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Abstract. In this short note, we provide a simple proof of Hardy’s
inequality in a limiting case. In the proof we do not need any rearrange-
ment technique or the one-dimensional argument.

1. Introduction

Let Ω be a bounded domain in RN with 0 ∈ Ω. The classical Hardy’s
inequality is of the form

(
N − p

p

)p ∫

Ω

|u|p
|x|p dx ≤

∫

Ω
|∇u|pdx (1.1)

for all u ∈ W 1,p
0 (Ω), where N ≥ 3 and 1 < p < N . See [3] for its simple

proof which uses the Fundamental Theorem of Calculus and Hölder’s in-
equality only. It is well known that the constant

(
N−p

p

)p
is optimal and

never attained in W 1,p
0 (Ω).

For p = N , the inequality (1.1) loses its sense and instead of (1.1) the
inequality

(
N − 1

N

)N ∫

Ω

|u(x)|N

|x|N
(
log Re

|x|
)N

dx ≤
∫

Ω
|∇u|Ndx (1.2)

holds for all u ∈ W 1,N
0 (Ω), where R = supx∈Ω |x|. Again, the constant(

N−1
N

)N is known to be optimal; see for example, [1], [2]. We call (1.2)
as Hardy’s inequality in a limiting case. Main aim of this short note is
to provide a simple proof of Hardy’s inequality in a limiting case. We do
not need any rearrangement technique such as Polya-Szegö inequality for
the spherical decreasing rearrangement, or a technical one-dimensional ar-
gument. Also our method can provide the sharper inequality treated in [8],
[2], [9] and [7].
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Theorem 1.1. Let Ω be a bounded domain in RN , N ≥ 2 with 0 ∈ Ω. Let
g : (1, +∞) → R be a C2 function with the properties that

g′(s) < 0, g′′(s) > 0 for any s > 1 (1.3)

and there exists C > 0 such that

(−g′(s))2(N−1)

(g′′(s))N−1
≤ C for any s > 1. (1.4)

Put R = supx∈Ω |x|. Then the inequality
(

N − 1
N

)N ∫

Ω

|u(x)|N
|x|N

(
−g′

(
log

Re

|x|
))N−2

g′′
(

log
Re

|x|
)

dx

≤
∫

Ω

(
−g′

(
log Re

|x|
))2(N−1)

(
g′′

(
log Re

|x|
))N−1

∣∣∣∣∇u · x

|x|

∣∣∣∣
N

dx (1.5)

holds true for any u ∈ W 1,N
0 (Ω).

Corollary 1.2. Let Ω be a bounded domain in RN , N ≥ 2 with 0 ∈ Ω.
Then the inequality

(
N − 1

N

)N ∫

Ω

|u(x)|N

|x|N
(
log R

|x|
)N

dx ≤
∫

Ω

∣∣∣∣∇u · x

|x|

∣∣∣∣
N

dx (1.6)

holds for all u ∈ W 1,N
0 (Ω), where R = supx∈Ω |x|.

Note that, different from the function 1

|x|N
“
log Re

|x|
”N appeared in (1.2), the

function 1

|x|N
“
log R

|x|
”N in (1.6) becomes unbounded when |x| ∼ 0 and also

|x| ∼ R.

Corollary 1.3. Let Ω be a bounded domain in RN , N ≥ 2 with 0 ∈ Ω. Let
α > 0. Then the inequality

(
N − 1

N

)N

αN

∫

Ω

|u(x)|N
|x|N−α(N−1)

dx ≤
∫

Ω
|x|α(N−1)

∣∣∣∣∇u · x

|x|

∣∣∣∣
N

dx (1.7)

holds for all u ∈ W 1,N
0 (Ω).

If we take α = N
N−1 in (1.7), we have

∫

Ω
|u(x)|Ndx ≤

∫

Ω
|x|N

∣∣∣∣∇u · x

|x|

∣∣∣∣
N

dx

(
≤ RN

∫

Ω
|∇u|Ndx

)
,

thus (1.7) can be seen as a generalization of Poincaré’s inequality for u ∈
W 1,N

0 (Ω).
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The proof of Theorem 1.1 relies on the divergence theorem and Hölder’s
inequality. Similar “simple” approaches have been proposed in [10], [4], and
[5], mainly to derive (1.1). Their proof uses the identity

div
(

x

|x|λ
)

=
N − λ

|x|λ for |x| 6= 0, λ ∈ R.

On the other hand, the identity

div


 x

|x|N
(
log R

|x|
)N−1


 =

N − 1

|x|N
(
log R

|x|
)N

for |x| 6= 0, R,

will be the base of our proof. See the next section.
Another approach to the limiting case of Hardy’s inequality, using the

mean integral of a Schwarz symmetrization, has been done by Ioku; see
[6]:Remark 1.4.

2. Proof of Theorem.

In this section, we prove Theorem 1.1. For ε > 0 small, put

Rε = sup
x∈Ω

(|x|2 + 2ε2
)1/2

, Xε(x) = log
Rεe

(|x|2 + ε2)1/2

and

ψε(x) = g(Xε(x)) ∈ C2(Ω). (2.1)

We calculate

|∇ψε(x)|N−2∇ψε(x) =
(−g′(Xε)

)N−1

(
|x|N−2x

(|x|2 + ε2)N−1

)
,

∆Nψε(x) = div
(|∇ψε(x)|N−2∇ψε(x)

)

= (N − 1)(−g′(Xε))N−2g′′(Xε)
|x|N

(|x|2 + ε2)N
+ (−g′(Xε))N−1 2(N − 1)ε2|x|N−2

(|x|2 + ε2)N
,

where we have used the assumption that g′(s) < 0. For u ∈ W 1,N
0 (Ω),

divergence theorem assures that
∫

Ω
|u|N∆Nψεdx = −

∫

Ω
∇ (|u|N) · |∇ψε|N−2∇ψεdx. (2.2)
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The RHS of (2.2) is estimated from above as

|RHS of (2.2)| =
∣∣∣∣N

∫

Ω
|u|N−2u∇u · |∇ψε|N−2∇ψεdx

∣∣∣∣

=

∣∣∣∣∣N
∫

Ω
|u|N−2u(−g′(Xε))N−1

(
|x|N−2x · ∇u

(|x|2 + ε2)N−1

)
dx

∣∣∣∣∣

≤ N

∫

Ω
|u|N−1(−g′(Xε))N−1

(
|x|N−2|x · ∇u|
(|x|2 + ε2)N−1

)
dx

≤ N

(∫

Ω

|u|N |x|N
(|x|2 + ε2)N

(−g′(Xε)
)N−2

g′′(Xε)dx

)N−1
N

×

×
(∫

Ω
(−g′(Xε))2(N−1)(g′′(Xε))−(N−1)

∣∣∣∣∇u · x

|x|

∣∣∣∣
N

dx

) 1
N

,

where we have used Hölder’s inequality. On the other hand, the LHS of
(2.2) is estimated from below as

|LHS of (2.2)|

= (N − 1)
∫

Ω
|u|N

{
(−g′(Xε))N−2g′′(Xε)

|x|N
(|x|2 + ε2)N

+ (−g′(Xε))N−1 2ε2|x|N−2

(|x|2 + ε2)N

}
dx

≥ (N − 1)
∫

Ω
|u|N (−g′(Xε))N−2g′′(Xε)

|x|N
(|x|2 + ε2)N

dx.

Thus we have

(N − 1)
∫

Ω

|u|N |x|N
(|x|2 + ε2)N

(−g′(Xε))N−2g′′(Xε)dx

≤ N

(∫

Ω

|u|N |x|N
(|x|2 + ε2)N

(−g′(Xε))N−2g′′(Xε)dx

)N−1
N

×

×
(∫

Ω
(−g′(Xε))2(N−1)(g′′(Xε))−(N−1)

∣∣∣∣∇u · x

|x|

∣∣∣∣
N

dx

) 1
N

,

which implies
(

N − 1
N

)N ∫

Ω
|u|N (−g′(Xε))N−2g′′(Xε)

|x|N
(|x|2 + ε2)N

dx

≤
∫

Ω

(−g′(Xε))
2(N−1)

(g′′(Xε))
N−1

∣∣∣∣∇u · x

|x|

∣∣∣∣
N

dx.

Finally, we let ε → 0 in the both sides of the above inequality. Note that
Rε → R and Xε → log

(
Re
|x|

)
a.e. x ∈ Ω as ε → 0. By using Fatou’s
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lemma in the LHS and the Lebesgue dominated convergence theorem with
the assumption (1.4) in the RHS, we conclude (1.5) holds.

Proof of Corollary 1.2, 1.3.

Proof. For the proof of Corollary 1.2, let g(s) = − log(s−1) for s > 1. Then
we see g′(s) = − 1

s−1 < 0, g′′(s) = 1
(s−1)2

> 0, and

(−g′(s))2(N−1)

(g′′(s))N−1
=

( 1
(s−1))

2(N−1)

( 1
(s−1)2

)N−1
= 1 for any s > 1.

Thus the assumptions (1.3),(1.4) are satisfied. Inserting

g′
(

log
Re

|x|
)

=
−1

log R
|x|

, g′′
(

log
Re

|x|
)

=
1

(log R
|x|)

2

into (1.5), we obtain (1.6).
For Corollary 1.3, take g(s) = e−αs for s > 1. We easily see that

(−g′(s))2(N−1)

(g′′(s))N−1
= e−(N−1)αs ≤ 1 for any s > 1

and

g′
(

log
Re

|x|
)

= −α

( |x|
Re

)α

, g′′
(

log
Re

|x|
)

= α2

( |x|
Re

)α

.

Using these and (1.5), we have (1.7).
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