Continuum spectrum for the linearized extremal eigenvalue problem with boundary reactions

Futoshi Takahashi Department of Mathematics, Osaka City University & Osaka City University Advanced Mathematical Institute Sumiyoshi-ku, Osaka, 558-8585, Japan Tel: (+81)(0)6-6605-2508 E-mail: futoshi@sci.osaka-cu.ac.jp

Abstract: We study the semilinear problem with the boundary reaction

$$-\Delta u + u = 0$$
 in Ω , $\frac{\partial u}{\partial \nu} = \lambda f(u)$ on $\partial \Omega$,

where $\Omega \subset \mathbb{R}^N$, $N \geq 2$, is a smooth bounded domain, $f: [0, +\infty) \to (0, +\infty)$ is a smooth, strictly positive, convex, increasing function with superlinear at $+\infty$, and $\lambda > 0$ is a parameter. It is known that there exists an extremal parameter $\lambda^* > 0$ such that a classical minimal solution exists for $\lambda < \lambda^*$, and there is no solution for $\lambda > \lambda^*$. Moreover there is a unique weak solution u^* corresponding to the parameter $\lambda = \lambda^*$. In this paper, we continue to study the spectral properties of u^* and show a phenomenon of continuum spectrum for the corresponding linearized eigenvalue problem.

Keywords: continuum spectrum, extremal solution, boundary reaction.

2010 Mathematics Subject Classifications: 35J25, 35J20

1 Introduction

In this paper, we consider the boundary value problem with the boundary reaction:

$$-\Delta u + u = 0$$
 in Ω , $\frac{\partial u}{\partial \nu} = \lambda f(u)$ on $\partial \Omega$ (1.1)

where $\lambda > 0$ and $\Omega \subset \mathbb{R}^N$, $N \ge 2$ is a smooth bounded domain. Throughout the paper, we assume

$$f: [0, +\infty) \to (0, +\infty)$$
 is smooth, convex, increasing, $f(0) > 0$, (1.2)

and superlinear at $+\infty$ in the sense that

$$\lim_{t \to +\infty} \frac{f(t)}{t} = +\infty.$$
(1.3)

Then maximum principle implies that solutions are positive on Ω .

It is known that there exists an extremal parameter $\lambda^* \in (0, \infty)$ such that

(i) for every $\lambda \in (0, \lambda^*)$, $(1.1)_{\lambda}$ has a positive, classical, minimal solution $u_{\lambda} \in C^2(\overline{\Omega})$ which is strictly stable in the sense that

$$\int_{\Omega} (|\nabla \varphi|^2 + \varphi^2) dx > \lambda \int_{\partial \Omega} f'(u_{\lambda}) \varphi^2 ds_x$$
(1.4)

for every $\varphi \in C^1(\overline{\Omega}), \varphi \not\equiv 0$,

(ii) for $\lambda = \lambda^*$, the pointwise limit

$$u^*(x) = \lim_{\lambda \uparrow \lambda^*} u_\lambda(x), \quad x \in \overline{\Omega},$$
(1.5)

becomes a weak solution of $(1.1)_{\lambda^*}$,

(iii) for $\lambda > \lambda^*$, there exists no solution of $(1.1)_{\lambda}$, even in the weak sense.

Here, we call a function $u = (u_1, u_2) \in L^1(\Omega) \times L^1(\partial\Omega)$ a weak solution to $(1.1)_{\lambda}$ if $f(u_2) \in L^1(\partial\Omega)$ and

$$\int_{\Omega} (-\Delta\zeta + \zeta) u_1 dx = \int_{\partial\Omega} (\lambda f(u_2)\zeta - \frac{\partial\zeta}{\partial\nu} u_2) ds_x$$
(1.6)

holds for any $\zeta \in C^2(\overline{\Omega})$. The statement (ii) says, under the assumption (1.3), $u^* = (u^*|_{\Omega}, u^*|_{\partial\Omega})$ is a weak solution in the sense above. If a weak solution u to (1.1) in the sense above satisfies $u \in W^{1,q}(\Omega)$, then $u_1 = u|_{\Omega}$ and $u_2 = u|_{\partial\Omega}$ where $u|_{\partial\Omega} \in W^{1-\frac{1}{q},q}(\partial\Omega) \subset L^{\frac{(N-1)q}{N-q}}(\partial\Omega)$ is the usual trace of $W^{1,q}$ function u on $\partial\Omega$. For the facts (ii), (iii), we refer the reader to [7]. In the following, we call u^* the *extremal solution* of (1.1). In [7], the author obtained several properties such as regularity and uniqueness of the extremal solution u^* . This paper is a sequel to [7]. For a well-studied problem

$$-\Delta u = \lambda f(u) \quad \text{in } \Omega, \quad u = 0 \quad \text{on } \partial \Omega$$

where f satisfies (1.2), (1.3), see [1], [2], [3], [4], [5], [6], and the references therein.

For $\lambda \in (0, \lambda^*)$, we denote by $\mu_1(\lambda f'(u_\lambda))$ the first eigenvalue of the following eigenvalue problem

$$-\Delta \varphi + \varphi = 0$$
 in Ω , $\frac{\partial \varphi}{\partial \nu} = \lambda f'(u_{\lambda})\varphi + \mu \varphi$ on $\partial \Omega$.

By the variational characterization, we have

$$\mu_1(\lambda f'(u_\lambda)) = \inf_{\varphi \in C^1(\overline{\Omega}), \varphi \not\equiv 0} \frac{\int_{\Omega} \left(|\nabla \varphi|^2 + \varphi^2 \right) dx - \int_{\partial \Omega} \lambda f'(u_\lambda) \varphi^2 ds_x}{\int_{\partial \Omega} \varphi^2 ds_x}.$$

Note that $\mu_1(\lambda f'(u_\lambda)) > 0$ since the minimal solution u_λ is strictly stable, and decreases as $\lambda \uparrow \lambda^*$. Denote

$$\mu_1^* = \lim_{\lambda \uparrow \lambda^*} \mu_1(\lambda f'(u_\lambda)). \tag{1.7}$$

If u^* is classical, it must hold that $\mu_1^* = 0$ by considering (iii) above. However if $u^* = (u^*|_{\Omega}, u^*|_{\partial\Omega}) \notin L^{\infty}(\Omega) \times L^{\infty}(\partial\Omega)$, it could be happen that μ_1^* is positive. In [7], we proved that even when $\mu_1^* > 0$, there exists a nonnegative weak solution of

$$-\Delta \varphi + \varphi = 0 \quad \text{in } \Omega, \quad \frac{\partial \varphi}{\partial \nu} = \lambda^* f'(u^*) \varphi + \mu \varphi \quad \text{on } \partial \Omega$$
 (1.8)

for $\mu = 0$. This is a phenomenon of the existence of (L^{1}) zero eigenvalue for the eigenvalue problem (1.8). Main purpose of this paper is to prove the following result, which might be seen as a phenomenon of the existence of (L^{1}) continuum spectrum for the eigenvalue problem (1.8).

Theorem 1 Let μ_1^* be defined by (1.7). Then for any $\mu \in [0, \mu_1^*]$, there exists a weak solution φ to (1.8), $\varphi \in W^{1,q}(\Omega)$ $(1 \le q < \frac{N}{N-1}), \varphi \ge 0$, in the sense that $f'(u^*)\varphi|_{\partial\Omega} \in L^1(\partial\Omega)$ and

$$\int_{\Omega} (-\Delta\zeta + \zeta)\varphi dx = \int_{\partial\Omega} \left\{ (\lambda^* f'(u^*)\varphi|_{\partial\Omega} + \mu\varphi|_{\partial\Omega}) \zeta - \frac{\partial\zeta}{\partial\nu}\varphi|_{\partial\Omega} \right\} ds_x$$

for all $\zeta \in C^2(\overline{\Omega})$. Here $\varphi|_{\partial\Omega}$ is the usual trace of $\varphi \in W^{1,q}(\Omega)$.

2 Proof of Theorem 1

In this section, we prove Theorem 1. We need the uniqueness theorem from [7], which is an analogue of the result by Y. Martel [6].

Theorem 2 ([7] Theorem 14) Assume $(1.1)_{\lambda^*}$ has a weak supersolution $w = (w_1, w_2) \in L^1(\Omega) \times L^1(\partial\Omega)$, in the sense that $f(w_2) \in L^1(\partial\Omega)$ and

$$\int_{\Omega} (-\Delta\zeta + \zeta) w_1 dx \ge \int_{\partial\Omega} \left\{ \lambda^* f(w_2) \zeta - \frac{\partial\zeta}{\partial\nu} w_2 \right\} ds_x$$

for any $\zeta \in C^2(\overline{\Omega})$, $\zeta \geq 0$ on $\overline{\Omega}$. Then $(w_1, w_2) = (u^*|_{\Omega}, u^*|_{\partial\Omega})$, where u^* is defined by (1.5).

The following is Lemma 17 in [7].

Lemma 3 Let $\{u_n\} \subset C^2(\overline{\Omega})$ be a sequence of functions such that

$$-\Delta u_n + u_n = 0$$
 in Ω , $\frac{\partial u_n}{\partial \nu} \ge 0$ on $\partial \Omega$.

Assume $||u_n||_{L^1(\partial\Omega)} \leq C$ for some C > 0 independent of n. Then there exists a subsequence (denoted again by u_n) and $u \in W^{1,q}(\Omega)$ such that

$$u_n \rightharpoonup u \quad weakly \text{ in } W^{1,q}(\Omega), \ 1 < q < \frac{N}{N-1},$$

 $u_n \rightarrow u \quad strongly \text{ in } L^p(\partial\Omega), \ 1 \le p < \frac{N-1}{N-2}$

Moreover, for any $1 \leq p < \frac{N-1}{N-2}$, there exists a constant $C_p > 0$ depending only on p such that

$$\|u_n\|_{L^p(\partial\Omega)} \le C_p \|u_n\|_{L^1(\partial\Omega)}$$

holds true for any $n \in \mathbb{N}$.

Now, we prove Theorem 1.

Proof.

We follow the argument by X. Cabré and Y. Martel [3].

Step 1. For $n \in \mathbb{N}$, define a sequence of functions f_n as

$$f_n(s) = \begin{cases} f(s) & \text{if } s \le n, \\ f(n) + f'(n)(s-n) & \text{if } s > n, \end{cases}$$

and consider the approximated problem

$$-\Delta u + u = 0$$
 in Ω , $\frac{\partial u}{\partial \nu} = \lambda f_n(u)$ on $\partial \Omega$. (2.1)

Denote $\lambda_n^* = \sup\{\lambda > 0 : (2.1)_{\lambda} \text{ admits a minimal solution } \in C^2(\overline{\Omega})\}$, and let $u_{n,\lambda} \in C^2(\overline{\Omega})$ be the classical minimal solution to $(2.1)_{\lambda}$ for $\lambda < \lambda_n^*$. Since $f_n \leq f_{n+1} \leq f$, we have $u_{n,\lambda} \leq u_{n+1,\lambda} \leq u_{\lambda}$ and $\lambda^* \leq \lambda_{n+1}^* \leq \lambda_n^*$ for any $n \in \mathbb{N}$. Define

$$\mu_1(\lambda f'_n(u_{n,\lambda})) = \inf_{\varphi \in C^1(\overline{\Omega}), \varphi \not\equiv 0} \frac{\int_{\Omega} \left(|\nabla \varphi|^2 + \varphi^2 \right) dx - \int_{\partial \Omega} \lambda f'_n(u_{n,\lambda}) \varphi^2 ds_x}{\int_{\partial \Omega} \varphi^2 ds_x}.$$
 (2.2)

Note that $\mu_1(\lambda f'_n(u_{n,\lambda}))$ is continuous with respect to λ by (2.2). Take $0 \leq \mu \leq \mu_1^*$ where μ_1^* is defined by (1.7). Since u_{n,λ_n^*} is classical (which is because f_n is asymptotic linear) and there is no classical solution of $(2.1)_{\lambda}$ for $\lambda > \lambda_n^*$, the linearized problem around $(\lambda_n^*, u_{n,\lambda_n^*})$ must have zero eigenvalue. Thus

$$\mu_1(\lambda_n^* f'_n(u_{n,\lambda_n^*})) = 0 \le \mu \le \mu_1^* \le \mu_1(\lambda^* f'_n(u_{n,\lambda^*})).$$

here we have used the fact that $f'_n \leq f'$ and $u_{n,\lambda} \leq u_{\lambda}$, which implies $\mu_1(\lambda f'(u_{\lambda})) \leq \mu_1(\lambda f'_n(u_{n,\lambda}))$. By the Intermediate Value Theorem, there exists $\lambda_n \in [\lambda^*, \lambda_n^*]$ such that

$$\mu_1(\lambda_n f'_n(u_{n,\lambda_n})) = \mu,$$

which in turn implies there exists $\varphi_n > 0$ with $\int_{\partial\Omega} \varphi_n ds_x = 1$ such that

$$-\Delta\varphi_n + \varphi_n = 0 \quad \text{in } \Omega, \quad \frac{\partial\varphi_n}{\partial\nu} = \lambda_n f'_n(u_{n,\lambda_n})\varphi_n + \mu\varphi_n \quad \text{on } \partial\Omega.$$
(2.3)

Recall also that u_{n,λ_n} satisfies

$$-\Delta u_{n,\lambda_n} + u_{n,\lambda_n} = 0 \quad \text{in } \Omega, \quad \frac{\partial u_{n,\lambda_n}}{\partial \nu} = \lambda_n f_n(u_{n,\lambda_n}) \quad \text{on } \partial\Omega.$$
(2.4)

We claim there exists $n_0 \in \mathbb{N}$ such that

$$\|u_{n,\lambda_n}\|_{L^1(\partial\Omega)} \le C \quad \text{for any } n \ge n_0.$$
(2.5)

Indeed, let ψ_1 be the first eigenfunction of the Steklov type eigenvalue problem

$$-\Delta \psi_1 + \psi_1 = 0 \quad \text{in } \Omega, \quad \frac{\partial \psi_1}{\partial \nu} = \kappa_1 \psi_1 \quad \text{on } \partial \Omega$$
 (2.6)

with the first eigenvalue κ_1 , which is normalized as $\int_{\partial\Omega} \psi_1 ds_x = 1$. Multiplying (2.4) by ψ_1 and using Jensen's inequality for f_n , we obtain

$$\kappa_1 \int_{\partial\Omega} \psi_1 u_{n,\lambda_n} ds_x = \lambda_n \int_{\partial\Omega} f_n(u_{n,\lambda_n}) \psi_1 ds_x$$

$$\geq \lambda_n f_n\left(\int_{\partial\Omega} \psi_1 u_{n,\lambda_n} ds_x\right) \geq \lambda^* f_n\left(\int_{\partial\Omega} \psi_1 u_{n,\lambda_n} ds_x\right).$$

Put $a_n = \int_{\partial\Omega} \psi_1 u_{n,\lambda_n} ds_x$. Then we have

$$a_n \ge \left(\frac{\lambda^*}{\kappa_1}\right) f_n(a_n).$$
 (2.7)

Assume the contrary that $f_n(a_n) = f'(n)(a_n - n) + f(n)$ for some $n \in \mathbb{N}$ sufficiently large. Then, since $a_n > n$ and $f(n) > \left(\frac{\kappa_1}{\lambda^*}\right)n$, $f'(n) > \left(\frac{\kappa_1}{\lambda^*}\right)$ for nsufficiently large by (1.2) and (1.3), we have, by (2.7),

$$a_n \ge \left(\frac{\lambda^*}{\kappa_1}\right) f_n(a_n) = \left(\frac{\lambda^*}{\kappa_1}\right) \left\{ f'(n)(a_n - n) + f(n) \right\}$$

> $a_n - n + n = a_n,$

which is a contradiction. Thus we conclude there exists $n_0 \in \mathbb{N}$ such that $f_n(a_n) = f(a_n)$ for any $n \ge n_0$. Again, this and (2.7) implies $a_n \ge \left(\frac{\lambda^*}{\kappa_1}\right) f(a_n)$ for any $n \ge n_0$. Now, by the assumption f, we have C > 0 such that $f(s) \ge \frac{2\kappa_1}{\lambda^*} s - C$ holds for any s > 0. From this and the former estimate, we have $a_n \le \left(\frac{\lambda^*}{\kappa_1}\right) C$ for $n \ge n_0$. This implies the claim (2.5).

Step 2. By (2.5), we have $||u_{n,\lambda_n}||_{L^1(\partial\Omega)} \leq C$ for some *C* independent of *n*. Also recall $||\varphi_n||_{L^1(\partial\Omega)} = 1$ for a solution φ_n of (2.3). Thus we can apply Lemma 3, which yields the existence of $w, \varphi \in L^1(\Omega), \varphi \geq 0$ a.e. such that

$$u_{n,\lambda_n} \rightharpoonup w, \quad \varphi_n \rightharpoonup \varphi \quad \text{weakly in } W^{1,q}(\Omega),$$

 $u_{n,\lambda_n} \rightarrow w, \quad \varphi_n \rightarrow \varphi \quad \text{strongly in } L^p(\partial\Omega) \text{ and a.e. on } \partial\Omega \qquad (2.8)$

for any $1 < q < \frac{N}{N-1}$ and $1 \le p < \frac{N-1}{N-2}$. Since $\int_{\partial\Omega} \varphi ds_x = 1$, we see $\varphi \neq 0$ on $\partial\Omega$.

In the following, we prove that $\lambda_n \downarrow \lambda^*$ as $n \to \infty$ and $w = u^*$. We will show that $w \in W^{1,q}(\Omega)$ is a weak supersolution in the sense of Theorem

2. Then the conclusion is obtained by Theorem 2. To prove that w is a weak supersolution, put $\overline{\lambda} = \inf_{n \in \mathbb{N}} \lambda_n$. Since $\lambda_n \ge \lambda^*$, we have $\overline{\lambda} \ge \lambda^*$. We observe that

$$\int_{\Omega} \left(-\Delta\zeta + \zeta \right) u_{n,\lambda_n} dx = \lambda_n \int_{\partial\Omega} f_n(u_{n,\lambda_n}) \zeta ds_x - \int_{\partial\Omega} \frac{\partial\zeta}{\partial\nu} u_{n,\lambda_n} ds_x$$
$$\geq \overline{\lambda} \int_{\partial\Omega} f_n(u_{n,\lambda_n}) \zeta ds_x - \int_{\partial\Omega} \frac{\partial\zeta}{\partial\nu} u_{n,\lambda_n} ds_x$$

holds for all $\zeta \in C^2(\overline{\Omega}), \zeta \geq 0$. Using the fact that $u_{n,\lambda_n} \to w$ in $L^1(\Omega), L^1(\partial\Omega)$ respectively and Fatou's lemma, we have

$$\begin{split} \int_{\Omega} \left(-\Delta \zeta + \zeta \right) w dx &\geq \overline{\lambda} \int_{\partial \Omega} f(w) \zeta ds_x - \int_{\partial \Omega} \frac{\partial \zeta}{\partial \nu} w ds_x \\ &\geq \lambda^* \int_{\partial \Omega} f(w) \zeta ds_x - \int_{\partial \Omega} \frac{\partial \zeta}{\partial \nu} w ds_x, \quad \forall \zeta \in C^2(\overline{\Omega}), \; \zeta \geq 0. \end{split}$$

This implies also $f(w) \in L^1(\partial \Omega)$ if we take $\zeta \equiv 1$. Thus, we conclude that w is a weak supersolution to $(1.1)_{\lambda^*}$

Step 3. Let φ_n , φ be as in Step 2. We claim that

$$\lambda_n f'_n(u_{n,\lambda_n})\varphi_n \to \lambda^* f'(u^*)\varphi \quad \text{strongly in } L^1(\partial\Omega)$$
 (2.9)

as $n \to \infty$. For the proof, we invoke Vitali's Convergence Theorem. First, by (2.8), we see

$$\lambda_n f_n'(u_{n,\lambda_n}(x)) \varphi_n(x) \to \lambda^* f'(u^*(x)) \varphi(x) \quad \text{a.e. } x \in \partial \Omega$$

for a subsequence. Next, we prove the uniformly absolute continuous property of the sequence $\{\lambda_n f'_n(u_{n,\lambda_n})\varphi_n\}_{n\in\mathbb{N}}$. For that purpose, let $A \subset \partial\Omega$ and $\varepsilon > 0$ be given arbitrary. Since f_n is convex, we have

$$f_n\left(\frac{\chi_A(x)}{\varepsilon}\right) \ge f_n(u_{n,\lambda_n}(x)) + f'_n(u_{n,\lambda_n}(x))\left(\frac{\chi_A(x)}{\varepsilon} - u_{n,\lambda_n}(x)\right)$$
(2.10)

a.e. $x \in \partial \Omega$, here χ_A is the characteristic function of A. By (2.3) and (2.4), it holds that

$$\lambda_n \int_{\partial\Omega} f_n(u_{n,\lambda_n})\varphi_n ds_x = \lambda_n \int_{\partial\Omega} f'_n(u_{n,\lambda_n})u_{n,\lambda_n}\varphi_n ds_x + \mu \int_{\partial\Omega} u_{n,\lambda_n}\varphi_n ds_x$$

$$\geq \lambda_n \int_{\partial\Omega} f'_n(u_{n,\lambda_n})u_{n,\lambda_n}\varphi_n ds_x.$$
(2.11)

Also easy consideration shows that

$$\left\{ f_n\left(\frac{\chi_A(x)}{\varepsilon}\right) - f(0) \right\} \varphi_n(x) \le f\left(\frac{1}{\varepsilon}\right) \varphi_n(x) \chi_A(x) \quad \text{a.e. on } \partial\Omega. \quad (2.12)$$

Thus by (2.10), (2.11) and (2.12), we have

$$\int_{\partial\Omega} f'_{n}(u_{n,\lambda_{n}}) \frac{\chi_{A}}{\varepsilon} \varphi_{n} ds_{x} \leq \int_{\partial\Omega} f_{n}\left(\frac{\chi_{A}}{\varepsilon}\right) \varphi_{n} ds_{x} + \int_{\partial\Omega} f'_{n}(u_{n,\lambda_{n}}) u_{n,\lambda_{n}} \varphi_{n} ds_{x} - \int_{\partial\Omega} f_{n}(u_{n,\lambda_{n}}) \varphi_{n} ds_{x} \\
\leq \int_{\partial\Omega} f_{n}\left(\frac{\chi_{A}}{\varepsilon}\right) \varphi_{n} ds_{x} + \int_{\partial\Omega} f(0) \varphi_{n} ds_{x} \\
\leq \int_{\partial\Omega} f\left(\frac{1}{\varepsilon}\right) \varphi_{n} \chi_{A} ds_{x} + f(0) \\
\leq f\left(\frac{1}{\varepsilon}\right) |A|^{\frac{1}{p'}} \|\varphi_{n}\|_{L^{p}(\partial\Omega)} + f(0) \\
\leq Cf\left(\frac{1}{\varepsilon}\right) |A|^{\frac{1}{p'}} + f(0)$$
(2.13)

for any $1 \leq p < \frac{N-1}{N-2}$, where |A| denotes the (N-1) dimensional measure of $A \subset \partial \Omega$ and $p' = \frac{p}{p-1}$. In (2.13) we have used $\|\varphi_n\|_{L^p(\partial\Omega)} \leq C$ for some C > 0 independent of n by (2.8). Define

$$\delta(\varepsilon) = \left(\frac{f(0)}{f(\frac{1}{\varepsilon})C}\right)^{p'}.$$

Then for any $\varepsilon > 0$, we obtain $\int_A f'_n(u_{n,\lambda_n})\varphi_n ds_x \leq 2f(0)\varepsilon$ if $A \subset \partial\Omega$ satisfies that $|A| < \delta(\varepsilon)$ by (2.13). This implies the uniform absolutely continuity of the sequence $\{\lambda_n f'_n(u_{n,\lambda_n})\varphi_n\}_{n\in\mathbb{N}}$. Also for any $\varepsilon > 0$, if we take $E \subset \partial\Omega$ such that $|\partial\Omega \setminus E| < \delta(\varepsilon)$ where $\delta(\varepsilon)$ is as above, we obtain that $\int_{\partial\Omega\setminus E} \lambda_n f'_n(u_{n,\lambda_n})\varphi_n ds_x \leq C\varepsilon$. This implies the uniform integrability of $\{\lambda_n f'_n(u_{n,\lambda_n})\varphi_n\}_{n\in\mathbb{N}}$. Therefore, Vitali's Convergence Theorem assures the claim (2.9).

By (2.9), we pass to the limit $n \to \infty$ in the weak formulation of (2.3):

$$\int_{\Omega} \left(-\Delta\zeta + \zeta \right) \varphi_n dx = \int_{\partial\Omega} \left(\lambda_n f'_n(u_{n,\lambda_n}) + \mu \right) \varphi_n \zeta - \frac{\partial\zeta}{\partial\nu} \varphi_n ds_x, \quad \forall \zeta \in C^2(\overline{\Omega}),$$

and conclude that φ is a weak solution of

$$-\Delta \varphi + \varphi = 0$$
 in Ω , $\frac{\partial \varphi}{\partial \nu} = \lambda^* f'(u^*) \varphi + \mu \varphi$ on $\partial \Omega$.

Recall $\varphi \in W^{1,q}(\Omega)$ for any $1 \leq q < \frac{N}{N-1}$. The proof of Theorem 1 is finished. \Box

Acknowledgement. Part of this work was supported by JSPS Grant-in-Aid for Scientific Research (B), No. 23340038, and JSPS Grant-in-Aid for Challenging Exploratory Research, No. 24654043.

References

- [1] H. Brezis, T. Cazenave, Y. Martel and A. Ramiandrisoa: Blow up for $u_t \Delta u = g(u)$ revisited, Adv. Differential Equations. 1, 73–90, (1996), MR1357955
- [2] H. Brezis, and J. L. Vázquez: Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Compl. Madrid, 10, 443–469, (1997), MR1605678
- [3] X. Cabré, and Y. Martel: Weak eigenfunctions for the linearization of extremal elliptic problems, J. Funct. Anal. 156, 30–56, (1998), MR1632972
- [4] J. Dávila: Singular solutions of semi-linear elliptic problems, Handbook of differential equations: stationary partial differential equations. Vol. VI, 83–176, (2008), MR2569324
- [5] L. Dupaigne: Stable Solutions of Elliptic Partial Differential Equations, Monographs and Surveys in Pure and Applied Mathematics 143, Chapman & Hall/CRC Press, xiv+321 pp. (2011), MR2779463
- [6] Y. Martel: Uniqueness of weak extremal solutions of nonlinear elliptic problems, Houston J. Math. 23, 161–168, (1997), MR1688823
- [7] F. Takahashi: Extremal solutions to Liouville-Gelfand type elliptic problems with nonlinear Neumann boundary conditions, preprint, OCAMI Preprint Series 13-8, June 23, 2013.