
YOUNG DIAGRAMS AND INTERSECTION NUMBERS FOR

TORIC MANIFOLDS ASSOCIATED WITH WEYL CHAMBERS

HIRAKU ABE

Abstract. We study intersection numbers of invariant divisors in the toric man-

ifold associated with the fan determined by the collection of Weyl chambers for

each root system of classical type and of exceptional type G2. We give a combina-

torial formula for intersection numbers of certain subvarieties which are naturally

indexed by elements of the Weyl group. These numbers describe the ring struc-

ture of the cohomology of the toric manifold.

1. Introduction

Let Φ be a root system in the n-dimensional Euclidean space E with its inner
product. We denote by ∆(Φ) the fan determined by the collection of Weyl chambers
in E∗, and consider the toric manifold X associated with ∆(Φ). This toric manifold
arises as the closure of a general orbit in the flag variety with respect to the standard
torus action which makes X a regular semisimple Hessenberg variety ([4]). The
Weyl group W naturally acts on the Weyl chambers and hence also on X. The
representation of W on the cohomology H∗(X;C) has been extensively studied by
Procesi [9], Dolgachev-Lunts [5], and Stembridge [10]. For the classical root system
of type An, Losev-Manin [8] described X as the moduli space of stable (n + 1)-
pointed chains of projective lines (cf. Batyrev-Blume [1]).

Let Π = {α1, · · · , αn} ⊂ Φ be a set of simple roots, then we have a torus invariant
non-singular subvarietyXu inX of codimension |u(Π)∩Φ−| such that the associated
cohomology classes {[Xu]}u∈W form a module basis of the integral singular cohomol-
ogy H∗(X). The cohomology class [Xu] is written as a monomial of torus invariant
divisors Duωi of X for all coweights uωi satisfying uαi ∈ Φ− where {ω1, · · · , ωn} is
the set of fundamental coweights (see Section 2 and (5.1) for details). In this paper,
we study the case for the root systems of classical type and of exceptional type G2,
and we give a combinatorial formula of the intersection numbers

(µX , [w0Xw0w][Xu][Xv])

of three subvarieties Xu, Xv and w0Xw0w for u, v, w ∈ W where µX is the funda-
mental homology class of X and w0 is the longest element. As an application, we
will obtain a recursive formula for the structure constants cwu,v in the expansion of
the product

[Xu][Xv] =
∑
w∈W

cwu,v[Xw] where cwu,v ∈ Z

as discussed in Section 4.
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Let us state our formula for (µX , [w0Xw0w][Xu][Xv]) in the case of the classical
root system of type An (the results for the classical root systems of type Bn, Cn,
and Dn are stated in Section 5). In this case, the Weyl group W is the (n + 1)-th
permutation group Sn+1. For each u ∈ Sn+1, we let

D(u) := {{u(1), u(2), · · · , u(i)} | u(i) > u(i+ 1)},(1.1)

A(u) := {{u(1), u(2), · · · , u(i)} | u(i) < u(i+ 1)}(1.2)

where each {u(1), u(2), · · · , u(i)} is a subset of [n+1]. We define a Young diagram
λw
uv as follows. Assume d(u)+d(v) = d(w), and the collection D(u)

∐
D(v)

∐
A(w)

forms a nested chain of subsets of [n + 1]. In this case, λw
uv is defined to be the

Young diagram consisting of the cardinalities of those chains ordered as a weakly
decreasing sequence. Otherwise, λw

uv = ∅. For example, suppose n = 4 and, let
u = 12354, v = 31254, and w = 35421. Then, we have that D(u) = {1235}, D(v) =
{3, 3125} = {3, 1235}, and A(w) = {3} where 1235 denotes the set {1, 2, 3, 5} and
we use the same notation for others. These sets forms a nested chain of subsets
3 ⊂ 3 ⊂ 1235 ⊂ 1235, and hence we obtain λ35421

12354,31254 = (4, 4, 1, 1).

For a Young diagram λ = (λ1 ≥ · · · ≥ λn) with n rows (i.e. λn > 0) fitting
into the n× n square, we define I(λ) ∈ Z to be the following integer. Let s be the
number of lower-right corners of λ, i.e., s = |{i ∈ [n] | λi > λi+1}| where λn+1 := 0.
Write

{i ∈ [n] | λi > λi+1} = {i1, · · · , is}.
We impose the condition i1 < i2 < · · · < is to determine them uniquely. Observe
that is = n. For example, if n = 4 and λ = (4, 2, 2, 1), then s = 3 and {i1, i2, i3} =
{1, 3, 4}. For r = 1, · · · , s, define

ar := ir − ir−1 − 1, br := λir − λir+1 − 1, cr := λir + ir − n− 1

where we write i0 = 0, and let

yr :=

(
ar
cr

)(
br
cr

)
for r = 1, · · · , s.

We use the convention
(
x
y

)
= 0 unless 0 ≤ y ≤ x. By shading each lower-right corner

of λ, the pictorial meanings of ar, br, and cr become clear (as shown in Figure 1).
Namely, ar is the number of boxes between the north side of the shaded box and
the the upper-left corner placed above, br is the similar number for the horizontal
segment of the corner, and cr is the number of boxes between the north side of the
shaded box and the crossing point of the vertical segment and the anti-diagonal
line where we count negatively if that part of the vertical segment is above the
anti-diagonal.

cr

ar

br

cr

s = 4 is the number of lower-right corners.

λ

Figure 1. Three numbers ar, br and cr
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Now, let

I(λ) := (−1)n+sy1 · · · ys,

and put I(∅) = 0. The following is our main statement for type An.

Theorem 1.1. (µX , [w0Xw0w][Xu][Xv]) = I(λw
uv) for any u, v, w ∈ Sn+1 where µX

is the fundamental homology class of X.

We will prove Theorem 1.1 by computing general intersection numbers of invari-
ant divisors of X in Section 3 and 4. Section 5 is devoted to the classical root
systems of type Bn, Cn and Dn.

Acknowledgements. The author would like to thank Tatsuya Horiguchi, Hiroaki
Ishida, Ivan Limonchenko and Tomoo Matsumura for valuable comments. He also
thank Miho Hatanaka for reading of the first version of this paper carefully.

2. Preliminaries

Let Φ be a root system in the n-dimensional Euclidean space E with its inner
product. Let M ⊂ E be the root lattice of Φ and N ⊂ E∗ be the coweight lattice
of Φ. Then M is the dual lattice of N with respect to the natural pairing.

We choose a set of simple roots Π = {α1, · · · , αn} ⊂ Φ ⊂ E, and let Π∗ :=
{ω1, · · · , ωn} ⊂ E∗ be the dual basis of Π defined by 〈ωi, αj〉 = δij , i.e., ω1, · · · , ωn

are the fundamental coweights. For each u ∈W , denote

σu := cone(uω1, · · · , uωn) = {
∑n

i=1λiuωi | λi ≥ 0}.

These cones {σu}u∈W form a non-singular complete fan ∆(Φ) in E∗ by including all
their faces. The set of minimal generators of these cones are the set of coweights:

Φ∗ =
∪
v∈W
{vω1, · · · , vωn}.

For each element u ∈W , the maximal cones containing a minimal generator uωi are
σv for v ∈ W such that uωi = vωj for some j. There is a cone of ∆(Φ) generated
by minimal generators x1, · · · , xk ∈ Φ∗ if and only if there exists u ∈ W such that
each xi can be written as uωj for some j.

We consider the toric manifold X = X(Φ) associated with the fan ∆(Φ). For root
systems Φ and Φ′, it is easily verified that X(Φ) ∼= X(Φ′) as toric varieties (in the
sense of [3] Sec. 3.3.) if and only if Φ ∼= Φ′ as root systems (in the sense that their
Cartan matrices are the same up to permuting the indexes). We refer to [1] and [7]
for general properties of X. Let Dx ⊂ X be the invariant divisor corresponding to
the ray generated by x ∈ Φ∗. The Poincaré dual τx := [Dx] gives us a cohomology
class of degree 2 in the integral singular cohomology H∗(X). The cohomology ring
H∗(X) is isomorphic to the face ring of the underlying simplicial complex of the
fan ∆(Φ) modulo some linear relations ([6]). More precisely, we have

H∗(X) = Z[τx | x ∈ Φ∗]/I

where the ideal I is generated by τx1 · · · τxk
for which x1, · · · , xk do not generate a

face of σu for some u ∈W and
∑

x∈Φ∗〈x, α〉τx for any root α. Namely, we have the
following equalities in H∗(X) :∑

x∈Φ∗

〈x, α〉τx = 0 for any root α.(2.1)
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The above observation about rays of ∆(Φ) implies that

Lemma 2.1. We have τx1 · · · τxk
= 0 unless there exists u ∈ W such that each xi

can be written as uωj for some j.

Let µX be the fundamental homology class of X. For subvarieties Z1, · · · , Zk ⊂
X, we call (µX , [Z1] · · · [Zk]) the intersection number of Z1, · · · , Zk where [Zi] de-
notes the Poincaré dual of Zi. Note that the Weyl group W acts on the fan ∆(Φ),
and hence acts on the toric manifold X. We have uXx = Xux for any u ∈ W and
x ∈ Φ∗ which means that (u−1)∗τx = τux. The next lemma says that intersection
numbers for divisors Duωi are invariant under the Weyl group action.

Lemma 2.2. Let x1, · · · , xn ∈ Φ∗. Then for any u ∈W , we have

(µX , τux1 · · · τuxn) = (µX , τx1 · · · τxn).

Proof
Observe that τux1 · · · τuxn = (u−1)∗(τx1 · · · τxn). Both of τux1 · · · τuxn and τx1 · · · τxn

can be written as the cohomology class [p] of a point p in X multiplied by some
integer, and these integers are the corresponding intersection numbers. Since u
preserves the orientation of X, we have (u−1)∗([p]) = [u · p] = [p] which proves the
claim. �

For any u ∈W , the product τuω1 · · · τuωn is exactly the Poincaré dual of a point in
X since the invariant divisors Xuω1 , · · · , Xuωn intersect transversally which means
that

(µX , τuω1 · · · τuωn) = 1.(2.2)

For the root systems of classical type, we will compute the intersection number
(µX , τx1 · · · τxn) for arbitrary x1, · · · , xn ∈ Φ∗. By Lemma 2.1, we can assume that
this number is of the form (µX , (τuωi1

)m1 · · · (τuωis
)ms) for some 1 ≤ i1 < · · · < is ≤

n and 1 ≤ mk ≤ n (k = 1, · · · , s) satisfying m1 + · · · + ms = n without loss of
generality. We call the number mk the multiplicity of τuωik

. We compute this num-

ber by applying the linear relations (2.1) to reduce the multiplicities m1, · · · ,ms.
Although Lemma 2.2 shows that this number is equal to (µX , (τωi1

)m1 · · · (τωis
)ms),

we will need Lemma 2.2 again after applying the relations (2.1).
In the next section, we will consider the classical root system of type An, and

compute the intersection numbers.

3. Intersection numbers for Type An

In this section, we compute the intersection numbers for the toric manifold X
of type An. Let E = {x ∈ Rn+1 | x1 + · · · + xn+1 = 0}. The roots are ti − tj ∈
E (1 ≤ i, j ≤ n + 1) where ti ∈ Rn+1 is the i-th standard vector. We choose
Π = {ti − ti+1 | 1 ≤ i ≤ n} as the set of simple roots, and write αi = ti − ti+1 for
each i. The Weyl group W = Sn+1 is the (n+1)-th permutation group acting on E
by u(ti− tj) = tu(i)− tu(j) for each u ∈W . The minimal generators ω1, · · · , ωn ∈ E∗

of the fundamental Weyl chamber σid are

ωi = (e1 + · · ·+ ei)−
i

n+ 1
(e1 + · · ·+ en+1) for i = 1, · · · , n

where {ei}i ⊂ (Rn+1)∗ is the dual basis of {ti}i ⊂ Rn+1.
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Denoting by 2[n+1] the set of all subsets of [n + 1] = {1, · · · , n + 1}, we have a

well-defined map Φ∗ → 2[n+1] by sending uωi 7→ {u(1), · · · , u(i)}. It is easy to see
that this is an injection, and this establishes an identification

Φ∗ ←→ the set of non-empty proper subsets of [n+ 1].(3.1)

In particular, the well-definedness implies that if uωi = vωj then i = j. Now, for
each ∅ ( S ( [n + 1], we define τS := τuωi where uωi ∈ Φ∗ corresponds to S by
this identification. Then, for ∅ ( S1, · · · , Sq ( [n + 1] (1 ≤ q ≤ n), it follows by
Lemma 2.1 that τS1 · · · τSq = 0 unless these sets form a nested chain of subsets, i.e.
S1 ⊂ · · · ⊂ Sq up to reordering.

With Lemma 2.2, it is easy to show the following invariance property of intersec-
tion numbers which implies that (µX , τS1 · · · τSn) for ∅ ( S1 ⊂ · · · ⊂ Sn ( [n+ 1] is
determined by the set of integers 1 ≤ |S1| ≤ · · · ≤ |Sn| ≤ n.

Lemma 3.1. Let ∅ ( S1 ⊂ · · · ⊂ Sn ( [n+ 1] and ∅ ( S′
1 ⊂ · · · ⊂ S′

n ( [n+ 1]. If
|Si| = |S′

i| for all i = 1, · · · , n, then (µX , τS1 · · · τSn) = (µX , τS′
1
· · · τS′

n
).

Motivated by this property, we compute intersection numbers in terms of Young
diagrams consisting of the cardinalities of the sets corresponding to the given in-
variant divisors. The linear relations (2.1) are translated to∑

∅(S([n+1]
k∈S,l/∈S

τS −
∑

∅(S([n+1]
k/∈S,l∈S

τS = 0 for each k, l ∈ [n+ 1].(3.2)

In the following, we write τ∅ = τ[n+1] = 1. This equality together with the above
observation about τS1 · · · τSq being 0 implies the next lemma.

Lemma 3.2. Let ∅ ⊂ A ( B ( C ⊂ [n + 1]. For any b ∈ B\A and c ∈ C\B, we
have

τAτB
2τC = −

∑
A(B′(C

B′ 6=B,b∈B′,c/∈B′

τAτBτB′τC .

For a Young diagram fitting into the n × n square, we write the dotted anti-
diagonal line shifted down half the length of a single box from the standard anti-
diagonal.

Figure 2. Young diagrams and the dotted anti-diagonal line

Let ∅ ( S1 ⊂ · · · ⊂ Sn ( [n+1], and denote by λ the Young diagram consisting of
λi = |Sn+1−i| for each i. We write λn+1 = 0. Let s be the number of the lower-right
corners of λ, that is,

s := |{i ∈ [n] | λi > λi+1}|.
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Proposition 3.3. (Vanishing property) (µX , τS1 · · · τSn) = 0 unless each step of
the zigzag line of the lower-right corners of λ crosses the dotted anti-diagonal.

Proof
We suppose that there is a step of the zigzag line of λ which does not cross the
dotted anti-diagonal, and show (µX , τS1 · · · τSn) = 0 by induction on k := n − s.
Since there is no such case for k = 0, we consider the case k = 1. In this case,
there is a unique vertical segment of length 2 in the zigzag line of λ. If there is a
(unique) horizontal segment of length 2, then the vertical and horizontal segments
are not adjacent because of our assumption. By applying Lemma 3.2 for the square
corresponding to this vertical segment, it follows that the intersection number is
zero since there is no summand.

For the general case, take a vertical segment of length ≥ 2. Let us say that this
vertical segment contains Si and Si+1 (i.e. Si = Si+1). We separate this square in
τS1 · · · τSn by Lemma 3.2. Let λ′ be the Young diagram corresponding to a summand
in the right-hand-side. Then the zigzag line of λ′ has a step which does not cross
the dotted anti-diagonal. In fact, if the vertical segment does not cross the dotted
anti-diagonal, then this segment survives as a non-crossing segment of length at
least 1, and if it does then we can find another vertical segment which does not,
and this segment is preserved for each λ′ in the summands. Now the induction
hypothesis shows that each term will vanish after taking the intersection number,
and we get (µX , τS1 · · · τSn) = 0. �

Let λ = (λ1 ≥ · · · ≥ λn) be a Young diagram with n rows (i.e. λn > 0) fitting
into the n× n square. Let I(λ) ∈ Z be the one defined in Section 1. We here recall
the definition for the convenience of the reader. Let s be the number of lower-right
corners of λ, i.e., s = |{i ∈ [n] | λi > λi+1}| where λn+1 := 0. Write

{i ∈ [n] | λi > λi+1} = {i1, · · · , is}.
We impose the condition i1 < i2 < · · · < is to determine them uniquely. Observe
that is = n. For r = 1, · · · , s, define

ar := ir − ir−1 − 1, br := λir − λir+1 − 1, cr := λir + ir − n− 1(3.3)

where we write i0 = 0, and let

yr :=

(
ar
cr

)(
br
cr

)
for r = 1, · · · , s.(3.4)

See Figure 1 for the pictorial meaning of these numbers. We use the convention(
x
y

)
= 0 unless 0 ≤ y ≤ x. Now, let

I(λ) := (−1)n+sy1 · · · ys.(3.5)

The next is the main theorem of this section.

Theorem 3.4. If S1, · · · , Sn form a nested chain of subsets, then we have

(µX , τS1 · · · τSn) = I(λ)

where µX is the fundamental homology class and λ is the Young diagram consisting
of |S1|, · · · , |Sn| reordered as a weakly decreasing sequence. Otherwise, the intersec-
tion number is zero.
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Proof
Recall that λ is the Young diagram defined by λi = |Sn+1−i| for i = 1, · · · , n. We
denote J(λ) := (µX , τS1 · · · τSn), and we show that J(λ) = I(λ). Observe that
the condition 0 ≤ cr ≤ br for all r = 1, · · · , s is equivalent to the condition that
each step of the zigzag line of the corners of λ crosses the dotted anti-diagonal. If
this condition is not satisfied, then both of J(λ) and I(λ) are zero. Hence, in the
following, we can assume that this condition holds.

We prove the claim by induction on k := n − s. For the case k = 0, we have
λi = |Sn+1−i| = n + 1 − i for all 1 ≤ i ≤ n. So we have J(λ) = 1 by (2.2). Since
y1 = · · · = yn = 1 in this case, we have I(λ) = 1, and the claim follows. For
a general case, there is a lower-right corner (say r-th corner from the top) of λ
whose vertical line has length ≥ 2. Then, Lemma 3.1 and Proposition 3.3 combined
together show that

J(λ) =



−

(
br−1

cr−1

)
J(λ′)−

(
br

cr

)
J(λ′′) (if λ 6= λ′, λ′′)

−

(
br−1

cr−1

)
J(λ′) (if λ 6= λ′, λ = λ′′)

−

(
br

cr

)
J(λ′′) (if λ = λ′, λ 6= λ′′)

(3.6)

where ar, br, and cr are those for λ, and the Young diagrams λ′ and λ′′ are given
by

λ′
j =

{
n+ 1− j if j = ir−1 + 1,

λj otherwise,
λ′′
j =

{
n+ 1− j if j = ir,

λj otherwise.

Note that there are no cases that λ = λ′ = λ′′ since our vertical line has length ≥ 2.

λ λ′ λ′′

Figure 3. The Young diagrams λ, λ′ and λ′′

If λ 6= λ′, by the induction hypothesis, we have

J(λ′) = (−1)n+(s+1)y1 · · · yr−2 ·
(
ar−1

cr−1

)
· 1 ·

(
ar − 1

cr

)(
br
cr

)
· yr+1 · · · ys.(3.7)

Similarly, if λ 6= λ′′, we have

J(λ′′) = (−1)n+(s+1)y1 · · · yr−1 ·
(
ar − 1

cr − 1

)
· 1 · yr+1 · · · ys.(3.8)
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Observe that the right-hand-sides of (3.7) and (3.8) vanish when λ = λ′ and λ = λ′′,
respectively. Hence, the right-hand-side of the equation (3.6) can be written as

J(λ) = −
(
br−1

cr−1

)
· (−1)n+s+1y1 · · · yr−2

(
ar−1

cr−1

)(
ar − 1

cr

)(
br
cr

)
yr+1 · · · ys

−
(
br
cr

)
· (−1)n+s+1y1 · · · yr−2yr−1

(
ar − 1

cr − 1

)
yr+1 · · · ys

= (−1)n+sy1 · · · ys = I(λ).

�

4. The ring structure of the cohomology

The cohomology ring H∗(X) of the toric manifold X associated with the fan
∆(An) is given by the face ring of ∆(An) modulo the linear relations (2.1) ([6]). As
an application of Theorem 3.4, we describe the ring structure of the cohomology
H∗(X) in terms of an additive basis.

Recall that Duωi for some i ∈ [n] and permutation u ∈ Sn+1 is the invariant
divisor of X associated with the ray generated by uωi ∈ N . Let

Xu :=
∩
i

Duωi

for each permutation u ∈ Sn+1 where i runs over all descents in u. Here, a descent
in u is a number i ∈ [n] which satisfies u(i) > u(i+ 1), and we denote by d(u) the

number of descents in u. Denote by [Xu] ∈ H2d(u)(X) the Poincaré dual of Xu,
then we have

[Xu] =
∏
i

τ{u(1),··· ,u(i)}

where i runs over all descents in u since invariant divisors ofX intersect transversely.
{[Xu]}u∈Sn+1 forms a module basis of H∗(X) (See [7] or [1] for combinatorial proofs
and [4] for a geometric proof). The class [Xu] can be expressed by a Young diagram
consisting of the descents in u with the numbers in the nested chain of subsets in
D(u) (see (1.1) for the definition) written above the diagram so that each column
represents the written number above it. This expression effectively encodes the
descents in u and the information of the chain of subsets. Denoting Y u := w0Xw0u =
∩Xu[i] where the intersection runs over all ascents i in u, the similar expression works
for [Y u] and the chain of subsets in A(u). Here, w0 is the longest element of Sn+1.

2 1 6 4
[X216435] : [Y 534162] :

5 3 4 1

Figure 4. Two examples for n = 5 in one-line notations

For u, v, w ∈ Sn+1, we have the Young diagram λw
uv constructed in Section 1.

Recall that µX is the fundamental homology class of X. The following corollary
provides the combinatorial rule to compute the intersection number of Xu, Xv, and
Y w in X.

Corollary 4.1. (µX , [Y w][Xu][Xv]) = I(λw
uv).
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For example, for n = 4, we have

(µX , [Y 35421][X12354][X31254]) = 2.

In Figure 5, we left the numbers on the Young diagram so that we can see the nested
chain of subsets appeared in the construction of λw

uv.

3 1 2 5

λ35421
12354,31254 =

Figure 5

Since {[Xu]}u∈Sn+1 forms a module basis ofH∗(X), we can consider the expansion
coefficients of the product

[Xu][Xv] =
∑
w

cwuv[Xw].(4.1)

For example, these coefficients for the product [Xsi ][Xsj ] can be calculated directly
if |i − j| ≥ 1 where si is the simple reflection exchanging i and i + 1. In fact, we
have

[Xsi ][Xsj ] =

{
[Xsisj ](= [Xsjsi ]) if |i− j| ≥ 2,

0 if |i− j| = 1.
(4.2)

since {1, · · · , i− 1, i+ 1} and {1, · · · , i, i+ 2} do not form a chain of subsets.
Let us describe each structure constant cwu,v in terms of intersection numbers

computed above. Since a Weyl chamber σu = cone(uω1, · · · , uωn) is a maximal
cone of the fan, σu is identified with a fixed point of the canonical torus action
on X denoted by pu ∈ X where pu is the intersection ∩ni=1Duωi . Then from the
definition of Xw′ , one can show that pu ∈ Xw′ implies u ≥ w′ (e.g. [2]; Theorem
2.6.3) where > is the Bruhat order. If Y w ∩Xw′ 6= ∅, then Y w ∩Xw′ must contain a
fixed point since it is an intersection of invariant divisors of X, and hence it follows
that w ≥ w′. From this observation, we see that Y w ∩Xw′ = ∅ unless w ≥ w′. Also,
it is easy to see that Y w and Xw′ intersect transversally when w = w′. Recalling
that the class [Y w][Xw′ ] is supported on the intersection Y w ∩Xw′ , we obtain

(µX , [Y w][Xw′ ]) =

{
0 unless w ≥ w′ and d(w) = d(w′),

1 if w = w′.
(4.3)

See [4] for a proof using a cellular decomposition of X. Let I be the matrix whose
(u, v)-component is given by Iuv = (µX , [Y u][Xv]) = I(λu

v id) for all u, v ∈ W . This
matrix I is invertible over Z because of (4.3). Now, each coefficient cwuv in (4.1) is
a linear transform of the intersection numbers I(λw

uv);

cwuv =
∑
w′

(I−1)ww′I(λw′
uv).(4.4)

We note that it suffices to take the sum for w′ satisfying d(w) = d(w′) and w ≥ w′

since (I−1)ww′ is also upper-triangular in the sense of the right-hand-side of (4.3).
So the formula (4.4) exhibits the upper-triangularity of cwuv in the sense that cwuv = 0
unless u, v ≤ w since I(λw

uv) satisfies the same property.
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The transition formula (4.4) together with (4.3) provides us a recursive formula
for the structure constants cwuv which is manifestly integral;

cwuv = I(λw
uv)−

∑
w>w′

Iww′cw
′

uv.

Note again that it is enough to take the sum for all w′ satisfying d(w) = d(w′) and
w > w′. From this recursion, we recover (4.2), and we can compute the expansion
of [Xsi ]

2. For example, if n = 3, we obtain

[X2134]
2 = [X2431]− [X4213]− [X3421]− [X3241]− [X3214].

5. Other classical types

Note that the argument in the previous section can be naturally generalized to
arbitrary root systems by considering the non-singular subvariety

Xu =
∩
i

Duωi(5.1)

for each u ∈ W where Duωi is the invariant divisor of X corresponding to the ray
generated by uωi and i runs over all i satisfying u(αi) ∈ Φ−. Here, Φ− is the set of
negative roots. It follows that the Poincaré duals {[Xu]}u∈W form an additive basis
of the integral cohomlogy H∗(X) (see [4]).

Remark 5.1. The collections {cwu,v}u,v,w∈W and {(µX , [Y w][Xu][Xv])}u,v,w∈W are
independent on the choice of the simple roots Π.

5.1. Intersection numbers for type Bn. For the classical root system of type
Bn, the roots are {ti − tj , ±(ti + tj), ±ti ∈ E | 1 ≤ i 6= j ≤ n} where E = Rn.
We choose Π = {ti − ti+1, tn | 1 ≤ i ≤ n − 1} as a set of simple roots, and write

αi = ti − ti+1(1 ≤ i ≤ n − 1), αn = tn. The Weyl group S̃n is the n-th signed

permutation group. Letting t−i := −ti for all 1 ≤ i ≤ n, u ∈ S̃n acts on E by
uti = tu(i). The minimal generators ω1, · · · , ωn ∈ E∗ of the fundamental Weyl
chamber are ωi = e1 + · · ·+ ei for i = 1, · · · , n.

Let [±n] = {1, · · · , n,−1, · · · ,−n}. For S ∈ 2[±n], consider a condition

for any i ∈ [±n], if i ∈ S then −i /∈ S.(∗)

We have a well-defined map Φ∗ → 2[±n] by uωi 7→ {u(1), · · · , u(i)}. This leads us
to an identification

Φ∗ ←→ the set of non-empty subsets of [±n] satisfying (∗).

Now, for each ∅ ( S ⊂ [±n] satisfying (∗), we define τS := τuωi where uωi ∈ Φ∗

corresponds to S by this identification. For ∅ ( S1, · · · , Sq ⊂ [±n] (1 ≤ q ≤ n)
satisfying (∗), we have that τS1 · · · τSq = 0 unless these sets form a nested chain of
subsets, as in the case for type An.

For each k ∈ [±n], let B ⊂ [±n] satisfy (∗), k ∈ B, and |B| = n. From the linear
relation (2.1) for the root α = tk, we can deduce that

τB
2 = −

∑
k∈B′

B′(B

τB′τB

where the sum is taken over all ∅ ( B′ ⊂ [±n] satisfying (∗) with the prescribed
conditions. Similarly, for each k, l ∈ [±n], let B ⊂ [±n] satisfy (∗), k ∈ B, and
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±l /∈ B (hence 1 ≤ |B| ≤ n−1). Then from (2.1) for the root α = tk− tl, we obtain

τB
2 = −

∑
k∈B′, ±l /∈B′

B′ 6=B

τB′τB −
∑

k,−l∈B′

2τB′τB.

Observe that the second summand will vanish after multiplying τA and τC for A ⊂
B\{k} and B

∐
{l} ⊂ C where we write τ∅ = 0. So these two equations can be

used to prove the separation rule similar to Lemma 3.2, and we obtain the same
type of vanishing property as in Proposition 3.3. Now the argument in the proof of
Theorem 3.4 also works for this case, and it follows that

Theorem 5.2. If ∅ ( S1, · · · , Sn ⊂ [±n] satisfying (∗) form a nested chain of
subsets, then we have

(µX , τS1 · · · τSn) = 2n−λ1I(λ)

where µX is the fundamental homology class of X and λ is the Young diagram
consisting of |S1|, · · · , |Sn| reordered as a weakly decreasing sequence and I is the
function defined in (3.5). Otherwise, the intersection number is zero.

Let αi := ti − ti+1 for 1 ≤ i ≤ n− 1 and αn := tn. For each signed permutation

u ∈ S̃n, an element i ∈ [n] satisfies u(αi) ∈ Φ− if and only if

(D-1) if i ≤ n− 1, then u(i) > u(i+ 1) with the same sign or u(i) < u(i+ 1) with
different signs,

(D-2) if i = n, then u(i) < 0.

Similarly, consider the conditions

(A-1) if i ≤ n− 1, then u(i) < u(i+ 1) with the same sign or u(i) > u(i+ 1) with
different signs,

(A-2) if i = n, then u(i) > 0.

Denoting

D(u) := {u[i] | i satisfies (D)} and A(u) := {u[i] | i satisfies (A)},
we define a Young diagram λw

u,v in the manner described in the last section. Note
that we put I(∅) = 0 as a convention.

Now, for signed permutations u, v, w ∈ S̃n, the intersection number of Y w, Xu,
and Xv in X of type Bn is given by the following.

Corollary 5.3. For signed permutations u, v, w ∈ S̃n, we have

(µX , [Y w][Xu][Xv]) = 2n−(λw
u,v)1I(λw

uv)

where I is the function defined in (3.5).

For example, for n = 4 with the convention k̄ = −k, Corollary 5.3 computes

(µX , [Y 23̄1̄4̄][X23̄14][X23̄14]) = 4.

3̄2

λ23̄1̄4̄
23̄14,23̄14

=

Figure 6
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5.2. Intersection numbers for type Cn. For the classical root system of type
Cn, the roots are {ti − tj , ±(ti + tj), ±2ti ∈ E | 1 ≤ i 6= j ≤ n} where E = Rn.
We choose Π = {ti − ti+1, 2tn | 1 ≤ i ≤ n − 1} as a set of simple roots, and write

αi = ti − ti+1(1 ≤ i ≤ n − 1), αn = 2tn. The Weyl group S̃n is the n-th signed
permutation group as above. The minimal generators ω1, · · · , ωn of the fundamental
Weyl chamber are ωi = e1 + · · ·+ ei for i = 1, · · · , n− 1 and ωn = 1

2(e1 + · · ·+ en).

We have a well-defined map Φ∗ → 2[±n] by vωi 7→ {v(1), · · · , v(i)}, and obtain
an identification Φ∗ and the set of non-empty subsets of [±n] satisfying (∗). For
∅ ( S1, · · · , Sq ( [±n] (1 ≤ q ≤ n) satisfying (∗), we have that τS1 · · · τSq = 0 unless
these sets form a nested chain of subsets where τS is defined as in Section 5.1.

For each k ∈ [±n], let B ⊂ [±n] satisfy (∗), k ∈ B, and |B| = n. Then (2.1) for
the root α = 2tk shows that

τB
2 = −

∑
k∈B′

B′(B

2τB′τB

where the sum is taken over all ∅ ( B′ ⊂ [±n] satisfying (∗) with the prescribed
conditions. For each k, l ∈ [±n], let B ⊂ [±n] satisfy (∗), k ∈ B, and ±l /∈ B (hence
1 ≤ |B| ≤ n− 1). Then from (2.1) for the root α = tk − tl, we obtain

τB
2 = −

∑
k∈B′, ±l /∈B′

B′ 6=B

τB′τB −
∑

k∈B′, −l∈B′

|B′|6=n

2τB′τB −
∑

k∈B′, −l∈B′

|B′|=n

τB′τB.

With a similar observation made for type Bn, we again have the same type of
vanishing property as in Proposition 3.3. Hence, we obtain

Theorem 5.4. If ∅ ( S1, · · · , Sn ( [±n] satisfying (∗) form a nested chain of
subsets, then we have

(µX , τS1 · · · τSn) = 2n−λ1+m−1I(λ)

where µX is the fundamental homology class of X and λ is the Young diagram
consisting of the numbers |S1|, · · · , |Sn| reordered as a weakly decreasing sequence
and I is the function defined in (3.5) and m is the number of rows of λ of length n.
Otherwise, the intersection number is zero.

For signed permutations u, v, w ∈ S̃n, let λ
w
u,v be the Young diagram defined in

Section 5.1. The intersection number of Y w, Xu, and Xv in X of type Cn is given
by the following.

Corollary 5.5. For signed permutations u, v, w ∈ S̃n, we have

(µX , [Y w][Xu][Xv]) = 2n−(λw
u,v)1+m−1I(λw

uv)

where I is the function defined in (3.5) and and m is the number of rows of λw
u,v of

length n.

5.3. Intersection numbers for type Dn. For the classical root system of type
Dn, the roots are {ti − tj , ±(ti + tj) ∈ E | 1 ≤ i 6= j ≤ n} where E = Rn. We
choose Π = {ti − ti+1, tn−1 + tn | 1 ≤ i ≤ n− 1} as a set of simple roots, and write
αi = ti − ti+1(1 ≤ i ≤ n − 2), αn−1 = tn−1 + tn, αn = tn−1 − tn. The Weyl group

S̃+
n is the n-th even signed permutation group defined by

S̃+
n := {w ∈ S̃n | the number of i with w(i) < 0 is even}
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where S̃n is the n-th signed permutation group. The minimal generators ω1, · · · , ωn

∈ E∗ of the fundamental Weyl chamber are ωi = e1 + · · ·+ ei for i = 1, · · · , n− 2,
ωn−1 =

1
2(e1 + · · ·+ en−1 + en) and ωn = 1

2(e1 + · · ·+ en−1 − en).

For S ∈ 2[±n], consider a condition

|S| 6= n− 1, and if i ∈ S then −i /∈ S for any i ∈ [±n] .(∗∗)

We have a well-defined map Φ∗ → 2[±n] given by

uωi 7→ u[i] = {u(1), · · · , u(i)} for 1 ≤ i ≤ n− 2,

uωn−1 7→ u[n]+ = {u(1), · · · , u(n− 1), u(n)},
uωn 7→ u[n]− = {u(1), · · · , u(n− 1),−u(n)}.

where [n]+ = {1, 2, · · · , n− 1, n} and [n]− = {1, 2, · · · , n− 1,−n}.

· · · [1] ⊂ [2] ⊂ · · · ⊂ [n− 2]

{1, · · · , n− 1, n}

{1, · · · , n− 1,−n}
⊂
⊂

Figure 7. The Dynkin diagram and a basic chain of subsets for type Dn

It follows that this map Φ∗ → 2[±n] is an injection. In fact, we cannot have

{u(1), · · · , u(n − 1), u(n)} = {v(1), · · · , v(n − 1),−v(n)} for any u, v ∈ S̃+
n since

the number of negative integers in the left hand side and the right-hand-side are
different, and so uωn−1 and vωn are never mapped to the same element. The other
cases are left to the reader. So we can make an identification

Φ∗ ←→ the set of non-empty subsets of [±n] satisfying (∗∗).(5.2)

Hence, for each ∅ ( S ⊂ [±n] satisfying (∗∗), we define τS := τuωi where uωi ∈ Φ∗

corresponds to S by this identification.
Let us denote by C the set of chains of subsets {S◦

i }i of [±n] of the following

form: there exists u ∈ S̃+
n such that S◦

i = u[i] for 1 ≤ i ≤ n− 2, S◦
n−1 = u[n]+, and

S◦
n = u[n]−. Note that {S◦

i }i does not have a set of order n − 1 and satisfies the
same inclusion relation shown in Figure 7. A subchain {Si}i of a chain {S◦

i }i in C
is a sequence satisfying Sj ∈ {S◦

i }i for 1 ≤ j ≤ n and Sj ⊂ Sj′ for 1 ≤ j ≤ j′ ≤ n
unless |Sj | = |Sj′ | = n. For ∅ ( S1, · · · , Sq ( [±n] (1 ≤ q ≤ n) satisfying (∗∗),
we have τS1 · · · τSq = 0 unless the sequence forms a subchain of a chain in C up to
reordering. Let {Si}i be a subchain of a chain in C. For Si satisfying |Si| = n,
we say that Si is even (resp. odd) if the number of negative elements of Si is even
(resp. odd). Recall that µX is the fundamental homology class of X. The following
is Lemma 2.2 for type Dn.

Lemma 5.6. Let {Si}i and {S′
i}i be subchains of some chains in C. If |Si| = |S′

i|
for i = 1, · · · , n and the number of even Si’s and the number of even S′

i’s are the
same, then (µX , τS1 · · · τSn) = (µX , τS′

1
· · · τS′

n
).

Let {Si}i be a subchain of a chain in C. We denote by λ the signed Young diagram
consisting of λi = |Sn+1−i| for i = 1, · · · , n where the label of λ is defined as follows:
if we have λi = n, then we label this row by + (resp. −) if Sn+1−i is even (resp.
odd). Recall from Section 3 that the dotted anti-diagonal line drawn on the Young
diagram is the dotted line shifted down half the length of a single box from the
standard anti-diagonal. Our first aim is to prove the following.



14 HIRAKU ABE

Proposition 5.7. (The vanishing property) (µX , τS1 · · · τSn) = 0 unless each step
of the zigzag line of the lower-right corners of λ crosses the dotted anti-diagonal.

+ +
+
−

Figure 8

For each k, l ∈ [±n], let B ⊂ [±n] satisfy (∗∗), k ∈ B, and ±l /∈ B (hence
|B| ≤ n− 2). By the linear relation (2.1) for the root α = tk − tl, it follows that

τB
2 = −

∑
k∈B′, ±l /∈B′

B′ 6=B

τB′τB −
∑

k∈B′, −l∈B′

|B′|6=n

2τB′τB −
∑

k∈B′, −l∈B′

|B′|=n

τB′τB(5.3)

where the sum is taken over all ∅ ( B′ ⊂ [±n] satisfying (∗∗) with the prescribed
conditions. If A ( B with k /∈ A, and if B ( C with l ∈ C then,

τAτB
2τC = −

∑
k∈B′, ±l /∈B′

A(B′(C, B′ 6=B

τAτB′τBτC − δ|C|,nτAτBτ(l,−l)CτC .(5.4)

where δ|C|,n is the Kronecker delta. If |C| = n, then after multiplying (5.4) by τC
where C = (p,−p)C for some p ∈ C\{l}, we obtain

τAτB
2τCτC = −

∑
k∈B′, ±l,±p/∈B′

A(B′(C, B′ 6=B

τAτB′τBτCτC .(5.5)

Let λ as above. We denote

m+(λ) := |{i | λi = n and the label of λi is +}|,
m−(λ) := |{i | λi = n and the label of λi is −}|.

Lemma 5.8. Suppose that one of the following holds:

(i) m+(λ) = m−(λ) = 1
(ii) (m+(λ),m−(λ)) is equal to (1, 0) or (0, 1),
(iii) m+(λ) = m−(λ) = 0.

Then (µX , τS1 · · · τSn) = 0 unless each step of the zigzag line of the corners of λ
crosses the dotted anti-diagonal.

Proof
The claim for the case (i) can be proved by (5.4) and (5.5) as in the proof of
Proposition 3.3. For the case (ii), the same argument works together with (5.4),
since we have already proved the claim for the case (i). Now, the case (iii) is shown
again by the same proof used for Proposition 3.3 together with (5.3), (5.4), and the
claim for the case (ii). �
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For each k, l ∈ [±n], let ∅ ( B ( [±n] satisfy (∗∗), k, l ∈ B, and |B| = n. If
A ⊂ B\{k, l}, then from the linear relation (2.1) for the root α = tk + tl, we obtain

τAτB
2 =−

∑
k∈B′, ±l /∈B′

τAτB′τB −
∑

±k/∈B′, l∈B′

τAτB′τB

−
∑

k,l∈B′,
|B′|6=n

2τAτB′τB −
∑

k,l∈B′, B′ 6=B,
|B′|=n

τAτB′τB(5.6)

where we denote τ∅ = 1. Especially if A = B\{k, l}, then |A| = n− 2 and we have

τAτB
2 = −

∑
k,l∈B′, B′ 6=B,

|B′|=n

τAτB′τB = 0.(5.7)

The second equality follows since an element of B′ which is neither k nor l has to be
−1 times an element of B, which implies that A 6⊂ B′. On the other hand, letting
B = (−k, k)B, we obtain from (5.6) that

τAτB
2τB =−

∑
±k/∈B′, l∈B′

A(B′(B

τAτB′τBτB.(5.8)

Lemma 5.9. Suppose that one of the following holds:

(i) m+(λ),m−(λ) ≥ 1,
(ii) m+(λ) ≥ 1 and m−(λ) = 0,
(iii) m+(λ) = 0 and m−(λ) ≥ 1.

Then (µX , τS1 · · · τSn) = 0 unless each step of the zigzag line of the lower-right
corners of λ crosses the dotted anti-diagonal.

Proof
The claim for the case (i) follows from (5.8) and the case (i) of Lemma 5.8 by
induction on m+(λ) + m−(λ). Let us consider the case (ii). We prove the claim
by induction on m+(λ). For the case m+(λ) = 1, the claim follows from the case
(ii) of Lemma 5.8. For the general case, the induction hypothesis and the claim for
the case (i) shows our claim by applying (5.6) to reduce the multiplicity for τSn in
τS1 · · · τSn . The claim for the case (iii) can be proved similarly. �

Now, Proposition 5.7 follows from Lemma 5.9 and the case (iii) of Lemma 5.8.

For a signed Young diagram λ with n rows fitting into the n× n-square, let

m := |{i | λi = n}| = m+(λ) +m−(λ)

be the number of rows of λ of length n. Recall that the numbers ar, br, cr, and yr
are defined in (3.3) and (3.4). We now define

ỹ1 :=



2(n−λ1−1)(1−m)

(
a1
c1

)(
b1
c1

)
if m ≤ 1,

−
(
b1 − 1

c1 − 1

)
if m ≥ 2 and m+(λ)m−(λ) 6= 0,

(2a1 − a1 − 1)

(
b1
c1

)
+

(
b1 − 1

c1

)
if m ≥ 2 and m+(λ)m−(λ) = 0
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Theorem 5.10. If ∅ ( S1, · · · , Sn ( [±n] satisfying (∗∗) form a subchain of a
chain in C, then we have

(µX , τS1 · · · τSn) = (−1)n+sỹ1y2 · · · ys.
where µX is the fundamental homology class of X and λ is the signed Young diagram
consisting of |S1|, · · · , |Sn| reordered as a weakly decreasing sequence and m is the
number of rows of λ of length n. Otherwise, the intersection number is zero.

Remark 5.11. In each case, the given number vanishes unless each step of the
zigzag line of the lower-right corners of λ crosses the dotted anti-diagonal.

Proof of Theorem 5.10.
We compute the intersection number J(λ) := (−1)n−s(µX , τS1 · · · τSn) with sign
where we can assume that each step of the zigzag line of the corners of λ crosses
the dotted anti-diagonal by Proposition 5.7 and the remark above. We first prove
the case (i). If m+(λ) = 1 and m−(λ) = 0 (or m+(λ) = 1 and m−(λ) = 0), then it
follows that J(λ) = y1 · · · ys. This can be proved by induction similar to that used
in the proof of Theorem 3.4 because of the separating properties (5.4). So, let us
consider the case of m+(λ) = m−(λ) = 0. In this case, Proposition 5.7 shows that
the separation rule (5.3) replaces the square τ2Sn

in τS1 · · · τSn to∑
k∈S′, ±l /∈S′

S′(Sn, |B′|6=n

τS′τSn +
∑

k∈S′, −l∈S′

|S′|=n

τS′τSn

for some k ∈ Sn and ±l ∈ Sn when we compute the intersection number J(λ) with
sign. Namely, this replacement can be pictured as

= +

±

where we omit the coefficients in the picture. Hence, with the claim for the previous
case, we get J(λ) = 2n−λ1−1y1 · · · ys as in the case of type Bn.

Let us consider the case (ii-a). We prove the claim by induction on the sum of
the multiplicities for Si’s satisfying |Si| 6= n. The base case has λi = n + 1 − i for
all λi 6= n, so it is obvious that −J(λ) = (−1)n−s−1(µX , τS1 · · · τSn) is equal to 1 by
iterating (5.8). For the general case, we apply (5.4) and (5.5) to some square τSi

2

with |Si| 6= n in J(λ). If i2 < i, the computation with (5.4) works as in the proof
of Theorem 3.4. If i1 < i ≤ i2, then the right-hand-side of (5.5) applied to −J(λ)
can be calculated as follows by the induction hypothesis:(

b2
c2

)
·
(
b1 − 1

c1 − 1

)(
a2 − 1

c2 − 1

)
y3 · · · ys +

(
b1 − 1

c1 − 1

)
·
(
a2 − 1

c2

)(
b2
c2

)
y3 · · · ys

which is equal to
(
b1−1
c1−1

)
y2 · · · ys, and the claim follows.

Let us consider the case (ii-b). We can assume m = m+(λ)(= a1 + 1) without
loss of generality. We first consider the case that λi = n+1− i for all λi 6= n. Note
that

(
b1−1
c1

)
= 0 in this case. For this special case, we prove the claim by induction

on m = m+(λ). For the case m = a1 + 1 = 2, the intersection number is zero by
(5.7), and the claim follows since 2a1 − a1− 1 = 0. For the general case, we have an
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inductive formula by (5.6), namely,

+
+

+
+

+
−
+
+

=
+
+
+

+ 2(a1 − 1)

where the first coefficient a1 − 1 comes from the choices of an element in B′\(A ∪
{k, l}) turned to be negative, and the second coefficient 2 comes from the two
summands corresponding to k ∈ B′,±l /∈ B′ and ±k /∈ B′, l ∈ B′. Noticing that
the intersection number for the first summand is equal to 1 as we already saw, it
follows that

J(λ) =

a1∑
i=0

2i(a1 − 1− i) = 2a1 − a1 − 1.

We now prove the claim (ii-b) by induction on the sum of the multiplicities for
Si satisfying |Si| 6= n. The base case λi = n+ 1− i for all λi 6= n is proved above.
For the general case, we apply (5.4). If i2 < i, the computation with (5.4) again
works as in the proof of Theorem 3.4. If i1 < i ≤ i2, we also apply (5.4) to a square
Si

2 in −J(λ) Namely, we have

+
+
+

+
+
+

+
+
+

+
+
+
−

= + +

with omitting the coefficients. The right-hand-side can be calculated by the in-
duction hypothesis and the claim for the case (ii-a), and the intersection number
J(λ) = (−1)n−s(µX , τS1 · · · τSn) is(

b2
c2

)
·

{
(2a1 − a1 − 1)

(
b1
c1

)(
a2 − 1

c2 − 1

)
y3 · · · ys +

(
b1 − 1

c1

)(
a2 − 1

c2 − 1

)
y3 · · · ys

}

+

(
b1
c1

)
·

{
(2a1 − a1 − 1)

(
a2 − 1

c2

)(
b2
c2

)
y3 · · · ys + 0

}

+

(
b1 − 1

c1 + 1− 1

)(
a2 − 1

c2

)(
b2
c2

)
y3 · · · ys

= (2a1 − a1 − 1)

(
b1
c1

)
y2 · · · ys +

(
b1 − 1

c1

)
y2 · · · ys.

�

For example, for n = 5 with the convention k̄ = −k, we can calculate

(µX , τ{1̄}
2τ{1̄,3,4,5,2̄}

3) = −4

by the case (ii-b) of Theorem 5.10. See Figure 9 for the Young diagram correspond-
ing to τ{1̄}

2τ{1̄,3,4,5,2̄}
3.
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3 4 5 2̄1̄
+
+
+

Figure 9

For each even signed permutation u ∈ S̃+
n , an element i ∈ [n] satisfies u(αi) ∈ Φ−

if and only if

(D-1) if i ≤ n− 2, then u(i) > u(i+1) with the same sign, or u(i) < u(i+1) with
different signs,

(D-2) if i = n−1, then u(n−1), u(n) < 0, or u(n−1) and u(n) have different signs
and the absolute value of the negative one is less than the positive one,

(D-3) if i = n, then u(n− 1) > u(n) with the same sign, or u(n− 1) < u(n) with
different signs.

Consider the similar condition

(A-1) if i ≤ n− 2, then u(i) < u(i+ 1) with the same sign or u(i) > u(i+ 1) with
different signs,

(A-2) if i = n − 1, then u(n − 1), u(n) > 0, or u(n − 1) and u(n) have different
signs and the absolute value of the negative one is greater than the positive
one,

(A-3) if i 6= n, then u(n − 1) < u(n) with the same sign or u(n − 1) > u(n) with
different signs,

Denote

D(u) :={u[i] | i ≤ n− 2 and i satisfies (D)}
∪ {u[n]+ | i = n− 1 satisfies (D)} ∪ {u[n]− | i = n satisfies (D)}

A(u) :={u[i] | i satisfies (A)}
∪ {u[n]+ | i = n− 1 satisfies (A)} ∪ {u[n]− | i = n satisfies (A)}

where

[n]+ = {1, 2, · · · , n− 1, n} and [n]− = {1, 2, · · · , n− 1,−n}

(cf. Figure 7). We define a signed Young diagram λw
u,v for u, v, w ∈ S̃+

n in the
manner described in Section 4. Note that we put I(∅) = 0 as a convention.

Now, the intersection number of Y w, Xu and Xv in X of type Dn is given by the
following.

Corollary 5.12. For even signed permutations u, v, w ∈ S̃+
n , we have

(µX , [Y w][Xu][Xv]) = Ĩ(λw
uv)

where Ĩ = (−1)n+sỹ1y2 · · · ys is the function described in Theorem 5.10.

For example, for n = 5 with the convention k̄ = −k, the Young diagram
λ1̄2̄543
1̄3452̄,1̄3452̄

is the one in Figure 9, and hence we obtain

(µX , [Y 1̄2̄543][X1̄3452̄][X1̄3452̄]) = −4.
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6. On exceptional types

In this section, we include the computation of intersection numbers of invariant
divisors of the toric manifoldX for the root system of exceptional typeG2. For other
exceptional types F4, E6, E7, and E8, it would be interesting to find combinatorial
objects which effectively compute the intersection numbers of invariant divisors.

Let E = {x ∈ R3 | x1 + x2 + x3 = 0}. The roots are

± (t1 − t2), ±(t1 − t3), ±(t2 − t3),

± (2t1 − t2 − t3), ±(2t2 − t1 − t3), ±(2t3 − t1 − t2).

where ti ∈ R3 is the i-th standard vector. We choose Π = {t1 − t2,−2t1 + t2 + t3}
as the set of simple roots, and write α1 = t1− t2 and α2 = −2t1+ t2+ t3. The Weyl
group W is the dihedral group of order 12 which is identified with the subgroup

WG2 := {u ∈ S̃3 | u(1), u(2), and u(3) have the same sign}
of the 3rd signed permutation group. Under this identification, the action of the
Weyl group on E is written as the natural action of WG2 on the indexes i of ti;
u · t = tu(1) for u ∈WG2 where t−i := −ti (1 ≤ i ≤ 3). This action of WG2 preserves
Φ. The minimal generators ω1, ω2 ∈ E∗ of the fundamental Weyl chamber σid are

ω1 = e3 − e2, ω2 =
1

3
(2e3 − e1 − e2)

where {ei}i ⊂ (R3)∗ is the dual basis of {ti}i ⊂ R3.

Denoting by 2[±3] the set of all subsets of [±3] = {1, 2, 3,−1,−2,−3}, we have a

well-defined map Φ∗ → 2[n+1] by sending

eu(3) − eu(2) 7→ {u(3),−u(2)},
1

3
(2eu(3) − eu(1) − eu(2)) 7→ {u(3)}

for u ∈ WG2 . This is an injection, and hence we can identify Φ∗ with the following

subset of 2[±3];

S := {32̄, 3̄2, 31̄, 3̄1, 21̄, 2̄1, 3, 3̄, 2, 2̄, 1, 1̄}

where k̄ = −k for 1 ≤ k ≤ 3 and each sequence ab in S is the set {a, b}, i.e.
32̄ = {3,−2} for example. Now, for each S ∈ S, we have τS := τuωi ∈ H2(X) where
uωi ∈ Φ∗ corresponds to S by this identification. Then, for S1, S2 ∈ S, it follows
by Lemma 2.1 that τS1τS2 = 0 unless these sets form a nested chain of subsets, i.e.
S1 ⊂ S2 or S1 ⊃ S2.

The linear relations (2.1) for α = α1, α2 are translated to

τ32̄ + τ3̄1 + 2τ2̄1 + τ2̄ + τ1 = τ3̄2 + τ31̄ + 2τ21̄ + τ2 + τ1̄,

3τ31̄ + 3τ21̄ + τ3 + τ2 + 2τ1̄ = 3τ3̄1 + 3τ2̄1 + τ3̄ + τ2̄ + 2τ1,

respectively. From these relations together with the above observation about the
vanishing of τS1τS2 , we see that

τ32̄τ3 = 1, τ32̄τ32̄ = −1, τ3τ3 = −3.
Now, let

IG2(2, 1) := 1, IG2(1, 1) := −3, IG2(2, 2) := −1.
where (2, 1), (1, 1), and (2, 2) are Young diagrams with 2 rows. Now the next claim
follows from Lemma 2.2; if S1, S2 ∈ S form a nested chain of subsets, then we have

(µX , τS1τS2) = IG2(λ)(6.1)
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where µX is the fundamental homology class and λ is the Young diagram consist-
ing of |S1| and |S2| reordered as a weakly decreasing sequence. Otherwise, the
intersection number is zero.

Finally, we list the presentations of [Xu] as monomials of τS for all u ∈ WG2 in
one-line notations;

[X123] = 1, [X213] = τ31̄, [X132] = τ23̄, [X231] = τ13̄, [X312] = τ2, [X321] = τ1,

[X1̄2̄3̄] = τ3̄2τ3̄, [X2̄1̄3̄] = τ3̄, [X1̄3̄2̄] = τ2̄, [X2̄3̄1̄] = τ1̄, [X3̄1̄2̄] = τ2̄1, [X3̄2̄1̄] = τ1̄2.

Since we have [Y u] = (w−1
0 )∗[Xw0u] = w∗

0[Xw0u] where w0 = 1̄2̄3̄ is the longest
permutation, we obtain the list of [Y u];

[Y 1̄2̄3̄] = 1, [Y 2̄1̄3̄] = τ3̄1, [Y
1̄3̄2̄] = τ2̄3, [Y

2̄3̄1̄] = τ1̄3, [Y
3̄1̄2̄] = τ2̄, [Y 3̄2̄1̄] = τ1̄,

[Y 123] = τ32̄τ3, [Y 213] = τ3, [Y 132] = τ2, [Y 231] = τ1, [Y 312] = τ21̄, [Y 321] = τ12̄.

With these lists, we can compute intersection numbers (µX , [Y w][Xu][Xv]) for all
u, v, w ∈WG2 by (6.1).
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