}_{n}^{i}=-\Delta_{y}-|y|^{2 \alpha_{i}} \hat{K}_{i}\left(\delta_{n}^{i} y+p_{i}\right) e^{\tilde{u}_{n}^{i}(y)} \cdot: H_{0}^{1}\left(B_{r / \delta_{n}^{i}}(0)\right) \rightarrow H^{-1}\left(B_{r / \delta_{n}^{i}}(0)\right) .
$$

This operator is related to L_{n} by the formula

$$
\left.\left(\delta_{n}^{i}\right)^{2} L_{n}\right|_{u_{n}(x)=\tilde{u}_{n}^{i}(y)+u_{n}\left(p_{i}\right)}=\tilde{L}_{n}^{i},
$$

where $x=\delta_{n}^{i} y+p_{i}$ for $x \in B_{r}\left(p_{i}\right)$ and $y \in B_{r / \delta_{n}^{i}}(0)$. Also for a domain $D \subset B_{r}\left(p_{i}\right)$, we have

$$
\begin{equation*}
\left(\delta_{n}^{i}\right)^{2} \lambda_{1}\left(L_{n}, D\right)=\lambda_{1}\left(\tilde{L}_{n}^{i}, D_{n}^{i}\right), \quad D_{n}^{i}=\frac{D-p_{i}}{\delta_{n}^{i}} \tag{2.5}
\end{equation*}
$$

where $\lambda_{1}\left(\tilde{L}_{n}^{i}, D_{n}^{i}\right)$ denotes the first eigenvalue of \tilde{L}_{n}^{i} acting on $H_{0}^{1}\left(D_{n}^{i}\right)$.
Now, we show
Lemma 6 There exist disjoint balls $\left\{B_{\delta_{n}^{i} R}\left(p_{i}\right)\right\}_{i=1, \cdots, s}$ for some $R>0$ such that $\lambda_{1}\left(L_{n}, B_{\delta_{n}^{i} R}\left(p_{i}\right)\right)<0$ for n large and for any $i \in\{1, \cdots, s\}$.

Proof. For $R>0$, we define

$$
w_{R}(y)=2 \log \frac{8+R^{2}}{8+|y|^{2}} \in H_{0}^{1}\left(B_{R}(0)\right)
$$

We will prove that $\left(\tilde{L}_{n}^{i} w_{R}, w_{R}\right)_{L^{2}\left(B_{R}\right)}<0$ for $n \in \mathbb{N}$ and $R>0$ sufficiently large with $B_{R}(0) \subset B_{r / \delta_{n}^{i}}(0)$. Indeed,

$$
\begin{aligned}
\left(\tilde{L}_{n}^{i} w_{R}, w_{R}\right)_{L^{2}\left(B_{R}\right)} & =\int_{B_{R}(0)}\left|\nabla w_{R}\right|^{2} d y-\int_{B_{R}(0)}|y|^{2 \alpha_{i}} \hat{K}_{i}\left(\delta_{n}^{i} y+p_{i}\right) e^{\tilde{u}_{n}^{i}(y)} w_{R}^{2}(y) d y \\
& =: I_{1}-I_{2}
\end{aligned}
$$

We observe that

$$
I_{1}=\int_{B_{R}(0)} \frac{16|y|^{2}}{\left(8+|y|^{2}\right)^{2}} d y=2 \pi \int_{0}^{R} \frac{16 r^{2}}{\left(8+r^{2}\right)^{2}} r d r \leq 32 \pi(\log R)\left[1+o_{R}(1)\right]
$$

where $o_{R}(1) \rightarrow 0$ as $R \rightarrow \infty$. On the other hand, we have

$$
\begin{aligned}
I_{2} & =\int_{B_{R}(0)}|y|^{2 \alpha_{i}} \hat{K}_{i}\left(\delta_{n}^{i} y+x_{n}^{i}\right) e^{\tilde{u}_{n}^{i}(y)} w_{R}^{2}(y) d y \\
& =c_{i} \int_{B_{R}(0)} \frac{|y|^{2 \alpha_{i}}}{\left(1+\frac{c_{i}}{8\left(\alpha_{i}+1\right)^{2}}|y|^{2 \alpha_{i}+2}\right)^{2}}\left\{2 \log \frac{8+R^{2}}{8+|y|^{2}}\right\}^{2} d y+o_{n}(1) \\
& =8 \pi c_{i} \int_{0}^{R} \frac{r^{2 \alpha_{i}+1}}{\left(1+\frac{c_{i}}{8\left(\alpha_{i}+1\right)^{2}} r^{2 \alpha_{i}+2}\right)^{2}}\left\{\log \left(8+R^{2}\right)-\log \left(8+r^{2}\right)\right\}^{2} d r+o_{n}(1) \\
& =8 \pi c_{i}\left[\frac{4\left(\alpha_{i}+1\right)}{c_{i}}+o_{R}(1)\right]\left\{\log \left(8+R^{2}\right)\right\}^{2}+o_{n}(1) \\
& =32 \pi\left(\alpha_{i}+1\right)\left\{\log \left(8+R^{2}\right)\right\}^{2}\left[1+o_{R}(1)\right]+o_{n}(1),
\end{aligned}
$$

where we have used (2.4) and

$$
\int_{0}^{R} \frac{r^{2 \alpha+1}}{\left(1+c r^{2 \alpha+2}\right)^{2}} d r=\int_{0}^{\infty} \frac{r^{2 \alpha+1}}{\left(1+c r^{2 \alpha+2}\right)^{2}} d r+o_{R}(1)=\frac{1}{2(\alpha+1) c}+o_{R}(1)
$$

for $\alpha, c>0$. Thus we obtain

$$
\left(\tilde{L}_{n}^{i} w_{R}, w_{R}\right)_{L^{2}\left(B_{R}\right)}=I_{1}-I_{2} \leq-32 \pi\left(\alpha_{i}+1\right)\left\{\log \left(8+R^{2}\right)\right\}^{2}\left[1+o_{R}(1)\right]<0
$$

by taking n sufficiently large first, and then $R>0$ large such that $B_{R}(0) \subset$ $B_{r / \delta_{n}^{i}}(0)$. This implies that the first eigenvalue of the operator \tilde{L}_{n}^{i} on B_{R} is negative: $\lambda_{1}\left(\tilde{L}_{n}^{i}, B_{R}\right)<0$. By this calculation and (2.5) proves that $\lambda_{1}\left(L_{n}, B_{\delta_{n}^{i} R}\left(p_{i}\right)\right)<0$ for $i=1, \cdots, s$. These balls $\left\{B_{i}\right\}_{i=1}^{s}=\left\{B_{\delta_{n}^{i} R}\left(p_{i}\right)\right\}_{i=1}^{s}$ can be disjoint if we choose sufficiently large n, since the blow up set S is finite and $\delta_{n}^{i}=o(1)$ as $n \rightarrow \infty$.

Since balls $\left\{B_{i}\right\}_{i=1}^{s}$ in Lemma 6 can also be made disjoint from balls $\left\{B_{l}^{\prime}\right\}_{l=1}^{k}$ (former obtained around points in $S \backslash \Gamma$), we obtain Claim. The proof of Theorem 2 is completed.

Acknowledgement. The author is supported by JSPS Grant-in-Aid for Scientific Research (KAKENHI) (B), No. 23340038.

References

[1] (MR2097983) D. Bartolucci, C.C. Chen, C.S. Lin and G. Tarantello: Profile of blow-up solutions to mean field equations with singular data, Comm. Partial Differential Equations 29 no. 7-8 (2004) 1241-1265.
[2] (MR1935635) D. Bartolucci, and G. Tarantello: The Liouville equation with singular data: a concentration-compactness principle via a local representation formula, J. Differential Equations 185 (2002) 161-180.
[3] (MR1917672) D. Bartolucci, and G. Tarantello: Liouville type equations with singular data and their applications to periodic multivortices for the Electroweak Theory, Comm. Math. Pfys. 229 (2002) 3-47.
[4] (MR1132783) H. Brezis, and F. Merle: Uniform estimates and blow-up behavior for solutions of $-\Delta u=V(x) e^{u}$ in two dimensions, Comm. Partial Differential Equations 16 (1991) 1223-1253.
[5] P. Esposito: A Class of Liouville-Type Equations Arising in ChernSimons Vortex Theory: Asymptotics and Construction of Blowing Up Solutions, Ph. D. thesis, Universitá degli Studi Roma"Tor Vergata", Roma, Italy, 2003.
[6] (MR2139452) P. Esposito: Blowup solutions for a Liouville equation with singular data, SIAM. J. Math. Anal. 36 (2005) 1310-1345.
[7] (MR2172566) P. Esposito: Blowup solutions for a Liouville equation with singular data, in Proceedings of the International Conference " Recent Advances in Elliptic and Parabolic Problems" (C.C. Chen, M. Chipot, C.S. Lin (ed.)), World Scientific, (2005) 61-79.
[8] (MR1322618) Y. Y. Li, and I. Shafrir: Blow-up analysis for solutions of $-\Delta u=V e^{u}$ in dimension two, Indiana Univ. Math. J. 43 (1994) 1255-1270.
[9] (MR1854696) L. Ma, and J. Wei: Convergence for a Liouville equation, Comment. Math. Helv. 76 (2001) 506-514.
[10] (MR1061665) K. Nagasaki, and T. Suzuki: Asymptotic analysis for twodimensional elliptic eigenvalue problems with exponentially dominated nonlinearities, Asymptotic Anal. 3 (1990) 173-188.
[11] (MR1855007) J. Prajapat, and G. Tarantello: On a class of elliptic problems in \mathbb{R}^{2} : symmetry and uniqueness results, Proc. Roy. Soc. Edinburgh 131 A (2001) 967-985.
[12] (MR2403845) G. Tarantello: Selfdual Gauge Field Vortices: An Analytical Approach, Progress in Nonlinear Differential Equations and Their Applications 72, Birkhäuser, Boston (2008)
[13] (MR2895947) F. Takahashi: Blow up points and the Morse indices of solutions to the Liouville equation in two-dimension, Advances in Nonlinear Stud. 12 no.1, (2012) 115-122.
[14] F. Takahashi: Blow up points and the Morse indices of solutions to the Liouville equation : inhomogeneous case, submitted.
[15] (MR1838682) Y. Yang: Solitons in Field Theory and Nonlinear Analysis, Springer Monographs in Mathematics, Springer-Verlag, New York (2001)

