Continuum spectrum for the linearized extremal eigenvalue problem with boundary reactions

Futoshi Takahashi
Department of Mathematics, Osaka City University
\& Osaka City University Advanced Mathematical Institute
Sumiyoshi-ku, Osaka, 558-8585, Japan
Tel: $(+81)(0) 6-6605-2508$
E-mail: futoshi@sci.osaka-cu.ac.jp

Abstract: We study the semilinear problem with the boundary reaction

$$
-\Delta u+u=0 \quad \text { in } \Omega, \quad \frac{\partial u}{\partial \nu}=\lambda f(u) \quad \text { on } \partial \Omega,
$$

where $\Omega \subset \mathbb{R}^{N}, N \geq 2$, is a smooth bounded domain, $f:[0,+\infty) \rightarrow(0,+\infty)$ is a smooth, strictly positive, convex, increasing function with superlinear at $+\infty$, and $\lambda>0$ is a parameter. It is known that there exists an extremal parameter $\lambda^{*}>0$ such that a classical minimal solution exists for $\lambda<\lambda^{*}$, and there is no solution for $\lambda>\lambda^{*}$. Moreover there is a unique weak solution u^{*} corresponding to the parameter $\lambda=\lambda^{*}$. In this paper, we continue to study the spectral properties of u^{*} and show a phenomenon of continuum spectrum for the corresponding linearized eigenvalue problem.

Keywords: continuum spectrum, extremal solution, boundary reaction.
2010 Mathematics Subject Classifications: 35J25, 35J20

1 Introduction

In this paper, we consider the boundary value problem with the boundary reaction:

$$
\begin{equation*}
-\Delta u+u=0 \quad \text { in } \Omega, \quad \frac{\partial u}{\partial \nu}=\lambda f(u) \quad \text { on } \partial \Omega \tag{1.1}
\end{equation*}
$$

where $\lambda>0$ and $\Omega \subset \mathbb{R}^{N}, N \geq 2$ is a smooth bounded domain. Throughout the paper, we assume

$$
\begin{equation*}
f:[0,+\infty) \rightarrow(0,+\infty) \text { is smooth, convex, increasing, } f(0)>0 \tag{1.2}
\end{equation*}
$$

and superlinear at $+\infty$ in the sense that

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} \frac{f(t)}{t}=+\infty \tag{1.3}
\end{equation*}
$$

Then maximum principle implies that solutions are positive on $\bar{\Omega}$.
It is known that there exists an extremal parameter $\lambda^{*} \in(0, \infty)$ such that
(i) for every $\lambda \in\left(0, \lambda^{*}\right),(1.1)_{\lambda}$ has a positive, classical, minimal solution $u_{\lambda} \in C^{2}(\bar{\Omega})$ which is strictly stable in the sense that

$$
\begin{equation*}
\int_{\Omega}\left(|\nabla \varphi|^{2}+\varphi^{2}\right) d x>\lambda \int_{\partial \Omega} f^{\prime}\left(u_{\lambda}\right) \varphi^{2} d s_{x} \tag{1.4}
\end{equation*}
$$

for every $\varphi \in C^{1}(\bar{\Omega}), \varphi \not \equiv 0$,
(ii) for $\lambda=\lambda^{*}$, the pointwise limit

$$
\begin{equation*}
u^{*}(x)=\lim _{\lambda \uparrow \lambda^{*}} u_{\lambda}(x), \quad x \in \bar{\Omega}, \tag{1.5}
\end{equation*}
$$

becomes a weak solution of $(1.1)_{\lambda^{*}}$,
(iii) for $\lambda>\lambda^{*}$, there exists no solution of (1.1) $)_{\lambda}$, even in the weak sense.

Here, we call a function $u=\left(u_{1}, u_{2}\right) \in L^{1}(\Omega) \times L^{1}(\partial \Omega)$ a weak solution to $(1.1)_{\lambda}$ if $f\left(u_{2}\right) \in L^{1}(\partial \Omega)$ and

$$
\begin{equation*}
\int_{\Omega}(-\Delta \zeta+\zeta) u_{1} d x=\int_{\partial \Omega}\left(\lambda f\left(u_{2}\right) \zeta-\frac{\partial \zeta}{\partial \nu} u_{2}\right) d s_{x} \tag{1.6}
\end{equation*}
$$

holds for any $\zeta \in C^{2}(\bar{\Omega})$. The statement (ii) says, under the assumption (1.3), $u^{*}=\left(\left.u^{*}\right|_{\Omega},\left.u^{*}\right|_{\partial \Omega}\right)$ is a weak solution in the sense above. If a weak solution u to (1.1) in the sense above satisfies $u \in W^{1, q}(\Omega)$, then $u_{1}=\left.u\right|_{\Omega}$ and $u_{2}=\left.u\right|_{\partial \Omega}$ where $\left.u\right|_{\partial \Omega} \in W^{1-\frac{1}{q}, q}(\partial \Omega) \subset L^{\frac{(N-1) q}{N-q}}(\partial \Omega)$ is the usual trace of $W^{1, q}$ function u on $\partial \Omega$. For the facts (ii), (iii), we refer the reader to [7]. In the following, we call u^{*} the extremal solution of (1.1). In [7], the author obtained several properties such as regularity and uniqueness of the extremal solution u^{*}. This paper is a sequel to [7]. For a well-studied problem

$$
-\Delta u=\lambda f(u) \quad \text { in } \Omega, \quad u=0 \quad \text { on } \partial \Omega
$$

where f satisfies (1.2), (1.3), see [1], [2], [3], [4], [5], [6], and the references therein.

For $\lambda \in\left(0, \lambda^{*}\right)$, we denote by $\mu_{1}\left(\lambda f^{\prime}\left(u_{\lambda}\right)\right)$ the first eigenvalue of the following eigenvalue problem

$$
-\Delta \varphi+\varphi=0 \quad \text { in } \Omega, \quad \frac{\partial \varphi}{\partial \nu}=\lambda f^{\prime}\left(u_{\lambda}\right) \varphi+\mu \varphi \quad \text { on } \partial \Omega .
$$

By the variational characterization, we have

$$
\mu_{1}\left(\lambda f^{\prime}\left(u_{\lambda}\right)\right)=\inf _{\varphi \in C^{1}(\bar{\Omega}), \varphi \neq 0} \frac{\int_{\Omega}\left(|\nabla \varphi|^{2}+\varphi^{2}\right) d x-\int_{\partial \Omega} \lambda f^{\prime}\left(u_{\lambda}\right) \varphi^{2} d s_{x}}{\int_{\partial \Omega} \varphi^{2} d s_{x}} .
$$

Note that $\mu_{1}\left(\lambda f^{\prime}\left(u_{\lambda}\right)\right)>0$ since the minimal solution u_{λ} is strictly stable, and decreases as $\lambda \uparrow \lambda^{*}$. Denote

$$
\begin{equation*}
\mu_{1}^{*}=\lim _{\lambda \uparrow \lambda^{*}} \mu_{1}\left(\lambda f^{\prime}\left(u_{\lambda}\right)\right) \tag{1.7}
\end{equation*}
$$

If u^{*} is classical, it must hold that $\mu_{1}^{*}=0$ by considering (iii) above. However if $u^{*}=\left(\left.u^{*}\right|_{\Omega},\left.u^{*}\right|_{\partial \Omega}\right) \notin L^{\infty}(\Omega) \times L^{\infty}(\partial \Omega)$, it could be happen that μ_{1}^{*} is positive. In [7], we proved that even when $\mu_{1}^{*}>0$, there exists a nonnegative weak solution of

$$
\begin{equation*}
-\Delta \varphi+\varphi=0 \quad \text { in } \Omega, \quad \frac{\partial \varphi}{\partial \nu}=\lambda^{*} f^{\prime}\left(u^{*}\right) \varphi+\mu \varphi \quad \text { on } \partial \Omega \tag{1.8}
\end{equation*}
$$

for $\mu=0$. This is a phenomenon of the existence of $\left(L^{1}-\right)$ zero eigenvalue for the eigenvalue problem (1.8). Main purpose of this paper is to prove the following result, which might be seen as a phenomenon of the existence of ($\left.L^{1}-\right)$ continuum spectrum for the eigenvalue problem (1.8).

Theorem 1 Let μ_{1}^{*} be defined by (1.7). Then for any $\mu \in\left[0, \mu_{1}^{*}\right]$, there exists a weak solution φ to (1.8), $\varphi \in W^{1, q}(\Omega)\left(1 \leq q<\frac{N}{N-1}\right), \varphi \geq 0$, in the sense that $\left.f^{\prime}\left(u^{*}\right) \varphi\right|_{\partial \Omega} \in L^{1}(\partial \Omega)$ and

$$
\int_{\Omega}(-\Delta \zeta+\zeta) \varphi d x=\int_{\partial \Omega}\left\{\left(\left.\lambda^{*} f^{\prime}\left(u^{*}\right) \varphi\right|_{\partial \Omega}+\left.\mu \varphi\right|_{\partial \Omega}\right) \zeta-\left.\frac{\partial \zeta}{\partial \nu} \varphi\right|_{\partial \Omega}\right\} d s_{x}
$$

for all $\zeta \in C^{2}(\bar{\Omega})$. Here $\left.\varphi\right|_{\partial \Omega}$ is the usual trace of $\varphi \in W^{1, q}(\Omega)$.

2 Proof of Theorem 1

In this section, we prove Theorem 1. We need the uniqueness theorem from [7], which is an analogue of the result by Y. Martel [6].

Theorem 2 ([7] Theorem 14) Assume (1.1) ${\lambda^{*}}$ has a weak supersolution $w=$ $\left(w_{1}, w_{2}\right) \in L^{1}(\Omega) \times L^{1}(\partial \Omega)$, in the sense that $f\left(w_{2}\right) \in L^{1}(\partial \Omega)$ and

$$
\int_{\Omega}(-\Delta \zeta+\zeta) w_{1} d x \geq \int_{\partial \Omega}\left\{\lambda^{*} f\left(w_{2}\right) \zeta-\frac{\partial \zeta}{\partial \nu} w_{2}\right\} d s_{x}
$$

for any $\zeta \in C^{2}(\bar{\Omega}), \zeta \geq 0$ on $\bar{\Omega}$. Then $\left(w_{1}, w_{2}\right)=\left(\left.u^{*}\right|_{\Omega},\left.u^{*}\right|_{\partial \Omega}\right)$, where u^{*} is defined by (1.5).

The following is Lemma 17 in [7].
Lemma 3 Let $\left\{u_{n}\right\} \subset C^{2}(\bar{\Omega})$ be a sequence of functions such that

$$
-\Delta u_{n}+u_{n}=0 \quad \text { in } \Omega, \quad \frac{\partial u_{n}}{\partial \nu} \geq 0 \quad \text { on } \partial \Omega
$$

Assume $\left\|u_{n}\right\|_{L^{1}(\partial \Omega)} \leq C$ for some $C>0$ independent of n. Then there exists a subsequence (denoted again by u_{n}) and $u \in W^{1, q}(\Omega)$ such that

$$
\begin{array}{ll}
u_{n} \rightharpoonup u & \text { weakly in } W^{1, q}(\Omega), 1<q<\frac{N}{N-1} \\
u_{n} \rightarrow u \quad \text { strongly in } L^{p}(\partial \Omega), 1 \leq p<\frac{N-1}{N-2}
\end{array}
$$

Moreover, for any $1 \leq p<\frac{N-1}{N-2}$, there exists a constant $C_{p}>0$ depending only on p such that

$$
\left\|u_{n}\right\|_{L^{p}(\partial \Omega)} \leq C_{p}\left\|u_{n}\right\|_{L^{1}(\partial \Omega)}
$$

holds true for any $n \in \mathbb{N}$.
Now, we prove Theorem 1.

Proof.

We follow the argument by X. Cabré and Y. Martel [3].
Step 1. For $n \in \mathbb{N}$, define a sequence of functions f_{n} as

$$
f_{n}(s)= \begin{cases}f(s) & \text { if } s \leq n \\ f(n)+f^{\prime}(n)(s-n) & \text { if } s>n\end{cases}
$$

and consider the approximated problem

$$
\begin{equation*}
-\Delta u+u=0 \quad \text { in } \Omega, \quad \frac{\partial u}{\partial \nu}=\lambda f_{n}(u) \quad \text { on } \partial \Omega . \tag{2.1}
\end{equation*}
$$

Denote $\lambda_{n}^{*}=\sup \left\{\lambda>0:(2.1)_{\lambda}\right.$ admits a minimal solution $\left.\in C^{2}(\bar{\Omega})\right\}$, and let $u_{n, \lambda} \in C^{2}(\bar{\Omega})$ be the classical minimal solution to $(2.1)_{\lambda}$ for $\lambda<\lambda_{n}^{*}$. Since $f_{n} \leq f_{n+1} \leq f$, we have $u_{n, \lambda} \leq u_{n+1, \lambda} \leq u_{\lambda}$ and $\lambda^{*} \leq \lambda_{n+1}^{*} \leq \lambda_{n}^{*}$ for any $n \in \mathbb{N}$. Define

$$
\begin{equation*}
\mu_{1}\left(\lambda f_{n}^{\prime}\left(u_{n, \lambda}\right)\right)=\inf _{\varphi \in C^{1}(\bar{\Omega}), \varphi \neq 0} \frac{\int_{\Omega}\left(|\nabla \varphi|^{2}+\varphi^{2}\right) d x-\int_{\partial \Omega} \lambda f_{n}^{\prime}\left(u_{n, \lambda}\right) \varphi^{2} d s_{x}}{\int_{\partial \Omega} \varphi^{2} d s_{x}} . \tag{2.2}
\end{equation*}
$$

Note that $\mu_{1}\left(\lambda f_{n}^{\prime}\left(u_{n, \lambda}\right)\right)$ is continuous with respect to λ by (2.2). Take $0 \leq$ $\mu \leq \mu_{1}^{*}$ where μ_{1}^{*} is defined by (1.7). Since $u_{n, \lambda_{n}^{*}}$ is classical (which is because f_{n} is asymptotic linear) and there is no classical solution of $(2.1)_{\lambda}$ for $\lambda>\lambda_{n}^{*}$, the linearized problem around $\left(\lambda_{n}^{*}, u_{n, \lambda_{n}^{*}}\right)$ must have zero eigenvalue. Thus

$$
\mu_{1}\left(\lambda_{n}^{*} f_{n}^{\prime}\left(u_{n, \lambda_{n}^{*}}\right)\right)=0 \leq \mu \leq \mu_{1}^{*} \leq \mu_{1}\left(\lambda^{*} f_{n}^{\prime}\left(u_{n, \lambda^{*}}\right)\right),
$$

here we have used the fact that $f_{n}^{\prime} \leq f^{\prime}$ and $u_{n, \lambda} \leq u_{\lambda}$, which implies $\mu_{1}\left(\lambda f^{\prime}\left(u_{\lambda}\right)\right) \leq \mu_{1}\left(\lambda f_{n}^{\prime}\left(u_{n, \lambda}\right)\right)$. By the Intermediate Value Theorem, there exists $\lambda_{n} \in\left[\lambda^{*}, \lambda_{n}^{*}\right]$ such that

$$
\mu_{1}\left(\lambda_{n} f_{n}^{\prime}\left(u_{n, \lambda_{n}}\right)\right)=\mu,
$$

which in turn implies there exists $\varphi_{n}>0$ with $\int_{\partial \Omega} \varphi_{n} d s_{x}=1$ such that

$$
\begin{equation*}
-\Delta \varphi_{n}+\varphi_{n}=0 \quad \text { in } \Omega, \quad \frac{\partial \varphi_{n}}{\partial \nu}=\lambda_{n} f_{n}^{\prime}\left(u_{n, \lambda_{n}}\right) \varphi_{n}+\mu \varphi_{n} \quad \text { on } \partial \Omega . \tag{2.3}
\end{equation*}
$$

Recall also that $u_{n, \lambda_{n}}$ satisfies

$$
\begin{equation*}
-\Delta u_{n, \lambda_{n}}+u_{n, \lambda_{n}}=0 \quad \text { in } \Omega, \quad \frac{\partial u_{n, \lambda_{n}}}{\partial \nu}=\lambda_{n} f_{n}\left(u_{n, \lambda_{n}}\right) \quad \text { on } \partial \Omega . \tag{2.4}
\end{equation*}
$$

We claim there exists $n_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
\left\|u_{n, \lambda_{n}}\right\|_{L^{1}(\partial \Omega)} \leq C \quad \text { for any } n \geq n_{0} . \tag{2.5}
\end{equation*}
$$

Indeed, let ψ_{1} be the first eigenfunction of the Steklov type eigenvalue problem

$$
\begin{equation*}
-\Delta \psi_{1}+\psi_{1}=0 \quad \text { in } \Omega, \quad \frac{\partial \psi_{1}}{\partial \nu}=\kappa_{1} \psi_{1} \quad \text { on } \partial \Omega \tag{2.6}
\end{equation*}
$$

with the first eigenvalue κ_{1}, which is normalized as $\int_{\partial \Omega} \psi_{1} d s_{x}=1$. Multiplying (2.4) by ψ_{1} and using Jensen's inequality for f_{n}, we obtain

$$
\begin{aligned}
& \kappa_{1} \int_{\partial \Omega} \psi_{1} u_{n, \lambda_{n}} d s_{x}=\lambda_{n} \int_{\partial \Omega} f_{n}\left(u_{n, \lambda_{n}}\right) \psi_{1} d s_{x} \\
& \geq \lambda_{n} f_{n}\left(\int_{\partial \Omega} \psi_{1} u_{n, \lambda_{n}} d s_{x}\right) \geq \lambda^{*} f_{n}\left(\int_{\partial \Omega} \psi_{1} u_{n, \lambda_{n}} d s_{x}\right) .
\end{aligned}
$$

Put $a_{n}=\int_{\partial \Omega} \psi_{1} u_{n, \lambda_{n}} d s_{x}$. Then we have

$$
\begin{equation*}
a_{n} \geq\left(\frac{\lambda^{*}}{\kappa_{1}}\right) f_{n}\left(a_{n}\right) \tag{2.7}
\end{equation*}
$$

Assume the contrary that $f_{n}\left(a_{n}\right)=f^{\prime}(n)\left(a_{n}-n\right)+f(n)$ for some $n \in \mathbb{N}$ sufficiently large. Then, since $a_{n}>n$ and $f(n)>\left(\frac{\kappa_{1}}{\lambda^{*}}\right) n, f^{\prime}(n)>\left(\frac{\kappa_{1}}{\lambda^{*}}\right)$ for n sufficiently large by (1.2) and (1.3), we have, by (2.7),

$$
\begin{aligned}
& a_{n} \geq\left(\frac{\lambda^{*}}{\kappa_{1}}\right) f_{n}\left(a_{n}\right)=\left(\frac{\lambda^{*}}{\kappa_{1}}\right)\left\{f^{\prime}(n)\left(a_{n}-n\right)+f(n)\right\} \\
& \quad>a_{n}-n+n=a_{n}
\end{aligned}
$$

which is a contradiction. Thus we conclude there exists $n_{0} \in \mathbb{N}$ such that $f_{n}\left(a_{n}\right)=f\left(a_{n}\right)$ for any $n \geq n_{0}$. Again, this and (2.7) implies $a_{n} \geq\left(\frac{\lambda^{*}}{\kappa_{1}}\right) f\left(a_{n}\right)$ for any $n \geq n_{0}$. Now, by the assumption f, we have $C>0$ such that $f(s) \geq \frac{2 \kappa_{1}}{\lambda^{*}} s-C$ holds for any $s>0$. From this and the former estimate, we have $a_{n} \leq\left(\frac{\lambda^{*}}{\kappa_{1}}\right) C$ for $n \geq n_{0}$. This implies the claim (2.5).

Step 2. By (2.5), we have $\left\|u_{n, \lambda_{n}}\right\|_{L^{1}(\partial \Omega)} \leq C$ for some C independent of n. Also recall $\left\|\varphi_{n}\right\|_{L^{1}(\partial \Omega)}=1$ for a solution φ_{n} of (2.3). Thus we can apply Lemma 3, which yields the existence of $w, \varphi \in L^{1}(\Omega), \varphi \geq 0$ a.e. such that

$$
\begin{array}{lll}
u_{n, \lambda_{n}} \rightharpoonup w, & \varphi_{n} \rightharpoonup \varphi & \text { weakly in } W^{1, q}(\Omega) \\
u_{n, \lambda_{n}} \rightarrow w, & \varphi_{n} \rightarrow \varphi & \text { strongly in } L^{p}(\partial \Omega) \text { and a.e. on } \partial \Omega \tag{2.8}
\end{array}
$$

for any $1<q<\frac{N}{N-1}$ and $1 \leq p<\frac{N-1}{N-2}$. Since $\int_{\partial \Omega} \varphi d s_{x}=1$, we see $\varphi \not \equiv 0$ on $\partial \Omega$.

In the following, we prove that $\lambda_{n} \downarrow \lambda^{*}$ as $n \rightarrow \infty$ and $w=u^{*}$. We will show that $w \in W^{1, q}(\Omega)$ is a weak supersolution in the sense of Theorem
2. Then the conclusion is obtained by Theorem 2. To prove that w is a weak supersolution, put $\bar{\lambda}=\inf _{n \in \mathbb{N}} \lambda_{n}$. Since $\lambda_{n} \geq \lambda^{*}$, we have $\bar{\lambda} \geq \lambda^{*}$. We observe that

$$
\begin{aligned}
\int_{\Omega}(-\Delta \zeta+\zeta) u_{n, \lambda_{n}} d x & =\lambda_{n} \int_{\partial \Omega} f_{n}\left(u_{n, \lambda_{n}}\right) \zeta d s_{x}-\int_{\partial \Omega} \frac{\partial \zeta}{\partial \nu} u_{n, \lambda_{n}} d s_{x} \\
& \geq \bar{\lambda} \int_{\partial \Omega} f_{n}\left(u_{n, \lambda_{n}}\right) \zeta d s_{x}-\int_{\partial \Omega} \frac{\partial \zeta}{\partial \nu} u_{n, \lambda_{n}} d s_{x}
\end{aligned}
$$

holds for all $\zeta \in C^{2}(\bar{\Omega}), \zeta \geq 0$. Using the fact that $u_{n, \lambda_{n}} \rightarrow w$ in $L^{1}(\Omega)$, $L^{1}(\partial \Omega)$ respectively and Fatou's lemma, we have

$$
\begin{aligned}
\int_{\Omega}(-\Delta \zeta+\zeta) w d x & \geq \bar{\lambda} \int_{\partial \Omega} f(w) \zeta d s_{x}-\int_{\partial \Omega} \frac{\partial \zeta}{\partial \nu} w d s_{x} \\
& \geq \lambda^{*} \int_{\partial \Omega} f(w) \zeta d s_{x}-\int_{\partial \Omega} \frac{\partial \zeta}{\partial \nu} w d s_{x}, \quad \forall \zeta \in C^{2}(\bar{\Omega}), \zeta \geq 0
\end{aligned}
$$

This implies also $f(w) \in L^{1}(\partial \Omega)$ if we take $\zeta \equiv 1$. Thus, we conclude that w is a weak supersolution to $(1.1)_{\lambda^{*}}$

Step 3. Let φ_{n}, φ be as in Step 2. We claim that

$$
\begin{equation*}
\lambda_{n} f_{n}^{\prime}\left(u_{n, \lambda_{n}}\right) \varphi_{n} \rightarrow \lambda^{*} f^{\prime}\left(u^{*}\right) \varphi \quad \text { strongly in } L^{1}(\partial \Omega) \tag{2.9}
\end{equation*}
$$

as $n \rightarrow \infty$. For the proof, we invoke Vitali's Convergence Theorem. First, by (2.8), we see

$$
\lambda_{n} f_{n}^{\prime}\left(u_{n, \lambda_{n}}(x)\right) \varphi_{n}(x) \rightarrow \lambda^{*} f^{\prime}\left(u^{*}(x)\right) \varphi(x) \quad \text { a.e. } x \in \partial \Omega
$$

for a subsequence. Next, we prove the uniformly absolute continuous property of the sequence $\left\{\lambda_{n} f_{n}^{\prime}\left(u_{n, \lambda_{n}}\right) \varphi_{n}\right\}_{n \in \mathbb{N}}$. For that purpose, let $A \subset \partial \Omega$ and $\varepsilon>0$ be given arbitrary. Since f_{n} is convex, we have

$$
\begin{equation*}
f_{n}\left(\frac{\chi_{A}(x)}{\varepsilon}\right) \geq f_{n}\left(u_{n, \lambda_{n}}(x)\right)+f_{n}^{\prime}\left(u_{n, \lambda_{n}}(x)\right)\left(\frac{\chi_{A}(x)}{\varepsilon}-u_{n, \lambda_{n}}(x)\right) \tag{2.10}
\end{equation*}
$$

a.e. $x \in \partial \Omega$, here χ_{A} is the characteristic function of A. By (2.3) and (2.4), it holds that

$$
\begin{align*}
& \lambda_{n} \int_{\partial \Omega} f_{n}\left(u_{n, \lambda_{n}}\right) \varphi_{n} d s_{x}=\lambda_{n} \int_{\partial \Omega} f_{n}^{\prime}\left(u_{n, \lambda_{n}}\right) u_{n, \lambda_{n}} \varphi_{n} d s_{x}+\mu \int_{\partial \Omega} u_{n, \lambda_{n}} \varphi_{n} d s_{x} \\
& \geq \lambda_{n} \int_{\partial \Omega} f_{n}^{\prime}\left(u_{n, \lambda_{n}}\right) u_{n, \lambda_{n}} \varphi_{n} d s_{x} . \tag{2.11}
\end{align*}
$$

Also easy consideration shows that

$$
\begin{equation*}
\left\{f_{n}\left(\frac{\chi_{A}(x)}{\varepsilon}\right)-f(0)\right\} \varphi_{n}(x) \leq f\left(\frac{1}{\varepsilon}\right) \varphi_{n}(x) \chi_{A}(x) \quad \text { a.e. on } \partial \Omega . \tag{2.12}
\end{equation*}
$$

Thus by (2.10), (2.11) and (2.12), we have

$$
\begin{align*}
\int_{\partial \Omega} f_{n}^{\prime}\left(u_{n, \lambda_{n}}\right) \frac{\chi_{A}}{\varepsilon} \varphi_{n} d s_{x} & \leq \int_{\partial \Omega} f_{n}\left(\frac{\chi_{A}}{\varepsilon}\right) \varphi_{n} d s_{x}+\int_{\partial \Omega} f_{n}^{\prime}\left(u_{n, \lambda_{n}}\right) u_{n, \lambda_{n}} \varphi_{n} d s_{x}-\int_{\partial \Omega} f_{n}\left(u_{n, \lambda_{n}}\right) \varphi_{n} d s_{x} \\
& \leq \int_{\partial \Omega} f_{n}\left(\frac{\chi_{A}}{\varepsilon}\right) \varphi_{n} d s_{x} \\
& =\int_{\partial \Omega}\left\{f_{n}\left(\frac{\chi_{A}}{\varepsilon}\right)-f(0)\right\} \varphi_{n} d s_{x}+\int_{\partial \Omega} f(0) \varphi_{n} d s_{x} \\
& \leq \int_{\partial \Omega} f\left(\frac{1}{\varepsilon}\right) \varphi_{n} \chi_{A} d s_{x}+f(0) \\
& \leq f\left(\frac{1}{\varepsilon}\right)|A|^{\frac{1}{p^{\prime}}}\left\|\varphi_{n}\right\|_{L^{p}(\partial \Omega)}+f(0) \\
& \leq C f\left(\frac{1}{\varepsilon}\right)|A|^{\frac{1}{p^{\prime}}}+f(0) \tag{2.13}
\end{align*}
$$

for any $1 \leq p<\frac{N-1}{N-2}$, where $|A|$ denotes the $(N-1)$ dimensional measure of $A \subset \partial \Omega$ and $p^{\prime}=\frac{p}{p-1}$. In (2.13) we have used $\left\|\varphi_{n}\right\|_{L^{p}(\partial \Omega)} \leq C$ for some $C>0$ independent of n by (2.8). Define

$$
\delta(\varepsilon)=\left(\frac{f(0)}{f\left(\frac{1}{\varepsilon}\right) C}\right)^{p^{\prime}}
$$

Then for any $\varepsilon>0$, we obtain $\int_{A} f_{n}^{\prime}\left(u_{n, \lambda_{n}}\right) \varphi_{n} d s_{x} \leq 2 f(0) \varepsilon$ if $A \subset \partial \Omega$ satisfies that $|A|<\delta(\varepsilon)$ by (2.13). This implies the uniform absolutely continuity of the sequence $\left\{\lambda_{n} f_{n}^{\prime}\left(u_{n, \lambda_{n}}\right) \varphi_{n}\right\}_{n \in \mathbb{N}}$. Also for any $\varepsilon>0$, if we take $E \subset \partial \Omega$ such that $|\partial \Omega \backslash E|<\delta(\varepsilon)$ where $\delta(\varepsilon)$ is as above, we obtain that $\int_{\partial \Omega \backslash E} \lambda_{n} f_{n}^{\prime}\left(u_{n, \lambda_{n}}\right) \varphi_{n} d s_{x} \leq C \varepsilon$. This implies the uniform integrability of $\left\{\lambda_{n} f_{n}^{\prime}\left(u_{n, \lambda_{n}}\right) \varphi_{n}\right\}_{n \in \mathbb{N}}$. Therefore, Vitali's Convergence Theorem assures the claim (2.9).

By (2.9), we pass to the limit $n \rightarrow \infty$ in the weak formulation of (2.3):

$$
\int_{\Omega}(-\Delta \zeta+\zeta) \varphi_{n} d x=\int_{\partial \Omega}\left(\lambda_{n} f_{n}^{\prime}\left(u_{n, \lambda_{n}}\right)+\mu\right) \varphi_{n} \zeta-\frac{\partial \zeta}{\partial \nu} \varphi_{n} d s_{x}, \quad \forall \zeta \in C^{2}(\bar{\Omega})
$$

and conclude that φ is a weak solution of

$$
-\Delta \varphi+\varphi=0 \quad \text { in } \Omega, \quad \frac{\partial \varphi}{\partial \nu}=\lambda^{*} f^{\prime}\left(u^{*}\right) \varphi+\mu \varphi \quad \text { on } \partial \Omega .
$$

Recall $\varphi \in W^{1, q}(\Omega)$ for any $1 \leq q<\frac{N}{N-1}$. The proof of Theorem 1 is finished.

Acknowledgement. Part of this work was supported by JSPS Grant-inAid for Scientific Research (B), No. 23340038, and JSPS Grant-in-Aid for Challenging Exploratory Research, No. 24654043.

References

[1] H. Brezis, T. Cazenave, Y. Martel and A. Ramiandrisoa: Blow up for $u_{t}-\Delta u=g(u)$ revisited, Adv. Differential Equations. 1, 73-90, (1996), MR1357955
[2] H. Brezis, and J. L. Vázquez: Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Compl. Madrid, 10, 443-469, (1997), MR1605678
[3] X. Cabré, and Y. Martel: Weak eigenfunctions for the linearization of extremal elliptic problems, J. Funct. Anal. 156, 30-56, (1998), MR1632972
[4] J. Dávila: Singular solutions of semi-linear elliptic problems, Handbook of differential equations: stationary partial differential equations. Vol. VI, 83-176, (2008), MR2569324
[5] L. Dupaigne: Stable Solutions of Elliptic Partial Differential Equations, Monographs and Surveys in Pure and Applied Mathematics 143, Chapman \& Hall/CRC Press, xiv+321 pp. (2011), MR2779463
[6] Y. Martel: Uniqueness of weak extremal solutions of nonlinear elliptic problems, Houston J. Math. 23, 161-168, (1997), MR1688823
[7] F. Takahashi: Extremal solutions to Liouville-Gelfand type elliptic problems with nonlinear Neumann boundary conditions, preprint, OCAMI Preprint Series 13-8, June 23, 2013.

