Asymptotic behavior of least energy solutions for a 2D nonlinear Neumann problem with large exponent

Futoshi Takahashi
Department of Mathematics, Osaka City University \& OCAMI
Sumiyoshi-ku, Osaka, 558-8585, Japan
Tel: $(+81)(0) 6-6605-2508$
E-mail: futoshi@sci.osaka-cu.ac.jp

Abstract

In this paper, we consider the following elliptic problem with the nonlinear Neumann boundary condition:

$$
\left(E_{p}\right) \begin{cases}-\Delta u+u=0 & \text { on } \Omega \\ u>0 & \text { on } \Omega \\ \frac{\partial u}{\partial \nu}=u^{p} & \text { on } \partial \Omega\end{cases}
$$

where Ω is a smooth bounded domain in \mathbb{R}^{2}, ν is the outer unit normal vector to $\partial \Omega$, and $p>1$ is any positive number.

We study the asymptotic behavior of least energy solutions to $\left(E_{p}\right)$ when the nonlinear exponent p gets large. Following the arguments of X. Ren and J.C. Wei [10], [11], we show that the least energy solutions remain bounded uniformly in p, and it develops one peak on the boundary, the location of which is controlled by the Green function associated to the linear problem.

Keywords: least energy solution, nonlinear Neumann boundary condition, large exponent, concentration.

2010 Mathematics Subject Classifications: 35B40, 35J20, 35J25.

1. Introduction.

In this paper, we consider the following elliptic problem with the nonlinear Neumann boundary condition:

$$
\left(E_{p}\right) \begin{cases}-\Delta u+u=0 & \text { in } \Omega \tag{1.1}\\ u>0 & \text { in } \Omega \\ \frac{\partial u}{\partial \nu}=u^{p} & \text { on } \partial \Omega\end{cases}
$$

where Ω is a smooth bounded domain in \mathbb{R}^{2}, ν is the outer unit normal vector to $\partial \Omega$, and $p>1$ is any positive number. Let $H^{1}(\Omega)$ be the usual Sobolev space with the norm $\|u\|_{H^{1}(\Omega)}^{2}=\int_{\Omega}\left(|\nabla u|^{2}+u^{2}\right) d x$. Since the trace Sobolev embedding $H^{1}(\Omega) \hookrightarrow L^{p+1}(\partial \Omega)$ is compact for any $p>1$, we can obtain at least one solution of (1.1) by a standard variational method. In fact, let us consider the constrained minimization problem

$$
\begin{equation*}
C_{p}^{2}=\inf \left\{\left.\int_{\Omega}\left(|\nabla u|^{2}+u^{2}\right) d x\left|u \in H^{1}(\Omega), \int_{\partial \Omega}\right| u\right|^{p+1} d s_{x}=1\right\} . \tag{1.2}
\end{equation*}
$$

Standard variational method implies that C_{p}^{2} is achieved by a positive function $\bar{u}_{p} \in H^{1}(\Omega)$ and then $u_{p}=C_{p}^{2 /(p-1)} \bar{u}_{p}$ solves (1.1). We call u_{p} a least energy solution to the problem (1.1).

In this paper, we prove the followings:
Theorem 1 Let u_{p} be a least energy solution to $\left(E_{p}\right)$. Then it holds

$$
1 \leq \liminf _{p \rightarrow \infty}\left\|u_{p}\right\|_{L^{\infty}(\partial \Omega)} \leq \limsup _{p \rightarrow \infty}\left\|u_{p}\right\|_{L^{\infty}(\partial \Omega)} \leq \sqrt{e}
$$

To state further results, we set

$$
\begin{equation*}
v_{p}=u_{p} /\left(\int_{\partial \Omega} u_{p}^{p} d s_{x}\right) . \tag{1.3}
\end{equation*}
$$

Theorem 2 Let $\Omega \subset \mathbb{R}^{2}$ be a smooth bounded domain. Then for any sequence $v_{p_{n}}$ of v_{p} defined in (1.3) with $p_{n} \rightarrow \infty$, there exists a subsequence (still denoted by $v_{p_{n}}$) and a point $x_{0} \in \partial \Omega$ such that the following statements hold true.
(1)

$$
f_{n}=\frac{u_{p_{n}}^{p_{n}}}{\int_{\partial \Omega} u_{p_{n}}^{p_{n}} d s_{x}} \stackrel{*}{\rightharpoonup} \delta_{x_{0}}
$$

in the sense of Radon measures on $\partial \Omega$.
(2) $v_{p_{n}} \rightarrow G\left(\cdot, x_{0}\right)$ in $C_{l o c}^{1}\left(\bar{\Omega} \backslash\left\{x_{0}\right\}\right), L^{t}(\Omega)$ and $L^{t}(\partial \Omega)$ respectively for any $1 \leq t<\infty$, where $G(x, y)$ denotes the Green function of $-\Delta$ for the following Neumann problem:

$$
\left\{\begin{array}{l}
-\Delta_{x} G(x, y)+G(x, y)=0 \quad \text { in } \Omega, \tag{1.4}\\
\frac{\partial G}{\partial \nu_{x}}(x, y)=\delta_{y}(x) \quad \text { on } \partial \Omega .
\end{array}\right.
$$

(3) x_{0} satisfies

$$
\nabla_{\tau\left(x_{0}\right)} R\left(x_{0}\right)=\overrightarrow{0},
$$

where $\tau\left(x_{0}\right)$ denotes a tangent vector at the point $x_{0} \in \partial \Omega$ and R is the Robin function defined by $R(x)=H(x, x)$, where

$$
H(x, y):=G(x, y)-\frac{1}{\pi} \log |x-y|^{-1}
$$

denotes the regular part of G.
Concerning related results, X. Ren and J.C. Wei [10], [11] first studied the asymptotic behavior of least energy solutions to the semilinear problem

$$
\begin{cases}-\Delta u=u^{p} & \text { in } \Omega, \\ u>0 & \text { in } \Omega, \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

as $p \rightarrow \infty$, where Ω is a bounded smooth domain in \mathbb{R}^{2}. They proved that the least energy solutions remain bounded and bounded away from zero in L^{∞}-norm uniformly in p. As for the shape of solutions, they showed that the least energy solutions must develop one "peak" in the interior of Ω, which must be a critical point of the Robin function associated with the Green function subject to the Dirichlet boundary condition. Later, Adimurthi and Grossi [1] improved their results by showing that, after some scaling, the limit profile of solutions is governed by the Liouville equation

$$
-\Delta U=e^{U} \quad \text { in } \mathbb{R}^{2}, \quad \int_{\mathbb{R}^{2}} e^{U} d x<\infty
$$

and obtained that $\lim _{p \rightarrow \infty}\left\|u_{p}\right\|_{L^{\infty}(\Omega)}=\sqrt{e}$ for least energy solutions u_{p}. Actual existence of concentrating solutions to (1.1) is recently obtained by H. Castro [4] by a variational reduction procedure, along the line of [7] and [6]. Also in our case, we may conjecture that the limit problem of (1.1) is

$$
\begin{cases}\Delta U=0 & \text { in } \mathbb{R}_{+}^{2}, \\ \frac{\partial U}{\partial \nu}=e^{U} & \text { on } \partial \mathbb{R}_{+}^{2}, \\ \int_{\partial \mathbb{R}_{+}^{2}} e^{U} d s<\infty, & \end{cases}
$$

and $\lim _{p \rightarrow \infty}\left\|u_{p}\right\|_{L^{\infty}(\partial \Omega)}=\sqrt{e}$ holds true at least for least energy solutions u_{p}. Verification of these conjectures remains as the future work.

2. Some estimates for C_{p}^{2}.

In this section, we provide some estimates for C_{p}^{2} in (1.2) as $p \rightarrow \infty$.
Lemma 3 For any $s \geq 2$, there exists $\tilde{D}_{s}>0$ such that for any $u \in H^{1}(\Omega)$,

$$
\|u\|_{L^{s}(\partial \Omega)} \leq \tilde{D}_{s} s^{\frac{1}{2}}\|u\|_{H^{1}(\Omega)}
$$

holds true. Furthermore, we have

$$
\lim _{s \rightarrow \infty} \tilde{D}_{s}=(2 \pi e)^{-\frac{1}{2}} .
$$

Proof. Let $u \in H^{1}(\Omega)$. By Trudinger-Moser trace inequality, see [5] and the references therein, we have

$$
\int_{\partial \Omega} \exp \left(\frac{\pi\left|u(x)-u_{\partial \Omega}\right|^{2}}{\|\nabla u\|_{L^{2}(\Omega)}^{2}}\right) d s_{x} \leq C(\Omega)
$$

for any $u \in H^{1}(\Omega)$, where $u_{\partial \Omega}=\frac{1}{|\partial \Omega|} \int_{\partial \Omega} u d s_{x}$. Thus, by an elementary inequality $\frac{x^{s}}{\Gamma(s+1)} \leq e^{x}$ for any $x \geq 0$ and $s \geq 0$, where $\Gamma(s)$ is the Gamma function, we see

$$
\begin{aligned}
& \frac{1}{\Gamma((s / 2)+1)} \int_{\partial \Omega}\left|u-u_{\partial \Omega}\right|^{s} d s_{x} \\
& =\frac{1}{\Gamma((s / 2)+1)} \int_{\partial \Omega}\left(\pi \frac{\left|u(x)-u_{\partial \Omega}\right|^{2}}{\|\nabla u\|_{L^{2}(\Omega)}^{2}}\right)^{s / 2} d s_{x} \pi^{-s / 2}\|\nabla u\|_{L^{2}(\Omega)}^{s} \\
& \leq \int_{\partial \Omega} \exp \left(\pi \frac{\left|u(x)-u_{\partial \Omega}\right|^{2}}{\|\nabla u\|_{L^{2}(\Omega)}^{2}}\right) d s_{x} \pi^{-s / 2}\|\nabla u\|_{L^{2}(\Omega)}^{s} \\
& \leq C(\Omega) \pi^{-s / 2}\|\nabla u\|_{L^{2}(\Omega)}^{s}
\end{aligned}
$$

Set

$$
D_{s}:=(\Gamma(s / 2+1))^{1 / s} C(\Omega)^{1 / s} \pi^{-1 / 2} s^{-1 / 2}
$$

Then we have

$$
\left\|u-u_{\partial \Omega}\right\|_{L^{s}(\partial \Omega)} \leq D_{s} s^{1 / 2}\|\nabla u\|_{L^{2}(\Omega)} .
$$

Stirling's formula says that $\left(\Gamma\left(\frac{s}{2}+1\right)\right)^{\frac{1}{s}} \sim\left(\frac{s}{2 e}\right)^{1 / 2}$ as $s \rightarrow \infty$, so we have

$$
\lim _{s \rightarrow \infty} D_{s}=\left(\frac{1}{2 \pi e}\right)^{1 / 2}
$$

On the other hand, by the embedding $\|u\|_{L^{2}(\partial \Omega)} \leq C(\Omega)\|u\|_{H^{1}(\Omega)}$ for any $u \in H^{1}(\Omega)$, we see

$$
\left|u_{\partial \Omega}\right| \leq \frac{1}{|\partial \Omega|^{1 / 2}}\left(\int_{\partial \Omega}|u|^{2} d s_{x}\right)^{1 / 2} \leq \frac{C(\Omega)}{|\partial \Omega|^{1 / 2}}\|u\|_{H^{1}(\Omega)}
$$

Thus,

$$
\begin{aligned}
& \|u\|_{L^{s}(\partial \Omega)} \leq\left\|u-u_{\partial \Omega}\right\|_{L^{s}(\partial \Omega)}+\left\|u_{\partial \Omega}\right\|_{L^{s}(\partial \Omega)} \\
& \leq\left\|u-u_{\partial \Omega}\right\|_{L^{s}(\partial \Omega)}+\left|u_{\partial \Omega} \| \partial \Omega\right|^{1 / s} \\
& \leq s^{1 / 2}\|u\|_{H^{1}(\Omega)}\left(D(s)+\frac{C(\Omega)|\partial \Omega|^{1 / s-1 / 2}}{s^{1 / 2}}\right) .
\end{aligned}
$$

Put

$$
\tilde{D}(s)=D(s)+\frac{C(\Omega)|\partial \Omega|^{1 / s-1 / 2}}{s^{1 / 2}}
$$

Then, we have $\lim _{s \rightarrow \infty} \tilde{D}(s)=\lim _{s \rightarrow \infty} D(s)=\frac{1}{\sqrt{2 \pi e}}$ and

$$
\|u\|_{L^{s}(\partial \Omega)} \leq \tilde{D}_{s} s^{\frac{1}{2}}\|u\|_{H^{1}(\Omega)}
$$

holds.

Lemma 4 Let Ω be a smooth bounded domain in \mathbb{R}^{2}. Then we have

$$
\lim _{p \rightarrow \infty} p C_{p}^{2}=2 \pi e
$$

Proof. For the estimate from below, we use Lemma 3. By Lemma 3, we have

$$
\|u\|_{L^{p+1}(\partial \Omega)}^{2} \leq \tilde{D}_{p+1}^{2}(p+1)\|u\|_{H^{1}(\Omega)}^{2}
$$

for any $u \in H^{1}(\Omega)$, which leads to $\tilde{D}_{p+1}^{-2}\left(\frac{p}{p+1}\right) \leq p C_{p}^{2}$. Thus, we have $2 \pi e \leq \lim \inf _{p \rightarrow \infty} p C_{p}^{2}$, since $\lim _{p \rightarrow \infty} \tilde{D}_{p+1}=(2 \pi e)^{-1 / 2}$.

For the estimate from above, we use the Moser function. Let $0<l<L$. First, we assume $\Omega \cap B_{L}(0)=\Omega \cap B_{L}^{+}$where $B_{L}^{+}=B_{L}(0) \cap\left\{y=\left(y_{1}, y_{2}\right) \mid y_{2}>\right.$ $0\}$. Define

$$
m_{l}(y)=\frac{1}{\sqrt{\pi}} \begin{cases}(\log L / l)^{1 / 2}, & 0 \leq|y| \leq l, y \in B_{L}^{+} \\ \frac{(\log L /|y|)}{(\log L / l)^{1 / 2}}, & l \leq|y| \leq L, y \in B_{L}^{+} \\ 0, & L \leq|y|, y \in B_{L}^{+}\end{cases}
$$

Then $\left\|\nabla m_{l}\right\|_{L^{2}\left(B_{L}^{+}\right)}=1$ and since $m_{l} \equiv 0$ on $\partial B_{L}^{+} \cap\left\{y_{2}>0\right\}$, we have

$$
\begin{aligned}
& \left\|m_{l}\right\|_{L^{p+1}\left(\partial B_{L}^{+}\right)}^{p+1}=2 \int_{0}^{l}\left|m_{l}\left(y_{1}\right)\right|^{p+1} d y_{1}+2 \int_{l}^{L}\left|m_{l}\left(y_{1}\right)\right|^{p+1} d y_{1} \\
& \geq 2 \int_{0}^{l}\left(\frac{1}{\sqrt{\pi}} \sqrt{\log (L / l)}\right)^{p+1} d y_{1}=2 l\left(\sqrt{\frac{1}{\pi} \log (L / l)}\right)^{p+1} .
\end{aligned}
$$

Thus $\left\|m_{l}\right\|_{L^{p+1}\left(\partial B_{L}^{+}\right)}^{2} \geq(2 l)^{\frac{2}{p+1}} \frac{1}{\pi} \log (L / l)$. Also,

$$
\begin{aligned}
& \left\|m_{l}\right\|_{L^{2}\left(B_{L}^{+}\right)}^{2}=\int_{0}^{\pi} \int_{0}^{L}\left|m_{l}\right|^{2} r d r d \theta \\
& =\int_{0}^{\pi} \int_{0}^{l}\left|m_{l}\right|^{2} r d r d \theta+\int_{0}^{\pi} \int_{l}^{L}\left|m_{l}\right|^{2} r d r d \theta \\
& =: I_{1}+I_{2}
\end{aligned}
$$

We calculate

$$
\begin{aligned}
I_{1} & =\frac{l^{2}}{2} \log (L / l) \\
I_{2} & =\frac{1}{\log (L / l)} \int_{l}^{L}(\log L / r)^{2} r d r \\
& =-\frac{l^{2}}{2}-\frac{l^{2}}{2} \log (L / l)+\frac{1}{\log (L / l)} \frac{L^{2}-l^{2}}{4} .
\end{aligned}
$$

Thus we have $\left\|m_{l}\right\|_{L^{2}\left(B_{1}^{+}\right)}^{2}=-\frac{l^{2}}{2}+\frac{1}{\log (L / l)} \frac{L^{2}-l^{2}}{4}$.
Now, put $l=L e^{-\frac{p+1}{2}}$ and extend m_{l} by 0 outside B_{L}^{+}and consider it as a function in $H^{1}(\Omega)$. Then

$$
p C_{p}^{2} \leq p \frac{\left\|m_{l}\right\|_{H^{1}\left(B_{L}^{+}\right)}^{2}}{\left\|m_{l}\right\|_{L^{p+1}\left(\partial B_{L}^{+}\right)}^{2}}=\frac{p}{\left\|m_{l}\right\|_{L^{p+1}\left(\partial B_{L}^{+}\right)}^{2}}+\frac{p\left\|m_{l}\right\|_{L^{2}\left(B_{L}^{+}\right)}^{2}}{\left\|m_{l}\right\|_{L^{p+1}\left(\partial B_{L}^{+}\right)}^{2}}
$$

We estimate

$$
\frac{p}{\left\|m_{l}\right\|_{L^{p+1}\left(\partial B_{L}^{+}\right)}^{2}} \leq \frac{p}{(2 l)^{\frac{2}{p+1}} \frac{1}{\pi} \log (L / l)}=\left(\frac{p}{p+1}\right) 2 \pi e \frac{1}{(2 L)^{\frac{2}{p+1}}} \rightarrow 2 \pi e
$$

and

$$
\begin{aligned}
& \frac{p\left\|m_{l}\right\|_{L^{2}\left(B_{L}^{+}\right)}^{2}}{\left\|m_{l}\right\|_{L^{p+1}\left(\partial B_{L}^{+}\right)}^{2}} \leq \frac{p\left(-\frac{l^{2}}{2}+\frac{1}{\log (L / l)} \frac{L^{2}-l^{2}}{4}\right)}{(2 l)^{\frac{2}{p+1}} \frac{1}{\pi} \log (L / l)} \\
& =\frac{2 \pi e}{(2 L)^{\frac{2}{p+1}}}\left(\frac{p}{p+1}\right)\left\{-\frac{L^{2}}{2} e^{-(p+1)}+\frac{2}{p+1} \frac{L^{2}\left(1-e^{-(p+1)}\right)}{4}\right\} \rightarrow 0
\end{aligned}
$$

as $p \rightarrow \infty$. Therefore, we have obtained $\lim _{\sup _{p \rightarrow \infty}} p C_{p}^{2} \leq 2 \pi e$ in this case.
In the general case, we introduce a diffeomorphism which flattens the boundary $\partial \Omega$, see Ni and Takagi [9]. We may assume $0 \in \partial \Omega$ and in a neighborhood U of 0 , the boundary $\partial \Omega$ can be written by the graph of function $\psi: \partial \Omega \cap U=\left\{x=\left(x_{1}, x_{2}\right) \mid x_{2}=\psi\left(x_{1}\right)\right\}$, with $\psi(0)=0$ and $\frac{\partial \psi}{\partial x_{1}}(0)=0$. Define $x=\Phi(y)=\left(\Phi_{1}(y), \Phi_{2}(y)\right)$ for $y=\left(y_{1}, y_{2}\right)$, where

$$
x_{1}=\Phi_{1}(y)=y_{1}-y_{2} \frac{\partial \psi}{\partial x_{1}}\left(y_{1}\right), \quad x_{2}=\Phi_{2}(y)=y_{2}+\psi\left(y_{1}\right)
$$

and put $D_{L}=\Phi\left(B_{L}^{+}\right)$. Note that $\partial D_{L} \cap \partial \Omega=\Phi\left(\partial B_{L}^{+} \cap\left\{\left(y_{1}, 0\right)\right\}\right)$. Since $D \Phi(0)=I d$, we obtain there exists $\Psi=\Phi^{-1}$ in a neighborhood of 0 . Finally, define $\tilde{m}_{l} \in H^{1}(\Omega)$ as $\tilde{m}_{l}(x)=m_{l}(\Psi(x))$ for $x \in U \cap \Omega$. Then, Lemma A. 1 in [9] implies the estimates

$$
\begin{aligned}
& \left\|\nabla \tilde{m}_{l}\right\|_{L^{2}\left(D_{L}\right)}^{2}=\left\|\nabla m_{l}\right\|_{L^{2}\left(B_{L}^{+}\right)}^{2}+O\left(\frac{1}{p}\right), \\
& \left\|\tilde{m}_{l}\right\|_{L^{2}\left(D_{L}\right)}^{2} \leq(1+O(L))\left\|m_{l}\right\|_{L^{2}\left(B_{L}^{+}\right)}^{2}, \\
& \left\|\tilde{m}_{l}\right\|_{L^{p+1}\left(\partial D_{L} \cap \partial \Omega\right)}^{2} \geq\left\|m_{l}\right\|_{L^{p+1}\left(\partial B_{L}^{+} \cap\left\{\left(y_{1}, 0\right)\right\}\right)}^{2} .
\end{aligned}
$$

The last inequality comes from that, if we put $I=\left\{\left(y_{1}, 0\right) \mid-L \leq y_{1} \leq\right.$ $L\} \subset \partial B_{L}^{+}$and $J=\Phi(I) \subset \partial \Omega$, then $d s_{x}=\sqrt{1+\left(\psi^{\prime}\left(x_{1}\right)\right)^{2}} d x_{1}$ and $J=$ $\left\{\left(x_{1}, x_{2}\right) \mid x_{1}=y_{1}, x_{2}=\psi\left(y_{1}\right)\right\}$. Thus

$$
\int_{J}\left|\tilde{m}_{l}(x)\right|^{p+1} d s_{x}=\int_{I}\left|m_{l}(y)\right|^{p+1} \sqrt{1+\left(\psi^{\prime}\left(y_{1}\right)\right)^{2}} d y_{1} \geq \int_{I}\left|m_{l}(y)\right|^{p+1} d y_{1}
$$

By testing C_{p}^{2} with \tilde{m}_{l}, again we obtain $\lim \sup _{p \rightarrow \infty} p C_{p}^{2} \leq 2 \pi e$.

Corollary 5 Let u_{p} be a least energy solution to $\left(E_{p}\right)$. Then we have

$$
\lim _{p \rightarrow \infty} p \int_{\partial \Omega} u_{p}^{p+1} d s_{x}=2 \pi e, \quad \lim _{p \rightarrow \infty} p \int_{\Omega}\left(\left|\nabla u_{p}\right|^{2}+u_{p}^{2}\right) d x=2 \pi e .
$$

Proof. Since u_{p} satisfies

$$
\int_{\Omega}\left(\left|\nabla u_{p}\right|^{2}+u_{p}^{2}\right) d x=\int_{\partial \Omega} u_{p}^{p+1} d s_{x}
$$

and

$$
p C_{p}^{2}=p \frac{\int_{\Omega}\left(\left|\nabla u_{p}\right|^{2}+u_{p}^{2}\right) d x}{\left(\int_{\partial \Omega} u_{p}^{p+1} d s_{x}\right)^{\frac{2}{p+1}}}=\left(p \int_{\partial \Omega} u_{p}^{p+1} d s_{x}\right)^{\frac{p-1}{p+1}} p^{\frac{2}{p+1}},
$$

the results follow from Lemma 4.

3. Proof of Theorem 1.

The uniform estimate of $\|u\|_{L^{\infty}(\partial \Omega)}$ from below holds true for any solution u of $\left(E_{p}\right)$, as in [10].

Lemma 6 There exists $C_{1}>0$ independent of p such that

$$
\|u\|_{L^{\infty}(\partial \Omega)} \geq C_{1}
$$

holds true for any solution u to $\left(E_{p}\right)$.
Proof. Let $\lambda_{1}>0$ be the first eigenvalue of the eigenvalue problem

$$
\begin{cases}-\Delta \varphi+\varphi=0 & \text { in } \Omega, \\ \frac{\partial \varphi}{\partial \nu}=\lambda \varphi & \text { on } \partial \Omega\end{cases}
$$

and let φ_{1} be the corresponding eigenfunction. It is known that λ_{1} is simple, isolated, and φ_{1} can be chosen positive on $\bar{\Omega}$. (see, [12]). Then by integration by parts, we have

$$
\begin{aligned}
0 & =\int_{\Omega}\left\{(-\Delta u+u) \varphi_{1}-\left(-\Delta \varphi_{1}+\varphi_{1}\right) u\right\} d x=\int_{\partial \Omega}\left(\frac{\partial \varphi_{1}}{\partial \nu} u-\frac{\partial u}{\partial \nu} \varphi_{1}\right) d s_{x} \\
& =\int_{\partial \Omega} \varphi_{1} u\left(\lambda_{1}-u^{p-1}\right) d s_{x}
\end{aligned}
$$

Since $\varphi_{1} u>0$ on $\partial \Omega$, this implies $\|u\|_{L^{\infty}(\partial \Omega)}^{p-1} \geq \lambda_{1}$.

Lemma 7 Let u_{p} be a least energy solution to $\left(E_{p}\right)$. Then it holds

$$
\underset{p \rightarrow \infty}{\limsup }\left\|u_{p}\right\|_{L^{\infty}(\partial \Omega)} \leq \sqrt{e}
$$

Proof. We follow the argument of [11], which in turn originates from [8], and use Moser's iteration procedure. Let u be a solution to $\left(E_{p}\right)$. For $s \geq 1$, multiplying $u^{2 s-1} \in H^{1}(\Omega)$ to the equation of $\left(E_{p}\right)$ and integrating, we get

$$
\left(\frac{2 s-1}{s^{2}}\right)^{2} \int_{\Omega}\left|\nabla\left(u^{s}\right)\right|^{2} d x+\int_{\Omega} u^{2 s} d x=\int_{\partial \Omega} u^{2 s-1+p} d s_{x}
$$

Since $\frac{2 s-1}{s^{2}} \leq 1$ for $s \geq 1$, we have

$$
\begin{equation*}
\left(\frac{2 s-1}{s^{2}}\right)\left\|u^{s}\right\|_{H^{1}(\Omega)}^{2} \leq \int_{\partial \Omega} u^{2 s-1+p} d s_{x} . \tag{3.1}
\end{equation*}
$$

Also by Lemma 3 applied to $u^{s} \in H^{1}(\Omega)$, we have

$$
\left(\int_{\partial \Omega} u^{\nu s} d s_{x}\right)^{1 / \nu} \leq \tilde{D}_{\nu} \nu^{\frac{1}{2}}\left\|u^{s}\right\|_{H^{1}(\Omega)}
$$

for any $\nu \geq 2$. Thus by (3.1), we see

$$
\left(\int_{\partial \Omega} u^{\nu s} d s_{x}\right)^{1 / \nu} \leq \tilde{D}_{\nu} \nu^{\frac{1}{2}}\left(\frac{s^{2}}{2 s-1}\right)^{1 / 2}\left(\int_{\partial \Omega} u^{2 s-1+p} d s_{x}\right)^{1 / 2}
$$

Since $\tilde{D}_{\nu}^{2}\left(\frac{s}{2 s-1}\right) \leq C_{1}$ for some $C_{1}>0$ independent of $s \geq 1$ and $\nu \geq 2$, we obtain

$$
\begin{equation*}
\left(\int_{\partial \Omega} u^{\nu s} d s_{x}\right)^{2 / \nu} \leq C_{1} \nu s \int_{\partial \Omega} u^{2 s-1+p} d s_{x} \tag{3.2}
\end{equation*}
$$

Once the iteration scheme (3.2) is obtained, the rest of the argument is exactly the same as one in [11]. Indeed, by Lemma 3, we have

$$
\begin{equation*}
\left(\int_{\partial \Omega} u^{\nu} d s_{x}\right)^{1 / \nu} \leq(2 \pi e)^{-\frac{1}{2}}(1+o(1)) \nu^{1 / 2}\|u\|_{H^{1}(\Omega)} \tag{3.3}
\end{equation*}
$$

here $o(1) \rightarrow 0$ as $\nu \rightarrow \infty$. Now, we fix $\alpha>0$ and $\varepsilon>0$ which will be chosen small later and put $\nu=(1+\alpha)(p+1)>2$ in (3.3). By Corollary 5,
$p^{1 / 2}(2 \pi e)^{-1 / 2}\left\|u_{p}\right\|_{H^{1}(\Omega)} \rightarrow 1$ as $p \rightarrow \infty$ for a least energy solution u_{p}. Thus by (3.3), we see there exists $p_{0}>1$ such that

$$
\int_{\partial \Omega} u_{p}^{\nu} d s_{x} \leq(1+\alpha+\varepsilon)^{\nu / 2}=: M_{0}
$$

for $p>p_{0}$. Define $\left\{s_{j}\right\}_{j=0,1,2} \ldots$ and $\left\{M_{j}\right\}_{j=0,1,2} \ldots$ such that

$$
\left\{\begin{array}{l}
p-1+2 s_{0}=\nu \\
p-1+2 s_{j+1}=\nu s_{j},(j=0,1,2, \cdots)
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
M_{0}=(1+\alpha+\varepsilon)^{\nu / 2} \\
M_{j+1}=\left(C_{1} \nu s_{j} M_{j}\right)^{\nu / 2},(j=0,1,2, \cdots)
\end{array}\right.
$$

We easily see that $s_{0}=\frac{\alpha(p+1)}{2}>0, s_{j}$ is increasing in $j, s_{j} \rightarrow+\infty$ as $j \rightarrow \infty$, and actually,

$$
s_{j}=\left(\frac{\nu}{2}\right)^{j}\left(s_{0}-x\right)+x \quad \text { where } \quad x=\frac{p-1}{\nu-2}>0
$$

At this moment, we can follow exactly the same argument in [11] to obtain the estimates

$$
\left\|u_{p}\right\|_{L^{\nu s_{j-1}}(\partial \Omega)} \leq M_{j}^{\frac{1}{\nu s_{j-1}}} \leq \exp (m(\alpha, p, \varepsilon))
$$

where $m(\alpha, p, \varepsilon)$ is a constant depending on α, p and ε, satisfying

$$
\lim _{p \rightarrow \infty} m(\alpha, p, \varepsilon)=\frac{1+\alpha}{2 \alpha} \log (1+\alpha+\varepsilon)
$$

Letting $j \rightarrow \infty, p \rightarrow \infty$ first, we get

$$
\limsup _{p \rightarrow \infty}\left\|u_{p}\right\|_{L^{\infty}(\partial \Omega)} \leq(1+\alpha+\varepsilon)^{\frac{1+\alpha}{2 \alpha}}
$$

and then letting $\alpha \rightarrow+0, \varepsilon \rightarrow+0$, we obtain

$$
\limsup _{p \rightarrow \infty}\left\|u_{p}\right\|_{L^{\infty}(\partial \Omega)} \leq \sqrt{e}
$$

as desired.
By Theorem 1 and Hölder's inequality, we also obtain

Corollary 8 There exists $C_{1}, C_{2}>0$ such that

$$
C_{1} \leq p \int_{\partial \Omega} u_{p}^{p} d s_{x} \leq C_{2}
$$

holds.

4. Proof of Theorem 2.

In this section, we prove Theorem 2. First, we recall an L^{1} estimate from [6], which is a variant of the one by Brezis and Merle [2].

Lemma 9 Let u be a solution to

$$
\begin{cases}-\Delta u+u=0 & \text { in } \Omega, \\ \frac{\partial u}{\partial \nu}=h & \text { on } \partial \Omega\end{cases}
$$

with $h \in L^{1}(\partial \Omega)$, where Ω is a smooth bounded domain in \mathbb{R}^{2}. For any $\varepsilon \in$ $(0, \pi)$, there exists a constant $C>0$ depending only on ε and Ω, independent of u and h, such that

$$
\begin{equation*}
\int_{\partial \Omega} \exp \left(\frac{(\pi-\varepsilon)|u(x)|}{\|h\|_{L^{1}(\partial \Omega)}}\right) d s_{x} \leq C \tag{4.1}
\end{equation*}
$$

holds true.
Also we need an elliptic L^{1} estimate by Brezis and Strauss [3] for weak solutions with the L^{1} Neumann data.

Lemma 10 Let u be a weak solution of

$$
\begin{cases}-\Delta u+u=f & \text { in } \Omega, \\ \frac{\partial u}{\partial \nu}=g & \text { on } \partial \Omega\end{cases}
$$

with $f \in L^{1}(\Omega)$ and $g \in L^{1}(\partial \Omega)$, where Ω is a smooth bounded domain in $\mathbb{R}^{N}, N \geq 2$. Then we have $u \in W^{1, q}(\Omega)$ for all $1 \leq q<\frac{N}{N-1}$ and

$$
\|u\|_{W^{W^{1, q}(\Omega)}} \leq C_{q}\left(\|f\|_{L^{1}(\Omega)}+\|g\|_{L^{1}(\partial \Omega)}\right)
$$

holds.

For the proof, see [3]:Lemma 23.
Now, following [10], [11], we define the notion of δ-regular points. Put $u_{n}=u_{p_{n}}$ for any subsequence of u_{p}. Since u_{n} satisfies

$$
\int_{\partial \Omega} \frac{u_{n}^{p_{n}}}{\int_{\partial \Omega} u_{n}^{p_{n}} d s_{x}} d s_{x}=1,
$$

we can select a subsequence $p_{n} \rightarrow \infty$ (without changing the notation) and a Radon measure $\mu \geq 0$ on $\partial \Omega$ such that

$$
f_{n}:=\frac{u_{n}^{p_{n}}}{\int_{\partial \Omega} u_{n}^{p_{n}} d s_{x}} \stackrel{*}{\rightharpoonup} \mu
$$

weakly in the sense of Radon measures on $\partial \Omega$, i.e.,

$$
\int_{\partial \Omega} f_{n} \varphi d s_{x} \rightarrow \int_{\partial \Omega} \varphi d \mu
$$

for all $\varphi \in C(\partial \Omega)$. As in [11], we define

$$
\begin{equation*}
L_{0}=\frac{1}{2 \sqrt{e}} \limsup _{p \rightarrow \infty}\left(p \int_{\partial \Omega} u_{p}^{p} d s_{x}\right) . \tag{4.2}
\end{equation*}
$$

By Corollary 5 and Hölder's inequality, we have

$$
L_{0} \leq \pi \sqrt{e}
$$

For some $\delta>0$ fixed, we call a point $x_{0} \in \partial \Omega$ a δ-regular point if there is a function $\varphi \in C(\partial \Omega), 0 \leq \varphi \leq 1$ with $\varphi=1$ in a neighborhood of x_{0} such that

$$
\int_{\partial \Omega} \varphi d \mu<\frac{\pi}{L_{0}+2 \delta}
$$

holds. Define $S=\left\{x_{0} \in \partial \Omega \mid x_{0}\right.$ is not a δ-regular point for any $\left.\delta>0.\right\}$. Then,

$$
\begin{equation*}
\mu\left(\left\{x_{0}\right\}\right) \geq \frac{\pi}{L_{0}+2 \delta} \tag{4.3}
\end{equation*}
$$

for all $x_{0} \in S$ and for any $\delta>0$.
Here, following the argument in [11], we prove a key lemma in the proof of Theorem 2.

Lemma 11 Let $x_{0} \in \partial \Omega$ be a δ-regular point for some $\delta>0$. Then $v_{n}=$ $\frac{u_{n}}{\int_{\partial \Omega} u_{n}^{p_{n}} d s_{x}}$ is bounded in $L^{\infty}\left(B_{R_{0}}\left(x_{0}\right) \cap \Omega\right)$ for some $R_{0}>0$.

Proof. Let $x_{0} \in \partial \Omega$ be a δ-regular point. Then by definition, there exists $R>0$ such that

$$
\int_{\partial \Omega \cap B_{R}\left(x_{0}\right)} f_{n} d s_{x}<\frac{\pi}{L_{0}+\delta}
$$

holds for all n large. Put $a_{n}=\chi_{B_{R}\left(x_{0}\right)} f_{n}$ and $b_{n}=\left(1-\chi_{B_{R}\left(x_{0}\right)}\right) f_{n}$ where $\chi_{B_{R}\left(x_{0}\right)}$ denotes the characteristic function of $B_{R}\left(x_{0}\right)$. Split $v_{n}=v_{1 n}+v_{2 n}$, where $v_{1 n}, v_{2 n}$ is a solution to

$$
\left\{\begin{array} { l l }
{ - \Delta v _ { 1 n } + v _ { 1 n } = 0 } & { \text { in } \Omega , } \\
{ \frac { \partial v _ { 1 n } } { \partial \nu } = a _ { n } } & { \text { on } \partial \Omega , }
\end{array} \quad \left\{\begin{array}{ll}
-\Delta v_{2 n}+v_{2 n}=0 & \text { in } \Omega, \\
\frac{\partial v_{2 n}}{\partial \nu}=b_{n} & \text { on } \partial \Omega
\end{array}\right.\right.
$$

respectively. By the maximum principle, we have $v_{1 n}, v_{2 n}>0$. Since $b_{n}=0$ on $B_{R}\left(x_{0}\right)$, elliptic estimates imply that

$$
\left\|v_{2 n}\right\|_{L^{\infty}\left(B_{R / 2}\left(x_{0}\right) \cap \Omega\right)} \leq C\left\|v_{2 n}\right\|_{L^{1}\left(B_{R}\left(x_{0}\right) \cap \Omega\right)} \leq C,
$$

where we used the fact $\left\|v_{2 n}\right\|_{L^{1}(\Omega)}=\left\|\Delta v_{2 n}\right\|_{L^{1}(\Omega)}=\left\|b_{n}\right\|_{L^{1}(\partial \Omega)} \leq C$ for the last inequality. Thus we have to consider $v_{1 n}$ only.

Claim: For any $x \in \partial \Omega$, we have

$$
\begin{equation*}
f_{n}(x) \leq \exp \left(\left(L_{0}+\delta / 2\right) v_{n}(x)\right) \tag{4.4}
\end{equation*}
$$

for n large.
Indeed, put

$$
\alpha_{n}=\frac{\left\|u_{n}\right\|_{L^{\infty}(\partial \Omega)}}{\left(\int_{\partial \Omega} u_{n}^{p_{n}} d s_{x}\right)^{1 / p_{n}}} .
$$

Then by Lemma 7 and Corollary 8, we have

$$
\limsup _{n \rightarrow \infty} \alpha_{n} \leq \sqrt{e}
$$

Since the function $s \mapsto \frac{\log s}{s}$ is monotone increasing if $0<s<e$, and $\frac{u_{n}(x)}{\left(\int_{\partial \Omega}^{u_{n}^{n}} d s_{x}\right)^{1 / p_{n}}} \leq \alpha_{n}$ for any $x \in \partial \Omega$, we observe that for fixed $\varepsilon>0$,

$$
\frac{\log \frac{u_{n}(x)}{\left(\int_{\partial \Omega}^{p_{n}^{n}} d s_{x}\right)^{1 / p_{n}}}}{\frac{u_{n}(x)}{\left(\int_{\partial \Omega} u_{n}^{p_{n}} d s_{x}\right)^{1 / p_{n}}}} \leq \frac{\log \alpha_{n}}{\alpha_{n}} \leq \frac{1}{2 \sqrt{e}}+\varepsilon
$$

holds for large n. Thus

$$
\begin{aligned}
f_{n}(x) & =\exp \left(p_{n} \log \frac{u_{n}(x)}{\left(\int_{\partial \Omega} u_{n}^{p_{n}} d s_{x}\right)^{1 / p_{n}}}\right) \leq \exp \left(\frac{p_{n} u_{n}(x)}{\left(\int_{\partial \Omega} u_{n}^{p_{n}} d s_{x}\right)^{1 / p_{n}}}\left(\frac{1}{2 \sqrt{e}}+\varepsilon\right)\right) \\
& =\exp \left(p_{n} v_{n}(x)\left(\int_{\partial \Omega} u_{n}^{p_{n}} d s_{x}\right)^{1-1 / p_{n}}\left(\frac{1}{2 \sqrt{e}}+\varepsilon\right)\right) \\
& \leq \exp \left(\left(\limsup _{n \rightarrow \infty} p_{n} \int_{\partial \Omega} u_{n}^{p_{n}} d s_{x}\right) v_{n}(x)\left(\frac{1}{2 \sqrt{e}}+2 \varepsilon\right)\right) \\
& =\exp \left(\left(\frac{1}{2 \sqrt{e}}+2 \varepsilon\right) 2 \sqrt{e} L_{0} v_{n}(x)\right)=\exp \left(\left(L_{0}+4 \varepsilon \sqrt{e} L_{0}\right) v_{n}(x)\right) .
\end{aligned}
$$

Thus if we choose $\varepsilon>0$ so small, we have the claim (4.4).
By this claim and the fact that $v_{2 n}$ is uniformly bounded in $B_{R / 2}\left(x_{0}\right)$, for sufficiently small $\delta_{0}>0$ so that $\left(1+\delta_{0}\right) \frac{L_{0}+\delta / 2}{L_{0}+\delta}<1$, we have

$$
\begin{aligned}
\int_{B_{R / 2}\left(x_{0}\right) \cap \partial \Omega} f_{n}^{1+\delta_{0}} d s_{x} & \leq \int_{B_{R / 2}\left(x_{0}\right) \cap \partial \Omega} \exp \left(\left(1+\delta_{0}\right)\left(L_{0}+\delta / 2\right) v_{n}(x)\right) d s_{x} \\
& \leq C \int_{B_{R / 2}\left(x_{0}\right) \cap \partial \Omega} \exp \left(\left(1+\delta_{0}\right)\left(L_{0}+\delta / 2\right) v_{1 n}(x)\right) d s_{x} \\
& \leq C \int_{B_{R / 2}\left(x_{0}\right) \cap \partial \Omega} \exp \left(\pi\left(1+\delta_{0}\right) \frac{L_{0}+\delta / 2}{L_{0}+\delta} v_{1 n}(x)\right) d s_{x} \\
& =C \int_{B_{R / 2}\left(x_{0}\right) \cap \partial \Omega} \exp \left(\pi\left(1-\varepsilon_{0}\right) v_{1 n}(x)\right) d s_{x}
\end{aligned}
$$

where $1-\varepsilon_{0}=\left(1+\delta_{0}\right) \frac{L_{0}+\delta / 2}{L_{0}+\delta}$. Thus by Lemma 9 , we have

$$
\int_{B_{R / 2}\left(x_{0}\right) \cap \partial \Omega} f_{n}^{1+\delta_{0}} d s_{x} \leq C
$$

for some $C>0$ independent of n. This fact and elliptic estimates imply that

$$
\limsup _{n \rightarrow \infty}\left\|v_{n}\right\|_{L^{\infty}\left(\Omega \cap B_{R / 4}\left(x_{0}\right)\right)} \leq C,
$$

which proves Lemma.
Now, we estimate the cardinality of the set S. By Theorem 1, we have

$$
v_{n}\left(x_{n}\right)=\frac{\left\|u_{n}\right\|_{L^{\infty}(\partial \Omega)}}{\int_{\partial \Omega} u_{n}^{p_{n}} d s_{x}} \geq \frac{C_{1}}{\int_{\partial \Omega} u_{n}^{p_{n}} d s_{x}} \rightarrow \infty
$$

for a sequence $x_{n} \in \partial \Omega$ such that $u_{n}\left(x_{n}\right)=\left\|u_{n}\right\|_{L^{\infty}(\partial \Omega)}$. Thus by Lemma 11, we see $x_{0}=\lim _{n \rightarrow \infty} x_{n} \in S$ and $\sharp S \geq 1$. On the other hand, by (4.3) we have

$$
1=\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{L^{1}(\partial \Omega)} \geq \mu(\partial \Omega) \geq \frac{\pi}{L_{0}+2 \delta} \sharp S,
$$

which leads to

$$
1 \leq \sharp S \leq \frac{L_{0}+2 \delta}{\pi} \leq \sqrt{e}+\frac{2 \delta}{\pi} \simeq 1.64 \cdots+\frac{2 \delta}{\pi} .
$$

Thus we have $\sharp S=1$ if $\delta>0$ is chosen small.
Let $S=\left\{x_{0}\right\}$ for some point $x_{0} \in \partial \Omega$. By Lemma 11, we can conclude easily that $f_{n} \stackrel{*}{\rightharpoonup} \delta_{x_{0}}$ in the sense of Radon measures on $\partial \Omega$:

$$
\int_{\partial \Omega} f_{n} \varphi d s_{x} \rightarrow \varphi\left(x_{0}\right), \quad \text { as } n \rightarrow \infty
$$

for any $\varphi \in C(\partial \Omega)$, since v_{n} is locally uniformly bounded on $\partial \Omega \backslash\left\{x_{0}\right\}$ and $f_{n} \rightarrow 0$ uniformly on any compact sets of $\partial \Omega \backslash\left\{x_{0}\right\}$.

Now, by the L^{1} estimate in Lemma 10, we have v_{n} is uniformly bounded in $W^{1, q}(\Omega)$ for any $1 \leq q<2$. Thus, by choosing a subsequence, we have a function \bar{G} such that $v_{n} \rightharpoonup \bar{G}$ weakly in $W^{1, q}(\Omega)$ for any $1 \leq q<2, v_{n} \rightarrow \bar{G}$ strongly in $L^{t}(\Omega)$ and $L^{t}(\partial \Omega)$ respectively for any $1 \leq t<\infty$. The last convergence follows by the compact embedding $W^{1, q}(\bar{\Omega}) \hookrightarrow L^{t}(\Omega)$ for any $1 \leq t<\frac{q}{2-q}$. Thus by taking the limit in the equation

$$
\int_{\Omega}(-\Delta \varphi+\varphi) v_{n} d x=\int_{\partial \Omega} f_{n} \varphi d s_{x}-\int_{\partial \Omega} \frac{\partial \varphi}{\partial \nu} v_{n} d s_{x}
$$

for any $\varphi \in C^{1}(\bar{\Omega})$, we obtain

$$
\int_{\Omega}(-\Delta \varphi+\varphi) \bar{G} d x+\int_{\partial \Omega} \frac{\partial \varphi}{\partial \nu} \bar{G} d s_{x}=\varphi\left(x_{0}\right)
$$

which implies \bar{G} is the solution of (1.4) with $y=x_{0}$.
Finally, we prove the statement (3) of Theorem 2. We borrow the idea of [6] and derive Pohozaev-type identities in balls around the peak point. We may assume $x_{0}=0$ without loss of generality. As in [6], we use a conformal diffeomorphism $\Psi: H \cap B_{R_{0}} \rightarrow \Omega \cap B_{r}$ which flattens the boundary $\partial \Omega$, where $H=\left\{\left(y_{1}, y_{2}\right) \mid y_{2}>0\right\}$ denotes the upper half space and $R_{0}>0$ is a
radius sufficiently small. We may choose Ψ is at least C^{3}, up to $\partial H \cap B_{R_{0}}$, $\Psi(0)=0$ and $D \Psi(0)=I d$. Set $\tilde{u}_{n}(y)=u_{n}(\Psi(y))$ for $y=\left(y_{1}, y_{2}\right) \in H \cap B_{R_{0}}$. Then by the conformality of Ψ, \tilde{u}_{n} satisfies

$$
\begin{cases}-\Delta \tilde{u}_{n}+b(y) \tilde{u}_{n}=0 & \text { in } H \cap B_{R_{0}} \tag{4.5}\\ \frac{\partial \tilde{u}_{n}}{\partial \bar{u}}=h(y) \tilde{u}_{n}^{p_{n}} & \text { on } \partial H \cap B_{R_{0}}\end{cases}
$$

where $\tilde{\nu}$ is the unit outer normal vector to $\partial\left(H \cap B_{R_{0}}\right), b$ and h are defined

$$
b(y)=|\operatorname{det} D \Psi(y)|, \quad h(y)=|D \Psi(y) e|
$$

with $e=(0,-1)$. Note that $\tilde{\nu}(y)=\nu(\Psi(y))$ for $y \in \partial H \cap B_{R_{0}}$. Note also that, by using a clever idea of [6], we can modify Ψ to prescribe the number

$$
\alpha=\left.\frac{\left(\frac{\partial h}{\partial y_{1}}\right)}{h(y)^{2}}\right|_{y=0}=\left(\frac{\partial h}{\partial y_{1}}\right)(0) .
$$

Let $D \subset \mathbb{R}^{N}$ be a bounded domain and recall the Pohozaev identity for the equation $-\Delta u=f(y, u), y \in D$:

$$
\begin{aligned}
& N \int_{D} F(y, u) d y-\left(\frac{N-2}{2}\right) \int_{D}|\nabla u|^{2} d y+\int_{D}\left(y-y_{0}, \nabla_{y} F(y, u)\right) d y \\
& =\int_{\partial D}\left(y-y_{0}, \nu\right) F(y, u) d s_{y}+\int_{\partial D}\left(y-y_{0}, \nabla u\right)\left(\frac{\partial u}{\partial \nu}\right) d s_{y} \\
& -\frac{1}{2} \int_{\partial D}\left(y-y_{0}, \nu\right)|\nabla u|^{2} d s_{y}
\end{aligned}
$$

for any $y_{0} \in \mathbb{R}^{N}$, where u is a smooth solution. Applying this to (4.5) for $N=2, D=H \cap B_{R}$ for $0<R<R_{0}, f\left(y, \tilde{u}_{n}\right)=-b(y) \tilde{u}_{n}$ and $F\left(y, \tilde{u}_{n}\right)=$ $-\frac{b(y)}{2} \tilde{u}_{n}^{2}$, we obtain

$$
\begin{aligned}
& \int_{H \cap B_{R}} b(y) \tilde{u}_{n}^{2}(y) d y+\int_{H \cap B_{R}}\left(y-y_{0}, \nabla b(y)\right) \frac{1}{2} \tilde{u}_{n}^{2}(y) d y \\
& =\int_{\partial\left(H \cap B_{R}\right)}\left(y-y_{0}, \tilde{\nu}\right) \frac{1}{2} b(y) \tilde{u}_{n}^{2}(y) d s_{y}-\int_{\partial\left(H \cap B_{R}\right)}\left(y-y_{0}, \nabla \tilde{u}_{n}(y)\right)\left(\frac{\partial \tilde{u}_{n}}{\partial \tilde{\nu}}\right) d s_{y} \\
& +\frac{1}{2} \int_{\partial\left(H \cap B_{R}\right)}\left(y-y_{0}, \tilde{\nu}\right)\left|\nabla \tilde{u}_{n}\right|^{2} d s_{y},
\end{aligned}
$$

where and from now on, $\tilde{\nu}$ will be used again to denote the unit normal to $\partial\left(H \cap B_{R}\right)$. Differentiating with respect to y_{0}, we have, in turn,

$$
\begin{aligned}
& \int_{\partial\left(H \cap B_{R}\right)} \nabla \tilde{u}_{n}(y)\left(\frac{\partial \tilde{u}_{n}}{\partial \tilde{\nu}}\right) d s_{y} \\
& =\frac{1}{2} \int_{\partial\left(H \cap B_{R}\right)}\left(\left|\nabla \tilde{u}_{n}\right|^{2}+b(y) \tilde{u}_{n}^{2}\right) \tilde{\nu} d s_{y}-\frac{1}{2} \int_{H \cap B_{R}} \nabla b(y) \tilde{u}_{n}^{2}(y) d y .
\end{aligned}
$$

Since $\tilde{\nu}=\left(\tilde{\nu}_{1}, \tilde{\nu}_{2}\right)=(0,-1)$ on $\partial H \cap B_{R}$, the first component of the above vector equation reads

$$
\begin{align*}
& \int_{\partial H \cap B_{R}}\left(\tilde{u}_{n}\right)_{y_{1}} h(y) \tilde{u}_{n}^{p_{n}}(y) d s_{y}+\int_{H \cap \partial B_{R}}\left(\tilde{u}_{n}\right)_{y_{1}}(y)\left(\frac{\partial \tilde{u}_{n}}{\partial \tilde{\nu}}\right) d s_{y} \tag{4.6}\\
& =\frac{1}{2} \int_{H \cap \partial B_{R}}\left(\left|\nabla \tilde{u}_{n}\right|^{2}+b(y) \tilde{u}_{n}^{2}\right) \tilde{\nu}_{1} d s_{y}-\frac{1}{2} \int_{H \cap B_{R}} b_{y_{1}}(y) \tilde{u}_{n}^{2}(y) d y,
\end{align*}
$$

where ()$_{y_{1}}$ denotes the derivative with respect to y_{1}. Let $\gamma_{n}=\int_{\partial \Omega} u_{n}^{p_{n}} d s_{x}$. From the fact that $\tilde{f}_{n}(y)=\frac{\tilde{u}_{n}^{p_{n}}}{\gamma_{n}} \stackrel{*}{\longrightarrow} \delta_{0}$ in the sense of Radon measures on $\partial H \cap B_{R}$, Corollary 8 and $\left\|\tilde{u}_{n}\right\|_{L^{\infty}\left(\partial H \cap B_{R}\right)}=O(1)$ uniformly in n, we see

$$
\tilde{g}_{n}(y)=\frac{1}{\gamma_{n}^{2}} \frac{\tilde{u}_{n}^{p_{n}+1}(y)}{p_{n}+1}=\frac{1}{\left(p_{n}+1\right) \gamma_{n}} \tilde{f}_{n}(y) \tilde{u}_{n}(y)
$$

satisfies that $\operatorname{supp}\left(\tilde{g}_{n}\right) \rightarrow\{0\}$ and $\int_{\partial H \cap B_{R}} \tilde{g}_{n} d s_{y}=O(1)$ as $n \rightarrow \infty$. Thus, by choosing a subsequence, we have the convergence

$$
\tilde{g}_{n}(y)=\frac{1}{\gamma_{n}^{2}} \frac{\tilde{u}_{n}^{p_{n}+1}(y)}{p_{n}+1} \stackrel{*}{\succ} C_{0} \delta_{0}
$$

in the sense of Radon measures on $\partial H \cap B_{R}$, where $C_{0}=\lim _{n \rightarrow \infty} \int_{\partial H \cap B_{R}} \tilde{g}_{n} d s_{y}$ (up to a subsequence). By using this fact, we have

$$
\begin{aligned}
& \frac{1}{\gamma_{n}^{2}} \int_{\partial H \cap B_{R}}\left(\tilde{u}_{n}\right)_{y_{1}} h(y) \tilde{u}_{n}^{p_{n}}(y) d s_{y} \\
& =\left[\frac{h(y)}{\gamma_{n}^{2}} \frac{\tilde{u}_{n}^{p_{n}+1}}{p_{n}+1}\right]_{y_{1}=-R}^{y_{1}=R}-\int_{\partial H \cap B_{R}} h_{y_{1}}(y) \frac{\tilde{u}_{n}^{p_{n}+1}(y)}{\left(p_{n}+1\right) \gamma_{n}^{2}} d s_{y} \\
& \rightarrow 0-C_{0} h_{y_{1}}(0)=-C_{0} \alpha
\end{aligned}
$$

as $n \rightarrow \infty$. Thus after dividing (4.6) by γ_{n}^{2} and then letting $n \rightarrow \infty$, we obtain

$$
\begin{align*}
& -C_{0} \alpha+\int_{H \cap \partial B_{R}} \tilde{G}_{y_{1}}(y)\left(\frac{\partial \tilde{G}}{\partial \tilde{\nu}}\right) d s_{y} \tag{4.7}\\
& =\frac{1}{2} \int_{H \cap \partial B_{R}}\left(|\nabla \tilde{G}|^{2}+b(y) \tilde{G}^{2}\right) \tilde{\nu}_{1} d s_{y}-\frac{1}{2} \int_{H \cap B_{R}} b_{y_{1}}(y) \tilde{G}^{2}(y) d y
\end{align*}
$$

where $\tilde{G}(y)=G(\Psi(y), 0)$ is a limit function of $\tilde{v}_{n}(y)=v_{n}(\Psi(y))=\frac{\tilde{u}_{n}(y)}{\gamma_{n}}$. At this point, we have the same formula as the equation (117) in [6], thus we obtain the result. Indeed, decompose $G(x, 0)=s(x)+w(x)$ where

$$
s(x)=\frac{1}{\pi} \log |x|^{-1}, \quad w(x)=H(x, 0),
$$

and put $\tilde{s}(y)=s(\Psi(y)), \tilde{w}(y)=H(\Psi(y), 0)$ so that $\tilde{G}=\tilde{s}+\tilde{w}$. Then after some computation using the fact that \tilde{w} satisfies

$$
-\Delta \tilde{w}+b(y) \tilde{w}=-b(y) \tilde{s}(y) \quad \text { in } H \cap B_{R}
$$

we have from (4.7) that

$$
\begin{align*}
& -C_{0} \alpha+\int_{H \cap \partial B_{R}}\left(\tilde{s}_{\tilde{\nu}} \tilde{s}_{y_{1}}+\tilde{s}_{\tilde{\nu}} \tilde{w}_{y_{1}}+\tilde{s}_{y_{1}} \tilde{w}_{\tilde{\nu}}\right) d s_{y} \\
& =\int_{H \cap \partial B_{R}}\left(\frac{1}{2}|\nabla \tilde{s}|^{2}+\nabla \tilde{s} \cdot \nabla \tilde{w}\right) \tilde{\nu}_{1} d s_{y}+\int_{H \cap \partial B_{R}}\left(\frac{1}{2} \tilde{s}^{2}+\tilde{s} \tilde{w}\right) b(y) \tilde{\nu}_{1} d s_{y} \\
& -\int_{\partial H \cap B_{R}} b_{y_{1}}(y)\left(\frac{1}{2} \tilde{s}^{2}+\tilde{s} \tilde{w}\right) d s_{y}+\int_{\partial H \cap B_{R}} \tilde{w}_{\tilde{\nu}} \tilde{w}_{y_{1}} d s_{y} \\
& -\int_{H \cap B_{R}} b(y) \tilde{s}(y) \tilde{w}_{y_{1}} d y . \tag{4.8}
\end{align*}
$$

By Lemma 9.3 in [6], we know estimates

$$
\begin{aligned}
& \lim _{R \rightarrow 0} \int_{H \cap \partial B_{R}} \tilde{s}_{\tilde{\nu}} \tilde{s}_{y_{1}} d s_{x}=\frac{3 \alpha}{4 \pi}, \quad \lim _{R \rightarrow 0} \int_{H \cap \partial B_{R}} \tilde{s}_{\tilde{\nu}} \tilde{w}_{y_{1}} d s_{x}=-\tilde{w}_{y_{1}}(0), \\
& \lim _{R \rightarrow 0} \frac{1}{2} \int_{H \cap \partial B_{R}}|\nabla \tilde{s}|^{2} \tilde{\nu}_{1} d s_{x}=\frac{\alpha}{4 \pi}, \quad \lim _{R \rightarrow 0} \int_{H \cap \partial B_{R}} \nabla \tilde{s} \cdot \nabla \tilde{w} \tilde{\nu}_{1} d s_{x}=-\frac{1}{2} \tilde{w}_{y_{1}}(0)
\end{aligned}
$$

and other terms in (4.8) go to 0 as $R \rightarrow 0$. Thus we take the limit in (4.8) as $R \rightarrow 0$ to obtain the relation

$$
-C_{0} \alpha+\frac{3 \alpha}{4 \pi}-\tilde{w}_{y_{1}}(0)=\frac{\alpha}{4 \pi}-\frac{1}{2} \tilde{w}_{y_{1}}(0),
$$

which leads to

$$
\alpha\left(\frac{1}{2 \pi}-C_{0}\right)=\frac{1}{2} \tilde{w}_{y_{1}}(0) .
$$

Since $\alpha \in \mathbb{R}$ can be chosen arbitrary, we conclude that $C_{0}=\frac{1}{2 \pi}$ and $\tilde{w}_{y_{1}}(0)=$ 0 . This last equation means the desired conclusion of Theorem 2 (3).

Acknowledgments. This work was supported by JSPS Grant-in-Aid for Scientific Research (KAKENHI) (B), No. 23340038, and Challenging Exploratory Research, No. 24654043.

References

[1] Adimurthi, and M. Grossi: Asymptotic estimates for a two-dimensional problem with polynomial nonlinearity, Proc. Amer. Math. Soc., 132(4) (2003) 1013-1019.
[2] H. Brezis, and F. Merle: Uniform estimates and blow-up behavior for solutions of $-\Delta u=V(x) e^{u}$ in two dimensions, Comm. Partial Differential Equations, 16 (1991) 1223-1253.
[3] H. Brezis, and W. Strauss: Semi-linear second-order elliptic equations in L^{1}, J. Math. Soc. Japan, 25 (1973) 565-590.
[4] H. Castro: Solutions with spikes at the boundary for a 2D nonlinear Neumann problem with large exponent, J. Differential Equations, 246 (2009) 2991-3037.
[5] A. Cianchi: Moser-Trudinger trace inequalities, Adv. Math., 217 (2008) 2005-2044.
[6] J. Dávila, M. del Pino, and M. Musso: Concentrating solutions in a two-dimensional elliptic problem with exponential Neumann data, J. Functional Anal., 227 (2005) 430-490.
[7] P. Esposito, M. Musso, and A. Pistoia: Concentrating solutions for a planar elliptic problem involving nonlinearities with large exponent, J. Differential Equations., 227(1) (2006) 29-68.
[8] C.S. Lin, W.M. Ni, and I. Takagi: Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations, 72 (1988) 1-27.
[9] W.M. Ni, and I. Takagi: On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure and Appl. Math., 44 (1991), no.7, 819-851.
[10] X. Ren, and J. Wei: On a two-dimensional elliptic problem with large exponent in nonlinearity, Trans. Amer. Math. Soc., 343 (2) (1994) 749763.
[11] X. Ren, and J. Wei: Single-point condensation and least-energy solutions, Proc. Amer. Math. Soc., 124 (1) (1996) 111-120.
[12] J. D. Rossi: Elliptic problems with nonlinear boundary conditions and the Sobolev trace theorem, Handbook of Differential equations (M. Chipot, P. Quittner (ed.)), Stationary Partial Differential Equations. Vol. II, 311-406. Elsevier/North-Holland, Amsterdam, 2005.

