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Abstract. We introduce a theory of volume polynomials and corresponding
duality algebras of multi-fans. Any complete simplicial multi-fan ∆ determines

a volume polynomial V∆ whose values are the volumes of multi-polytopes
based on ∆. This homogeneous polynomial is further used to construct a

Poincare duality algebra A˚p∆q. We study the structure and properties of V∆

and A˚p∆q and give applications and connections to other subjects, such as
Macaulay duality, Novik–Swartz theory of face rings of simplicial manifolds,

generalizations of Minkowski’s theorem on convex polytopes, cohomology of

torus manifolds, computations of volumes, and linear relations on the powers
of linear forms. In particular, we prove that the analogue of the g-theorem

does not hold for multi-polytopes.

Contents

1. Introduction 1
2. Definitions: multi-fans 4
3. Definitions: multi-polytopes 8
4. Volume polynomial from the index map 10
5. Basic properties of volume polynomials 15
6. A formula for the volume polynomial 20
7. Poincare duality algebra of a multi-fan 22
8. Structure of multi-fan algebra in particular cases 25
9. Geometry of multi-polytopes and Minkowski relations 28
10. Recognizing volume polynomials and multi-fan algebras 34
11. Surgery of multi-fans and algebras 38
12. Cohomology of torus manifolds 42
References 44

2010 Mathematics Subject Classification. Primary 52A39, 52B11, 05E45, 52C35; Secondary

05E40, 13H10, 52B05, 52B40, 52B70, 57N65, 55N91, 28A75, 51M25, 13A02 .
Key words and phrases. multi-fan, multi-polytope, volume polynomial, Poincare duality al-

gebra, Macaulay duality, Stanley–Reisner ring, Minkowski theorem, Minkowski relations, coho-
mology of torus manifolds.

1



2 A. AYZENBERG AND M. MASUDA

1. Introduction

There is a fundamental correspondence in algebraic geometry [6]:
"

Toric varieties
of complex dimension n

*

ú tRational fans in Rnu .

One can read the information about toric variety from its fan. Complete toric
varieties correspond to complete fans, non-singular varieties correspond to non-
singular fans, and projective toric varieties correspond to normal fans of convex
polytopes. Combinatorics of a fan and geometry of a toric variety are closely
connected. In particular, the rays of a fan correspond to the divisors on toric
variety and higher dimensional cones correspond to the intersections of divisors.

In the work [7] Hattori and the second named author expanded this setting
to topological category and generalized the above-mentioned correspondence in the
following way:

(1.1)

"

Torus manifolds
of real dimension 2n

*

ù tNonsingular multi-fans in Rnu ,

which will be explained in a minute.
Let X be a smooth closed oriented 2n-manifold with an effective action of an

n-dimensional compact torus T and at least one fixed point. A closed, connected,
codimension two submanifold of X will be called characteristic if it is a connected
component of the fixed point set of a certain circle subgroup S of T , and if it
contains at least one T -fixed point. The manifold X together with a preferred
orientation of each characteristic submanifold is called a torus manifold. Charac-
teristic submanifolds are the analogues of divisors on a toric variety.

Note, that there is no one-to-one correspondence in (1.1): there may be different
(in any sense) torus manifolds producing the same multi-fan. Nevertheless, multi-
fans provide a convenient tool to study such manifolds.

A multi-fan is the central object of this paper. We recall the precise definition
later. Informally, a multi-fan is a collection of cones in V – Rn with apex at the
origin, coming with multiplicities and satisfying certain geometrical restrictions.
Sometimes it is convenient to assume that there is a fixed lattice N Ă V , and the
rays of ∆ are rational with respect to N . The cones of a multi-fan may overlap
nontrivially, which makes a multi-fan more general and flexible object than an
ordinary fan, and provides many nontrivial examples.

A multi-polytope is defined as follows. Let ∆ be a simplicial multi-fan in
V – Rn. For each ray li P ∆, we specify an affine hyperplane Hi Ă V ˚ orthogonal
to the linear span of li. A tuple P “ p∆, H1, . . . ,Hmq is called a simple multi-
polytope based on ∆. The relation of the multi-polytope to the multi-fan on which
it is based, is exactly the same as the relation of a polytope to its normal fan.

For any multi-polytope P Ă V ˚ there is a function DHP : V ˚z
Ť

Hi Ñ Z (the
notation stands for Duistermaat–Heckman, see [7]). Informally, for a generic point
x P V ˚ the value DHP pxq indicates how many times the “boundary” of P wraps
around x. The precise definition is given in Section 3. For an ordinary simple
convex polytope this function takes value 1 inside the polytope, and 0 outside.

A multi-fan ∆ is called complete if it satisfies certain mild conditions (see [7]
or Definition 2.5 below). For multi-polytopes based on complete simplicial multi-
fans, the function DHP is compactly supported. We can define the volume of a
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multi-polytope P as an integral

VolpP q :“

ż

V ˚
DHP dµ

(the measure µ is chosen such that the volume of a fundamental domain of the dual
lattice N˚ is 1).

For a given simplicial multi-fan ∆ consider the space Polyp∆q of all multi-
polytopes based on ∆. Following [20] we call it the space of analogous multi-
polytopes. To specify an affine hyperplane orthogonal to a line xliy Ă V one needs
a single real number ci, the normalized distance from Hi to the origin taken with
sign. This number is called the support parameter. Thus the space Polyp∆q is
isomorphic to Rm, where m is the number of rays of ∆. Support parameters
pc1, . . . , cmq provide the canonical coordinates on Polyp∆q.

If ∆ is complete, the volume gives a function on the space of analogous poly-
topes: Polyp∆q Ñ R, P ÞÑ VolpP q. Similarly to the case of actual convex polytopes,
studied by Pukhlikov–Khovanskii [14] and Timorin [20], this function is a homo-
geneous polynomial in the support parameters.

Theorem 1.1 ([7]). Let ∆ be a complete simplicial multi-fan in Rn with m rays.
There exists a homogeneous polynomial V∆ P Rrc1, . . . , cms of degree n such that
V∆pc1, . . . , cmq “ VolpP q for a multi-polytope P P Polyp∆q with support parameters
pc1, . . . , cmq.

Following Timorin’s approach [20], we proceed as follows. Consider the ring
D of differential operators with constant coefficients, acting on Rrc1, . . . , cms. We
have D “ RrB1, . . . , Bms, where Bi “

B
Bci

. It is convenient to double the degree,
so we assume that deg Bi “ 2. Given any nonzero homogeneous polynomial Ψ P

Rrc1, . . . , cms of degree n, consider the subspace AnnpΨq Ă D, AnnpΨq “ tD P

D | DΨ “ 0u. It is easily seen, that AnnpΨq is a graded ideal, and the quotient
algebra D{AnnpΨq is finite-dimensional and vanishes in degrees ą 2n. Moreover,
D{AnnpΨq is a commutative Poincare duality algebra of formal dimension 2n [20,
Prop.2.5.1].

Now consider a complete simplicial multi-fan ∆ and apply this construction
to the volume polynomial V∆. In result we obtain a Poincare duality algebra
A˚p∆q :“ D{AnnpV∆q associated with a multi-fan ∆. The main goal of this work
is to study the volume polynomials and investigate the structure of the correspond-
ing algebras and to show their relation to other topics in combinatorics, convex
geometry, commutative algebra, and topology.

The work has the following structure. In Sections 2 and 3 we review the basic
notions of the theory of multi-fans and in Section 4 we review the notion of the
index map which is the key ingredient in the construction of the volume polynomial.
In the work [7], introducing multi-fans, the existence of a lattice N – Zn Ă V was
assumed, so that multi-fans are non-singular (or at least rational) with respect to
this lattice. In our paper we consider general multi-fans, probably non-rational.
Instead of a lattice we assume that the ambient space V has a fixed inner product.
This allows, in particular, to define and compute volumes of multi-polytopes in
V ˚ “ V of dimensions smaller than n (dealing with lattices, only unimodular
volumes make sense). The exposition of the multi-fan theory is built to comply with
this continuous setting. Nevertheless, all statements in the introductory sections
follow from their lattice analogues discussed in [7].
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In Section 5 we prove the basic enumerative properties of the volume polyno-
mial. While the values of V∆ are the volumes of multi-polytopes, the values of its
partial derivatives are the volumes of proper faces of these multi-polytopes up to
certain constants. These relations will be used further in Section 9.

In Section 6 we prove a general formula (actually, a family of formulas) for the
volume polynomial, and indicate a geometrical procedure which allows to find non-
trivial linear identities on the powers of linear forms. For actual convex polytopes
our formula coincides with the Lawrence’s formula [8], which is well known in
computational geometry.

In Section 7 we review the general correspondence between homogeneous poly-
nomials and Poincare duality algebras, known as the Macaulay duality. Using this
correspondence we obtain an algebra A˚p∆q as a Poincare duality algebra corre-
sponding to the volume polynomial V∆. One way to obtain this algebra is via
differential operators as in Timorin’s approach. Another way involves the index
map of a multi-fan.

The structure of multi-fan algebras in some particular cases is described in Sec-
tion 8. Every (complete simplicial) multi-fan has an underlying simplicial cycle. If
this cycle is a homology sphere K, then A˚p∆q is the quotient of Stanley–Reisner
algebra of K by a linear system of parameters, and the dimensions of its graded
components are the h-numbers of K. This is similar to ordinary fans. If the under-
lying simplicial cycle is a homology manifold, the algebra A˚p∆q is the quotient of
the Stanley–Reisner algebra by the linear system of parameters and by the certain
ideal introduced and studied by Novik–Swartz [12, 13]. In this case the dimensions
of the graded components of A˚p∆q are the h2-numbers of K. A short exposition
of the Novik–Swartz theory is provided.

Section 9 aims to generalize a classical Minkowski theorem on convex polytopes
to multi-polytopes. The direct Minkowski theorem has a straightforward general-
ization which can be used to obtain linear relations in the algebra A˚p∆q. On the
other hand, the inverse Minkowski theorem, properly formulated, is controlled by
the power map A2p∆q Ñ A2n´2p∆q, a ÞÑ an´1.

In Section 10 we answer the question which polynomials are volume polynomials
of multi-fans, and which Poincare duality algebras are algebras of multi-fans. We
prove that every Poincare duality algebra generated in degree 2 is isomorphic to
A˚p∆q for some complete simplicial multi-fan ∆.

The basic operations on multi-fans, such as flips and connected sums, and their
effects to multi-fan algebras are described in Section 11. In particular, we prove
that, under flips, the dimensions of graded components of A˚p∆q change similarly
to h-numbers of simplicial complexes.

Finally, in Section 12 we discuss the relation of A˚p∆q to the cohomology of
torus manifolds. It is known that, for complete smooth toric variety X, the co-
homology ring H˚pX;Rq coincides with the algebra A˚p∆Xq of the corresponding
fan. Situation with general torus manifolds and their multi-fans is more compli-
cated. Nevertheless, in a certain sense, the multi-fan algebra A˚p∆Xq gives a “lower
bound” for the cohomology of a torus manifold.

2. Definitions: multi-fans

2.1. Multi-fans as parametrized collections of cones. Let us recall the
definition and basic properties of multi-fans. This exposition follows the lines of [7].
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Consider an oriented vector space V – Rn with a lattice N Ă V , N – Zn. A
subset of the form κ “ tr1v1 ` ¨ ¨ ¨ ` rkvk | ri ě 0u for given v1, . . . , vk P V is called
a cone in V . Dimension of κ is the dimension of the linear hull of κ. A cone is
called strongly convex if it contains no line through the origin. In the following all
cones are assumed strongly convex.

Using classical construction of supporting hyperplane one can define the faces
of κ, which are also the cones of smaller dimensions. If the generating set v1, . . . , vk
may be chosen linearly independent (resp. rational, the part of basis of the lattice
N), κ is called simplicial (resp. rational, unimodular). Let ConepV q denote the set
of all cones in V . This set obtains a partial order: κ1 ă κ2 whenever κ1 is a face
of κ2.

Let Σ be a finite partially ordered set with the minimal element ˚. Suppose
there is a map C : Σ Ñ ConepV q such that

(1) Cp˚q “ t0u;
(2) If I ă J for I, J P S, then CpIq ă CpJq;
(3) For any J P Σ the map C restricted on tI P S | I ď Ju is an isomorphism

of ordered sets onto tκ P ConepV q | κ ĺ CpJqu.

The image CpΣq is a finite set of cones in V . We may think of a pair pΣ, Cq as
a set of cones in V labeled by the ordered set Σ.

The poset Σ obtains a rank function: rkpIq :“ dimCpIq. The set of elements
in Σ having maximal rank n is denoted Σxny.

Consider an arbitrary function σ : Σxny Ñ t´1,`1u called a sign function.

Definition 2.1 (Old definition). The triple ∆ :“ pΣ, C, σq is called a multi-fan
in V . The number n “ dimV is called the dimension of ∆.

Multi-fan ∆ is called simplicial (resp. rational, non-singular) if the values of C
are simplicial (resp. rational, unimodular) cones. In the following we will always
assume that ∆ is simplicial. Then every cone of ∆ is simplicial and property (3)
of the map C implies that Σ is a simplicial poset. Recall that a poset Σ is called
simplicial if any lower order ideal SďJ :“ tI P S | I ď Ju is isomorphic to the poset
of faces of a simplex (i.e. a boolean lattice).

2.2. Multi-fans as pairs of weight and characteristic functions. Note
that definition 2.1 of a multi-fan slightly differs from the definition of multi-fan
given in [7]. To establish the correspondence consider the following construction.
Let rms “ t1, . . . ,mu denote the set of vertices of Σ.

The signs of maximal simplices in Σ determine two functions on
`

rms
n

˘

, the set
of all n-subsets of rms:

w˘ :

ˆ

rms

n

˙

Ñ Zě0,

where w`pti1, . . . , inuq (resp. w´pti1, . . . , inuq) equals the number of simplices I P
Σxny on the vertices ti1, . . . , inu having sign `1 (resp. ´1). Although both functions
w`, w´ are important by topological reasons (see [7]), only their difference w :“
w` ´ w´ is relevant to our work. So far w is a function which assigns an integral
number to each n-subset of rms. Let us consider a pure simplicial complex K on the
set rms whose maximal simplices Kxny are the subsets I Ă rms satisfying wpIq ‰ 0.
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To reach greater generality we allow w to take real values, thus

w :

ˆ

rms

n

˙

Ñ R.

Each vertex i P rms corresponds to a ray (i.e. 1-dimensional cone) of ∆. We
choose a generator in each ray. This gives a so called characteristic map λ : rms Ñ
V , such that the ray Cpiq is generated by λpiq for every i P rms. It satisfies the
following property:

if ti1, . . . , iku P K, then λpi1q, . . . , λpikq P V are linearly independent.

This condition is called ˚-condition.
Note that in [7] all multi-fans were assumed rational. In this case the genera-

tor λpiq can be chosen canonically as a unique primitive integral vector contained
in Cpiq. Since we want to include non-rational simplicial multi-fans in our con-
sideration, we should specify the generators somehow in order for the subsequent
calculations to make sense.

Finally we get to the following definition

Definition 2.2 (New definition). A triple pK,w, λq is called a simplicial multi-

fan in V . Here w :
`

rms
n

˘

Ñ R is a weight function, K is a simplicial complex which
is the support of w, and λ : rms Ñ V is a characteristic function. Characteristic
function satisfies ˚-condition with respect to K: if I “ ti1, . . . , iku P K, then the
vectors λpi1q, . . . , λpikq are linearly independent in V .

Here K may have ghost vertices, i.e. i P rms such that tiu R K. The value
of characteristic function in such vertices may be arbitrary (even zero). In the
following we will not pay too much attention to ghost vertices since their presence
does not affect the calculations.

Strictly speaking, the new definition is not equivalent to the old one, since we
cannot restore the poset Σ and the sign function σ : Σxny Ñ t˘1u when w takes
non-integral values. Even in the integral case we cannot restore Σ uniquely. On
the other hand, as was shown above, every multi-fan in the sense of old definition
determines a multi-fan in the sense of new definition. We will work with the new
definition most of the time.

Remark 2.3. When passing from the old definition to the new one, we may
lose an important information. For example consider the multi-fan in R2 “ xe1, e2y

whose maximal cones are two copies of the non-negative cone (i.e. the cone gen-
erated by basis vectors e1, e2), and two rays are generated by e1 and e2. One of
the maximal cones is taken with the sign `1 and the other with the sign ´1. We
remark that such multi-fan corresponds to the torus manifold S4 [7]. We have
w`pt1, 2uq “ w´pt1, 2uq “ 1, therefore wpt1, 2uq “ 0. Thus K is empty (equiva-

lently, w :
`

rms
n

˘

Ñ R vanishes).
One way to avoid such situations is to assume in the beginning that Σ itself is a

simplicial complex rather than a general simplicial poset. In this case K coincides
with Σ and the weight function w on K coincides with the sign function σ. In
particular, w takes the value ˘1 on each maximal simplex of K (see Example 2.9).

2.3. Underlying simplicial chain. Let 4rms denote an abstract simplex on

the vertex set rms, and let 4pn´1q
rms be its pn ´ 1q-skeleton. Every subset I Ă rms,
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|I| “ n may be considered as a maximal simplex of 4pn´1q
rms . If I P Kxny, then we

can orient I as follows: we say that the order of vertices pi1, . . . , inq of I is positive
if and only if the basis pλpi1q, . . . , λpinqq determines the positive orientation of V .

Definition 2.4. The element

wch “
ÿ

IĂKxny

wpIqI P Cn´1pK;Rq Ď Cn´1p4pn´1q
rms ;Rq

is called the underlying chain of a multi-fan ∆. Here Cn´1pK;Rq denotes the group
of simplicial chains of K.

2.4. Complete multi-fans. Let us briefly recall the notion of projected multi-
fan. We give the construction in terms of new definition of multi-fan although the
similar construction may be given in terms of simplicial posets and sign functions.

Let ∆ “ pK,w, λq be a simplicial multi-fan in the space V , and let I “
ti1, . . . , iku P K be a simplex. Let VI denote the quotient vector space V {xλpi1q, . . . , λpikqy.
Consider the multi-fan ∆I “ plkK I, wI , λIq in VI defined as follows:

‚ lkK I :“ tJ Ă rmszI | I Y J P Ku is the link of the simplex I in K.
‚ wIpJq :“ wpI Y Jq for every J P lkK I, |J | “ n´ |I|.
‚ λIpjq is the image of λpjq P V under the natural projection V Ñ VI “
V {xλpi1q, . . . , λpikqy. It is easily seen that λI satisfies ˚-condition.

If we choose some orientation of a simplex I P K, the space VI obtains an orientation
induced from V . To be precise, let us say that the basis prv1s, . . . , rvn´ksq determines
a positive orientation of VI if the basis pv1, . . . , vn´k, λpi1q, . . . , λpikqq is a positive
basis of V for a chosen positive order pi1, . . . , ikq of vertices of I.

We call ∆I the projected multi-fan of ∆. The construction satisfies the heredi-
tary relation p∆I1qI2 “ ∆I1\I2 whenever it makes sense, and there holds ∆∅ “ ∆.

Let us call a vector v P V generic with respect to ∆ if it is not contained in
the vector subspaces spanned by the cones of ∆ of dimensions ă n. For any such
v define the number dv “

ř

wpIq P R, where the sum is taken over all subsets
I “ ti1, . . . , inu Ă rms such that the cone generated by λpi1q, . . . , λpinq contains v.

Definition 2.5. The multi-fan ∆ is called pre-complete if dv does not depend
on a generic vector v P V . In this case dv is called the degree of ∆. The multi-fan
∆ is called complete if the projected multi-fan ∆I is pre-complete for any simplex
I P K.

Remark 2.6. Note that this definition allows w to be constantly zero. We
call a multi-fan zero if its weight function constantly zero. A zero multi-fan is
pre-complete and therefore complete.

Proposition 2.7. A multi-fan ∆ is complete if and only if its underlying sim-

plicial chain wch P Cn´1p4pn´1q
rms ;Rq is a cycle, that is dwch “ 0 for the standard

simplicial differential d : Cn´1p4pn´1q
rms ;Rq Ñ Cn´2p4pn´1q

rms ;Rq (if n “ 1, we assume

that d : C0p4pn´1q
rms ;Rq Ñ R is the augmentation map).

Proof. In the case when w takes only integral values, the statement is proved
in [7, Sec.6]. If w takes only rational values, scaling the values of w by a common
denominator reduces the task to the integral case. It remains to prove the statement
for real-valued w. Both conditions “∆ is complete” and “dwch “ 0” determine
rational vector subspaces in the space of all possible weight functions (it is not
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difficult to define the pre-completeness condition in terms of the “wall-crossing
relations”, which are linear relations on wpIq with integral coefficients). Thus the
rational case implies the real case. �

For convenience we summarize the discussion by the following definition.

Definition 2.8 (Complete simplicial multi-fan). A complete simplicial multi-

fan is a pair pwch, λq, where wch “
ř

IĂrms,|I|“n wpIqI P Zn´1p4pn´1q
rms q is a simpli-

cial cycle on m vertices, and λ : rms Ñ V is any function satisfying the condition:
tλpiquiPI is a basis of V if |I| “ n and wpIq ‰ 0.

For a complete multi-fan ∆ the corresponding homology class rwchs P rHn´1pK;Rq Ă
rHn´1p4pn´1q

rms ;Rq will be denoted r∆s and called the underlying homology class

of ∆. Since Cnp4pn´1q
rms ;Rq “ 0, the groups Zn´1p4pn´1q

rms q and rHn´1p4pn´1q
rms q may

be identified. Thus wch and r∆s are just two different notations for the same object.

Example 2.9. One obvious way to obtain a complete multi-fan is to start with
any oriented pseudomanifold K of dimension n´ 1 on the set of vertices rms, and
take any characteristic function λ : rms Ñ V . Since K is oriented, every maximal
simplex I of K becomes oriented, but this orientation may be different from the
one determined by characteristic function (see subsection 2.3). Let wpIq be `1 or
´1 depending on whether these two orientations agree or not. Let us extend the
weight function by zeroes to non-simplices of K. The corresponding simplicial chain

wch “
ř

I wpIqI P Cn´1p4pn´1q
rms ;Rq is closed, since it is exactly the fundamental

chain of K in 4pn´1q
rms . Therefore, pwch, λq is a complete simplicial fan.

Example 2.10. The previous example may be restricted to the case when K
is a homology sphere or homology manifold. We will study these two cases in more
detail in Section 8.

We say that ∆ is based on an orientable simplicial pseudomanifold K if the
corresponding simplicial cycle is given by K.

There is one interesting feature of (complete) multi-fans revealed by Definitions
2.2 and 2.8. The multi-fans with the given set of vertices rms and the given charac-
teristic function λ form a vector space: we may add them by adding their weights
and multiply by real numbers by scaling their weights. Let MultiFansλ denote
the vector space of complete multi-fans with the given characteristic function λ.

This space may be identified with certain vector subspace of Zn´1p4pn´1q
rms ;Rq. We

will discuss this subspace in detail in subsection 10.3. The set of multi-fans with
integral weights forms a lattice inside MultiFansλ which is a certain sublattice of

Zn´1p4pn´1q
rms ;Zq.

3. Definitions: multi-polytopes

3.1. Multi-polytopes. Let ∆ be a simplicial multi-fan with characteristic
function λ : rms Ñ V . Let HP pV ˚q denote the set of all affine hyperplanes in the
dual vector space V ˚.

For each i P rms choose an affine hyperplane Hpiq Ă V ˚ in the dual space which
is orthogonal to the linear hull of the i-th cone. In other words, Hpiq is defined
by equation Hpiq “ tu P V ˚ | xu, λpiqy “ ciu for some constant ci P R called the
support parameter of Hpiq.
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Definition 3.1. A multi-polytope P is a pair p∆,Hq, where ∆ is a multi-fan,
and H : rms Ñ HP pV ˚q is a function such that Hpiq is orthogonal to λpiq for any
i P rms. We say that P is based on the multi-fan ∆.

Although the definition may be stated in general, we restrict to simplicial multi-
fans ∆, in which case P is called a simple multi-polytope.

Let us denote the set of all multi-polytopes based on ∆ by Polyp∆q. Every
such multi-polytope is completely determined by its support parameters c1, . . . , cm.
Thus Polyp∆q has natural coordinates pc1, . . . , cmq and may be identified with Rm.
This space is called the space of analogous polytopes based on ∆.

To simplify notation, we denote Hpiq by Hi and set

HI :“
č

iPI
Hi for I P K.

HI is a codimension |I| affine subspace in V ˚, since the normals of the hyperplanes
Hi, i P I are linearly independent by ˚-condition. In particular, when I is a maximal
simplex, I P Kxny, HI is a point in V ˚ which is called the vertex of P .

Definition 3.2. Let ∆ be a simplicial multi-fan in V with the underlying
simplicial complex K and let P be a simple multi-polytope based on ∆. Let I P K.
Consider a simple multi-polytope FI “ p∆I ,HIq in the space HI Ă V ˚. Note
that the projected multi-fan ∆I is defined in the space VI (see subsection 2.4), so
the multi-polytope based on ∆I should formally lie in V ˚I . Nevertheless, we may
identify HI with V ˚I . The supporting hyperplanes of FI are defined as follows:
HIpjq “ HI X Hj for any vertex j of lkK I. The multi-polytope FI is called the
face of P dual to I.

3.2. Duistermaat–Heckman function of a multi-polytope. Suppose I P
Kxny. Then the set tλpiq | i P Iu is a basis of V . Denote its dual basis of V ˚ by
tuIi | i P Iu, i.e. xuIi , λpjqy “ δij where δij denotes the Kronecker delta. Take a

generic vector v P V . Then xuIi , vy ‰ 0 for all I P Kxny and i P I. Set

p´1qI :“ p´1q7tiPI|xu
I
i ,vyą0u and puIi q

` :“

#

uIi if xuIi , vy ą 0,

´uIi if xuIi , vy ă 0.

We denote by C˚pIq` the cone in V ˚ spanned by puIi q
`’s (i P I) with apex at a

vertex HI of a multi-polytope P , and by φI the function on V ˚ which takes value
1 inside C˚pIq` and 0 outside (this is just a characteristic function of a subset but
we want to avoid this term since it is already reserved for the function λ).

Definition 3.3. A function DHP on V ˚z
Ťm
i“1Hi defined by

ÿ

IPKxny

p´1qIwpIqφI

is called a Duistermaat–Heckman function associated with P .

The summands in the definition depend on the choice of a generic vector v P V .
Nevertheless, the function itself is independent of v when ∆ is complete (we refer
to [7] when w is integral-valued and note that the same argument works for real
weights).

The function DHP for a simple multi-polytope P based on a complete multi-
fan has the following geometrical interpretation. Let S be the realization of first
barycentric subdivision of K and let GI Ă S be the dual face of I P K, I ‰ ∅, i.e.
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a realization of the set ttI ă I1 ă ¨ ¨ ¨ ă Iku P K
1u. If I P Kxny, then GI is a point.

For a given multi-polytope P based on ∆ there exists a continuous map ψ : S Ñ V ˚

such that ψpGIq Ă HI for any I P K, I ‰ ∅ (in particular, when I P Kxny, this
map sends the point GI P S to the vertex HI of a multi-polytope P ). This map is
unique up to homotopy preserving the stratifications.

Let us take any point u P V ˚z
Ťm
i“1Hi. Then u is not contained in the image of

ψ by the construction of ψ. Thus we may consider the induced map in homology:

ψ˚ : rHn´1pS;Rq Ñ rHn´1pV
˚ztuu;Rq.

The underlying simplicial cycle r∆s may be considered as an element of the group
rHn´1pS;Rq. Since V ˚ is oriented, we have the fundamental class rV ˚ztuus P
rHn´1pV

˚ztuu;Rq. Thus

ψ˚pr∆sq “ WNP puq ¨ rV
˚ztuus,

for some number WNP puq P R. This number has a natural meaning of winding
number of cycle r∆s around u. It happens that this number is exactly the value of
DHP at the point u P V ˚ (see details in [7, Sec.6]).

It is easily seen from the above consideration that DHP has a compact support
when ∆ is complete. Thus in the case of complete multi-fan we may define the
volume of a multi-polytope P as

(3.1) VolpP q “

ż

V ˚
DHP puqdµ

with respect to some euclidean measure on V ˚ (in a presence of a lattice N Ă V the
measure is normalized so that the fundamental domain of N˚ Ă V ˚ has volume 1).

Finally, we may consider the volume as a function on the space Polyp∆q – Rm
of analogous multi-polytopes. We have a function V∆ : Rm Ñ R whose value at
pc1, . . . , cmq equals VolpP q for the multi-polytope P with the support parameters
c1, . . . , cm. The goal of the next section is to study this function using equivariant
localization ideas and prove Theorem 1.1.

Remark 3.4. Needless to say that in case of actual simple convex polytopes the
notions introduced above coincide with the classical ones. If P is a simple convex
polytope and ∆ is its normal fan, then DHP takes the value 1 inside P and 0 outside.
The volume of P is just the usual volume. Note that even if ∆ is an actual fan,
not all multi-polytopes based on ∆ are actual convex polytopes. Nevertheless, the
notion of volume and Duistermaat–Heckman function have transparent geometrical
meanings for all of them.

Example 3.5. Consider the two-dimensional multi-fan ∆ with m “ 5 and V “
R2 depicted on Fig.1, left. Its characteristic function is the following: λp1q “ p1, 0q,
λp2q “ p´2, 1q, λp3q “ p1,´2q, λp4q “ p0, 1q, λp5q “ p´1,´1q. The weight function
takes the value 1 on the subsets t1, 2u, t2, 3u, t3, 4u, t4, 5u, t1, 5u and the value 0
on all other subsets. Geometrically this indicates the fact that in the multi-fan we
have the cones generated by tλp1q, λp2qu, tλp2q, λp3qu, etc. with multiplicity one,
and do not have the cones generated by tλp1q, λp3qu, tλp1q, λp4qu, and so on. It
can be seen that every generic point of V “ R2 is covered by exactly two cones,
therefore ∆ is pre-complete of degree 2. Moreover, a simple check shows that all its
projected multi-fans are complete. Hence ∆ is complete. The underlying chain of

∆ has the form p1, 2q`p2, 3q`p3, 4q`p4, 5q`p5, 1q P C1p4p1qr5s ;Rq which is obviously
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a simplicial cycle. The underlying complex K of ∆ is a circle made of 5 segments,
and r∆s is its fundamental class.

λp1q

λp2q

λp3q

λp4q

λp5q

∆

H1
H2

H3

H4

H5

P

Figure 1. Example of a multi-fan ∆ and a multi-polytope P
based on it.

An example of a multi-polytope P based on ∆ is shown at Fig.1, right. Each
hyperplane Hi is orthogonal to the linear span of the corresponding ray λpiq of ∆,
i P r5s. The Duistermaat–Heckman function of P is shown on Fig.2. The function
is constant on the chambers: it takes value 2 in the middle pentagon since the
multi-polytope “winds” around the points of this region twice, and takes value
1 on triangles adjacent to the central pentagon. The value of DHP in all other
chambers is 0. The volume of a multi-polytope is therefore not just the volume of
the five-point star: the points in the central region contribute to the volume twice.

4. Volume polynomial from the index map

4.1. Index map. Let ∆ “ pwch, λq be a simplicial multi-fan in V – Rn with
m rays. The characteristic function λ : rms Ñ V may be considered as a linear map
λ : Rm Ñ V which sends the basis vector ei P Rm, i P rms to λpiq. Let txiuiPrms
be the basis of pRmq˚ dual to teiuiPrms, so that pRmq˚ “ xx1, . . . , xmy. Let us

also consider the adjoint map λJ : V ˚ Ñ pRmq˚. By definition it sends the vector
u P V ˚ to

m
ÿ

i“1

xu, λpiqyxi.

For any maximal simplex I “ ti1, . . . , inu P K
xny the vectors tλpiquiPI form a basis

of V according to ˚-condition, defined in subsection 2.2. Let tuIi uiPI be the dual
basis of V ˚. Let ιI : pRmq˚ Ñ V ˚ be the linear map defined by

(4.1) ιIpxiq “

#

uIi if i P I,

0, if i R K.
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H1
H2

H3

H4

H5

2
1

1

1

11

Figure 2. Duistermaat–Heckman function of the multi-polytope P .

Consider Rrx1, . . . , xms, the algebra of polynomials on pRmq˚. Also let RrV ˚s
denote the algebra of polynomials on V ˚. Both polynomial algebras are graded,
where we set the degrees of the generating spaces pRmq˚ and V ˚ to 2. The linear
map ιI induces the graded algebra homomorphism

ιI : Rrx1, . . . , xms Ñ RrV ˚s,

denoted by the same letter. In the following, if A is a graded algebra, we denote
by Aj its homogeneous part of degree j.

Let S´1RrV ˚s denote the ring of rational functions over RrV ˚s graded in a
natural way. Given a weight function w : Kxny Ñ R we can define the linear map
π∆

! : Rrx1, . . . , xms Ñ S´1RrV ˚s as the following weighted sum:

(4.2) π∆
! pxq “

ÿ

IPKxny

wpIqιIpxq

| detλI |
ś

iPI ιIpxiq

for x P Rrx1, . . . , xms. We assume that an inner product is fixed on V , so that
| detλI | “ | detpλpiqiPIq| is well-defined even if there is no lattice in V . The inner
product on V induces a euclidean measure on V ˚ and |detλI | is the volume of
the parallelepiped spanned by tλpiquiPI . The translation invariant measure on
V ˚ is assumed the same as in (3.1). The map π∆

! is well-defined since λI are
isomorphisms. It can be seen that π∆

! is homogeneous of degree ´2n. It is called
the index map of multi-fan ∆ “ pK,w, λq.

Theorem 4.1. The following properties of ∆ are equivalent:

(1) The image of π∆
! lies in RrV ˚s Ă S´1RrV ˚s;

(2) The underlying chain wch “
ř

IPKxny wpIqI is closed;
(3) The multi-fan ∆ “ pwch, λq is complete.

Proof. Equivalence of (2) and (3) was already shown in Proposition 2.7. The
implication (2) ñ (1), in case when λ takes values in the lattice and w is integer-
valued, is proved in [7, Lm.8.4]. It should be noted that in this case |detλI |
appearing in the denominator is nothing but the order of the finite group GI “
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N{NI , whereN Ă V is the lattice andNI is a sublattice generated by tλpiquiPI . The
situation when λ and w are rational is reduced to the integral case by multiplying
all values of λ and w by a common denominator (both conditions (1) and (2) are
invariant under rescaling). The real case follows by continuity. Indeed, the subset
of simplicial cycles with rational coefficients, Zn´1pK;Qq, is dense in Zn´1pK;Rq;
the right hand side of (4.2) is continuous with respect to λ and w; and the subset
RrV ˚s is closed in S´1RrV ˚s. Therefore, arbitrary complete multi-fan pw, λq can be
approximated by a sequence of rational complete multi-fans ∆α “ pwα, λαq which

implies that the values of π∆
! are approximated by the values of π∆α

! . Since the

values of π∆α

! are polynomials, so are the values of π∆
! .

Let us prove that (1) implies (2). Take any simplex J P K such that |J | “ n´1
and consider the monomial xJ “

ś

iPJ xj of degree 2pn´ 1q lying in Rrx1, . . . , xms.
The map π∆

! lowers the degree by 2n thus we have deg π∆
! pxJq “ ´2. Condition

(1) implies that π∆
! pxJq is a polynomial, thus π∆

! pxJq “ 0. By definition, we have

π∆
! pxJq “

ÿ

IPKxny

wpIqιIpxJq

| detλI |
ś

iPI ιIpxiq

Note that ιI is a ring homomorphism and ιIpxiq “ 0 if i R I by (4.1). Therefore,

π∆
! pxJq “

ÿ

IPKxny,JĂI

wpIq
ś

iPJ ιIpxiq

|detλI |
ś

iPI ιIpxiq
“

ÿ

jPrmszJ,I:“JYtjuPKxny

wpIq

|detλI |ιIpxjq

Recall that ιIpxiq “ uIi , where tuIi uiPI is the basis of V ˚ dual to the basis tλpiquiPI
of V . Consider the linear functional % P V ˚ taking the value %pvq “ detppλpiqqiPJ , vq
for any v P V . It can be seen that |detλI |ιIpxjq P V

˚, where I “ J Ytju, coincides
with % up to sign. More precisely |detλI |ιIpxjq “ rI :Js%, where rI :Js is the
incidence sign of two simplices of K (it appears because we need to permute the
vectors ppλpiqqiPJ , λpjqq in order to get the positive determinant). Therefore,

0 “ π∆
! pxJq “

1

%

ÿ

IPKxny,JĂI

rI :JswpIq

It remains to notice that the sum in this expression is exactly the coefficient of J
in the simplicial chain dwch P Cn´2pK;Rq. This calculation applies to any J P K,
|J | “ n´ 2, therefore dwch “ 0. �

The map λJ : V ˚ Ñ pRmq˚, the adjoint of λ, induces the ring homomorphism
RrV ˚s Ñ Rrx1, . . . , xms. Hence Rrx1, . . . , xms obtains the structure of RrV ˚s-
module. It can be checked that λJ is the right inverse of each ιI : pRmq˚ Ñ
V ˚, therefore all ring homomorphisms ιI : Rrx1, . . . , xms Ñ RrV ˚s are the RrV ˚s-
module homomorphisms. Thus π∆

! is also a homomorphism of RrV ˚s-modules (even
in the case wch is not closed).

Remark 4.2. Note that conditions (1) and (2) in Theorem 4.1 make sense over
an arbitrary field k. We may start with a k-valued chain wch P Cn´1pK;kq and a
characteristic function valued in kn. These data allow to define the maps ιI and
π∆

! absolutely similar to the real case.

Problem 4.3. Does equivalence of (1) and (2) in Theorem 4.1 hold for arbi-
trary fields?
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For general fields we cannot reduce the task to the integral case but it is likely
that there exists a straightforward algebraical proof.

4.2. Stanley–Reisner rings. Let us recall the definition of the Stanley–
Reisner ring.

Definition 4.4. Let K be a simplicial complex on the vertex set rms and k
be a ground ring (either Z or a field). The Stanley–Reisner ring is the quotient of
a polynomial ring by the Stanley–Reisner ideal:

krKs :“ krx1, . . . , xms{ISR, where ISR “ pxi1 ¨ . . . ¨ xik | ti1, . . . , iku R Kq,

endowed with the grading deg xi “ 2 and the natural structure of graded krx1, . . . , xms-
module.

For now let us concentrate on the case k “ R. Given a characteristic function
λ on K we may define a certain ideal in RrKs generated by linear forms. As before,
let λJ : V ˚ Ñ pRmq˚ “ xx1, . . . , xmy denote the adjoint map of λ : Rm Ñ V . Let
Θ denote the ideal of Rrx1, . . . , xms generated by the image of λJ. By abuse of
notation we denote the corresponding ideal in RrKs with the same letter Θ.

Let us state things in the coordinate form. Fix a basis f1, . . . , fn of V . Then
every characteristic value λpiq, i P rms is written as a row-vector pλi,1, . . . , λi,nq,
where λi,j P R. The ˚-condition for λ (see subsection 2.2) states that the square

matrix formed by row-vectors pλi,1, . . . , λi,nqiPI is non-degenerate for any I P Kxny.
If we consider the dual basis f̄1, . . . , f̄n in the dual space V ˚, then its image

under λJ : V ˚ Ñ pRmq˚ “ xx1, . . . , xmy has the form

θj :“ λJpf̄jq “ λ1,jx1 ` λ2,jx2 ` ¨ ¨ ¨ ` λm,jxm

for j “ 1, . . . , n. Thus Θ (as an ideal either in Rrx1, . . . , xms or RrKs) is gen-
erated by the elements θ1, . . . , θn. In particular, if λ is integer-valued, then Θ “

pθ1, . . . , θnq may be considered as a well-defined ideal in ZrKs or Zrx1, . . . , xms.
It is known that the Krull dimension of RrKs equals dimK ` 1 “ n (see e.g.

[16]), and θ1, . . . , θn is a linear system of parameters in RrKs for any characteristic
function λ and every choice of a basis in V (e.g. [4, Lm.3.3.2]). Thus RrKs{Θ
has Krull dimension 0, which in our case is equivalent to saying that RrKs{Θ is a
finite-dimensional vector space. Moreover, it is known (see e.g. [7, Lm.8.1] or [1,
Lm.3.5]) that the classes of monomials xI “ xi1 ¨ . . . ¨ xik taken for each simplex
I “ ti1, . . . , iku P K linearly span RrKs{Θ (however there exist relations on these
classes!).

We introduce the following notation to make the exposition consistent with
that of [7]:

(4.3) H˚T p∆;kq :“ krKs, H˚p∆; kq :“ krKs{Θ,

and, for short, H˚T p∆q :“ H˚T p∆;Rq and H˚p∆q :“ H˚p∆;Rq.

4.3. Evaluation on fundamental class. Let x “ xj1i1 ¨. . .¨x
jk
ik

be a monomial

whose index set ti1, . . . , iku is not a simplex of K. Then ιIpxq “ 0 for any I P Kxny,
according to (4.1). Therefore π∆

! pxq “ 0. Hence π∆
! vanishes on the Stanley–Reisner

ideal ISR and descends to the map

π∆
! : RrKs Ñ RrV ˚s.
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Since π∆
! is a map of RrV ˚s-modules, we may apply bRrV ˚sR to π∆

! . This gives a
linear map

ż

∆

: H2np∆q Ñ R – RrV ˚s{RrV ˚s`

Definition 4.5. Let ∆ “ pK,w, λq be a complete simplicial multi-fan. The
map

ş

∆
: H2np∆q Ñ R is called “the evaluation on the fundamental class of ∆”.

We denote the composite map Rrx1, . . . , xms� H2np∆q Ñ R by
ş

∆,Rrms.

4.4. Chern class of a multi-polytope. Let P be a multi-polytope based on
a complete simplicial multi-fan ∆ “ pK,w, λq of dimension n, and let c1, . . . , cm P R
be the support parameters of P . The element

c1pP q :“ c1x1 ` ¨ ¨ ¨ ` cmxm P H
2p∆q

is called the first Chern class of P .

Proposition 4.6.

(4.4) VolpP q “
1

n!

ż

∆

c1pP q
n.

Proof. If λ and w are integral, the statement is proved in [7, Lm.8.6]. The
rational case follows from the integral case by the following arguments. (1) In the
rational case we may choose a refined lattice such that λ becomes integral with
respect to this lattice (this would change the euclidean measure on V ˚, but this
change affects both sides of (4.4) in the same way). (2) A rational weight w may
be turned into an integral weight by rescaling (both sides of (4.4) depend linearly
on w, thus rescaling of w preserves (4.4)). Real case follows by continuity, since
both sides of (4.4) depend continuously on λ and w. �

It is easily seen that, for a given ∆, the expression on the right hand side of
(4.4) is a homogeneous polynomial of degree n in the variables c1, . . . , cm:

V∆pc1, . . . , cmq “
1

n!

ż

∆

pc1x1 ` ¨ ¨ ¨ ` cmxmq
n.

Thus Proposition 4.6 implies Theorem 1.1.

5. Basic properties of volume polynomials

5.1. Partial derivatives of volume polynomial. We continue to assume
that there is a fixed inner product in V which makes the integral lattice in V
unnecessary. The inner product allows to identify V and V ˚ and to introduce a
measure on each affine subspace of V or V ˚. Consider the space ΛkV of exterior
forms on V . Given an inner product in V we obtain an inner product on ΛkV .

Suppose that every simplex I P K is oriented somehow. For a characteristic
function λ : rms Ñ V on K and I “ ti1, . . . , iku P K let λpIq denote the skew form
λpi1q ^ ¨ ¨ ¨ ^ λpikq P ΛkV , where pi1, . . . , ikq is the positive order of vertices of I.
Denote the norm of λpIq by covolpIq:

covolpIq :“ }λpIq} “ }λpi1q ^ ¨ ¨ ¨ ^ λpikq}.

Recall from Section 3 the notion of a face of a multi-polytope. If P is a multi-
polytope of dimension n and I P K then FI is a multi-polytope of dimension n´|I|
sitting in the affine subspace HI Ă V ˚. There is a measure on HI determined by
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the inner product, hence we may define the volume of FI . The following lemma
shows that we can compute the volumes of faces from the volume polynomial.

Lemma 5.1 (cf.[20, Thm.2.4.3]). Let J Ă rms. Consider the homogeneous
polynomial BJV∆ of degree n´ |J |. Then

(1) Let θu denote the linear differential operator
řm
i“1xu, λpiqyBi for u P V ˚.

Then θuV∆ “ 0.
(2) If J R K, then BJV∆ “ 0;
(3) If J P K, then the value of the polynomial BJV∆ at a point pc̃1, . . . , c̃mq P

Rm is equal to

(5.1)
VolFJ

covolpJq

when |J | ă n and

(5.2)
wpJq

covolpJq
“

wpJq

|detλJ |

when |J | “ n. Here c̃i are the support parameters of a multi-polytope P
and FJ are its faces.

Proof. (1) We have

θuV∆ “
1

n!

ż

´

m
ÿ

i“1

xu, λpiqy
B

Bci

¯

pc1x1 ` ¨ ¨ ¨ ` cmxmq
n

“
1

pn´ 1q!

ż

´

m
ÿ

i“1

xu, λpiqyxi

¯

¨ pc1x1 ` ¨ ¨ ¨ ` cmxmq
n´1 “ 0,

since
řm
i“1xu, λpiqyxi “ 0 in H˚p∆q.

(2) The proof of second statement is completely similar to (1). We have

BJV∆ “
1

n!

ż

´

ź

iPJ

B

Bci

¯

pc1x1 ` ¨ ¨ ¨ ` cmxmq
n

“
1

pn´ |J |q!

ż

p
ź

iPJ

xiq ¨ pc1x1 ` ¨ ¨ ¨ ` cmxmq
n´|J| “ 0,

since xJ “
ś

iPJ xi “ 0 in H˚p∆q for J R K.
(3) The second claim requires some technical work. At first, let |J | “ n, i.e.

J P Kxny. We have

BJV∆ “ BJ
1

n!

ż

∆

pc1x1 ` ¨ ¨ ¨ ` cmxmq
n “

ż

∆

xJ “ π∆
! pxJq,

where xJ “
ś

iPJ xi. By the definition of the index map (4.2) we have

π∆
! pxJq “

ÿ

IPKxny

wpIqιIpxJq

|detλI |
ś

iPI ιIpxiq
.

If I ‰ J , the corresponding summand vanishes, since ιIpxjq “ 0 for j R I by (4.1).

The summand corresponding to I “ J contributes wpJq
| detλJ |

which proves the state-
ment.
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Let us prove the case |J | ă n. Recall that the projected multi-fan ∆J “

plkK J,wJ , λJq is the multi-fan in the vector space VJ “ V {xλpjq | j P Jy. There
exists a “restriction” map

ϕJ : H˚p∆q Ñ H˚p∆Jq,

defined as follows:

ϕJpxjq “

$

’

&

’

%

xj , if j P lkK J ;

´
ř

iPlkK J p
J
i,jxi, if j P J ;

0, otherwise

Here the constants pJi,j for j P J and i P lkK J are defined by

(5.3) projJ λpiq “
ÿ

jPJ

pJi,jλpjq,

where projJ λpiq is the orthogonal projection of the vector λpiq to the linear subspace
spanned by λpjq pj P Jq.

The homomorphism ϕJ is now defined on the level of polynomial algebras.

Claim 5.2. ϕJ is a well-defined ring homomorphism from H˚p∆q “ RrKs{Θ
to H˚p∆Jq “ RrlkK Js{ΘJ .

Proof. The proof is a routine check. First let us prove that Stanley–Reisner
relations in ∆ are mapped to the Stanley–Reisner ideal of ∆J . Let I be a non-
simplex of K. The definition of ϕJ implies that ϕJpxIq “ 0 unless I Ă J Y
VertplkK Jq. If I Ă J YVertplkK Jq, we have that I XVertplkK Jq is a non-simplex
of lkK J (otherwise we would have I P K contradicting the assumption). Then the
element ϕJpxIq “ ϕJ

`
ś

iPIXVertplkK Jq xi
˘

¨ ϕJ
`
ś

iPIXJ xi
˘

“
ś

iPIXVertplkK Jq xi ¨

ϕJ
`
ś

iPIXJ xi
˘

lies in the Stanley–Reisner ideal of lkK J .
Let us check that linear relations in H˚p∆q are mapped into linear relations

of H˚p∆Jq. A general linear relation in H˚p∆q has the form
ř

iPrmsxu, λpiqyxi for

some u P V ˚. The map ϕJ sends it to the element
ÿ

iPVertplkK Jq

´

xu, λpiqy ´
ÿ

jPJ

pJi,jxu, λpjqy
¯

xi

“
ÿ

iPVertplkK Jq

A

u, λpiq ´
ÿ

jPJ

pJi,jλpjq
E

xi “
ÿ

iPVertplkK Jq

xu, λJpiqyxi.

(note that λpiq ´
ř

jPJ p
J
i,jλpjq “ λpiq ´ projJ λpiq “ λJpiq is the projection of λpiq

to the plane orthogonal to xλpjqyjPJ). The last expression is zero in H˚p∆Jq. �

Next we show that restriction homomorphism is compatible with the first Chern
classes of the multi-polytopes.

Claim 5.3. ϕJ sends c1pP q to c1pFJq.

Proof. Recall that HJ denotes the ambient space of the face FJ of the multi-
polytope P . The supporting hyperplanes of FJ are given by intersections HJ XHi,
where Hi is the supporting hyperplane of P for i P lkK J .

Let us denote by UJ the subspace spanned by λpjq’s pj P Jq so that VJ “ V {UJ .
By the definition (see subsection 2.4), λJpiq is the projection image of λpiq on VJ if
i is the vertex of lkK J . As in the proof of previous claim we identify the quotient
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space VJ “ V {UJ with the orthogonal complement UKJ of UJ . The projected vector
λJpiq can be considered as the element in V and we have

(5.4) λpiq “ λJpiq ` projJ λpiq

with respect to the orthogonal decomposition V “ UKJ ‘ UJ .
The affine hyperplane Hi is given by tu P V ˚ | xu, λpiqy “ ciu. The affine plane

HJ is given by tu P V ˚ | xu, λpjqy “ cj , for all j P Ju. By using (5.3) and (5.4) we
may write the intersection Hi XHJ as

tu P HJ | xu, λJpiq ` projJ λpiqy “ ciu “
!

u P HJ |

A

u, λJpiq `
ÿ

jPJ

pJi,jλpjq
E

“ ci

)

“

!

u P HJ | xu, λJpiqy “ ci ´
ÿ

jPJ

pJi,jcj

)

.

Therefore the i-th support parameter of FJ is ci ´
ř

jPJ p
J
i,jcj for i P lkK J .

Now it remains to note that the coefficient of xi in the projected class ϕJpc1pP qq
is exactly ci ´

ř

jPJ p
J
i,jcj . Thus ϕJpc1pP qq “ c1pFJq. �

Now we prove the following

Claim 5.4.
ż

∆

y
ź

jPJ

xj “
1

covolpJq

ż

∆J

ϕJpyq for any y P H˚p∆q.

Proof. Let us denote by VolS the volume of the parallelepiped formed by a
set of vectors S. Then covolpJq “ VoltλpiquiPJ and the index map can be written
as

(5.5) π∆
! pxq “

ÿ

IPKxny

wpIqιIpxq

VoltλpiquiPI
ś

iPI ιIpxiq
.

Let Ĩ P lkK J and, therefore, Ĩ \ J P K. Then

VoltλpiquiPĨ\J “ VoltλpiquiPJ ¨VoltλJpiquiPĨ “ covolpJq ¨VoltλJpiquiPĨ .

This together with (5.5) implies the lemma. �

Applying claim 5.4 to y “ c1pP q
n´|J| and using claim 5.3, we obtain

BJV∆ “
1

pn´ |J |q!

ż

∆

c1pP q
n´|J|

ź

jPJ

xj “
1

covolpJq

1

pn´ |J |q!

ż

∆J

c1pFJq
n´|J|.

Expression at the right evaluates to VolpFJ q
covolpJq which finishes the proof of Lemma 5.1.

�

Corollary 5.5. Let ∆ “ pwch, λq be a complete multi-fan. Then V∆ “ 0
implies wch “ 0.

Proof. If V∆ “ 0, then BJV∆ “ 0 for any J P Kxny. This implies wch “ 0. �

Remark 5.6. Of course, according to Proposition 7.2 the polynomial V∆ is
non-zero if and only if the map

ş

∆
is non-zero. The fact that

ş

∆
is non-zero for

every non-zero wch is proved by applying this map to all monomials xI , I P K
xny

(recall that these monomials span H2np∆q). This procedure is essentially the same
as applying differential operators BI to V∆.
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Corollary 5.7. Let BP denote the linear differential operator
ř

iPrms c̃iBi where

c̃i are the support parameters of a multi-polytope P . Then

1

n!
BnPV∆ “ VolpP q,

1

pn´ |I|q!
B
n´|I|
P BIV∆ “

VolpFIq

covolpIq
.

Proof. Both formulas follow from Lemma 5.1 and a simple observation: if
Ψ P Rrc1, . . . , cmsk is a homogeneous polynomial of degree k, then

´

ÿ

iPrms
c̃iBi

¯k

Ψ “ k!Ψpc̃1, . . . , c̃mq.

(evaluation at a point coincides with the result of differentiation up to k!). �

5.2. Recovering multi-fans from volume polynomials. When we asso-
ciate a volume polynomial to a complete simplicial multi-fan, the numbering of the
one-dimensional cones by rms is incorporated in the data of the multi-fan. We call
a multi-fan with the numbering a based multi-fan. Two based multi-fans ∆ and ∆1

are said to be equivalent if there is an automorphism of V which induces an iso-
morphism between ∆ and ∆1 preserving the numbering. In the presence of a lattice
N Ă V there should be an automorphism of the lattice with this property. Equiv-
alent complete simplicial based multi-fans have the same volume polynomial. We
will see that the converse holds for complete simplicial based multi-fans ∆ whose
underlying simplicial complexes are oriented strongly connected pseudo-manifolds.
Strong connectedness of K means that for any two maximal simplices I, I 1 P Kxny

there exists a sequence of maximal simplices I “ I0, I1, . . . , Ik “ I 1 such that
|Is X Is`1| “ n´ 1 for 0 ď s ď k ´ 1.

We assume that the volume polynomial V∆ associated to ∆ is non-zero. Then
the class r∆s is non-zero. Since K is assumed to be a pseudo-manifold, wpIq ‰ 0
for any I P Kxny. Then Lemma 5.1 shows that V∆ recovers K.

Remember that

(5.6)
m
ÿ

i“1

xu, λpiqyxi “ 0 in H˚p∆q for any u P V ˚.

Let J P K, |J | “ n ´ 1. Since K is assumed to be a pseudo-manifold, there are
exactly two elements i1 and i2 in rms such that J Y ti1u and J Y ti2u are in Kxny.
Multiplying xJ “

ś

iPJ xi to the both sides in (5.6), we obtain
ÿ

jPJ

xu, λpjqyxjxJ ` xu, λpi1qyxi1xJ ` xu, λpi2qyxi2xJ “ 0 for all u P V ˚.

Applying
ş

∆
to the above identity, we have

A

u,
ÿ

jPJ

`

ż

∆

xjxJ
˘

λpjq `
`

ż

∆

xi1xJ
˘

λpi1q `
`

ż

∆

xi2xJ
˘

λpi2q
E

“ 0.

Since this holds for all u P V ˚, one can conclude

(5.7)
ÿ

jPJ

`

ż

∆

xjxJ
˘

λpjq `
`

ż

∆

xi1xJ
˘

λpi1q `
`

ż

∆

xi2xJ
˘

λpi2q “ 0.

Note that the numbers
ş

∆
xi1xJ and

ş

∆
xi2xJ are non-zero. Identity (5.7) shows

that once basis vectors tλpiquiPI for some I P Kxny are determined, then the other
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vectors λpkq’s will be determined by the intersection numbers
ş

∆
xI where I consists

of elements in rms with |I| “ n (an element in I may appear more than once). On
the other hand, since

V∆ “
1

n!

ż

∆

pc1x1 ` ¨ ¨ ¨ ` cmxmq
n,

the coefficient of cI agrees with
ş

∆
xI up to some non-zero constant independent

of ∆. These show that V∆ determines ∆ up to equivalence.

Proposition 5.8. Two complete simplicial toric varieties are isomorphic if
and only if their volume polynomials agree up to permutations of variables. Here it
is assumed that all λpiq’s are the primitive generators of the rays.

Proof. This follows from the above observation and the fact that two toric
varieties are isomorphic if and only if their fans are isomorphic [3] 1. �

6. A formula for the volume polynomial

We say that the set S of n ` 1 vectors in V – Rn is in general position,
if any n of them are linearly independent. Any such set determines a multi-fan
whose underlying simplicial complex is a boundary of a simplex K “ B4rn`1s. The
weights of all maximal simplices are the same up to sign due to closedness condition
dwch “ 0. Thus without loss of generality we may assume that all weights are ˘1
depending on the orientations. We call such multi-fan an elementary multi-fan and
denote it ∆elpSq.

Lemma 6.1. Let ∆ be an elementary multi-fan determined by the vectors λp1q, . . . , λpn`
1q P V . Let 0 ‰ pα1, . . . , αn`1q P Rn`1 be a nonzero linear relation on these vectors,

i.e.
řn`1
i“1 αiλpiq “ 0. Then

(6.1) V∆pc1, . . . , cn`1q “ const ¨pα1c1 ` ¨ ¨ ¨ ` αn`1cn`1q
n.

for some constant const.

We postpone the proof to subsection 8.3.

Remark 6.2. It is not difficult to compute the constant: just apply the differ-
ential operator BJ for J Ă rn`1s, |J | “ n to both sides of (6.1) and use Lemma 5.1.
However, we do not need this constant at the moment and ignore it to simplify the
exposition.

Theorem 6.3. Let ∆ “ pwch, λq be a complete multi-fan. Let v P V be a
generic vector. Then
(6.2)

V∆pc1, . . . , cmq “
1

n!

ÿ

I“ti1,...,inuPK

wpIq

|detλI |
śn
j“1 αI,j

pαI,1ci1 ` ¨ ¨ ¨ ` αI,ncinq
n,

where αI,1, . . . , αI,n are the coordinates of v in the basis pλpi1q, . . . , λpinqq, and wpIq
is the weight.

1We are grateful to Ivan Arzhantsev from whom we learned this fact



VOLUME POLYNOMIALS AND DUALITY ALGEBRAS OF MULTI-FANS 21

Proof. We derive a more general family of formulas, and (6.2) will be a par-
ticular case. Let rm1s be a set containing rms and let

zch “
ÿ

JPprm
1s

n`1q

zpJqJ P Cnp4rm1s;Rq

be a simplicial chain such that dzch “ wch (it exists since wch, considered as an
element in Cnp4rm1s;Rq, is closed hence exact). Consider any function η : rm1s Ñ V
which extends λ : rms Ñ V and satisfies the condition: for any J “ tj1, . . . , jn`1u

with zpJq ‰ 0 the vectors ηpj1q, . . . , ηpjn`1q are in general position. Thus for any
such J we can construct an elementary multi-fan ∆elpηpJqq.

In the group of multi-fans we have a relation ∆ “
ř

JPprm
1s

n`1q
zpJq∆elpηpJqq, if

∆ is considered as a multi-fan on rm1s. Volume polynomial is additive, thus we get

(6.3) V∆ “
ÿ

JPprm
1s

n`1q

zpJqV∆elpηpJqq.

Therefore, any simplicial chain whose boundary is wch gives a formula for the
volume polynomial. Now let us consider the particular case, namely, the cone over
wch. Let rm1s “ rms \ tru and set ηprq “ v, for a generic vector v P V . So the
phrase “v is a generic vector” means that the set λpIq \ tvu is in general position
for any I Ă rms such that |I| “ n and wpIq ‰ 0. The function z on the cone is
defined in an obvious way: zpI \ truq :“ wpIq.

Relation (6.3) and Lemma 6.1 imply

(6.4) V∆ “
ÿ

I“ti1,...,inuĂrms

const ¨wpIq ¨ pαI,1ci1 ` ¨ ¨ ¨ ` αI,ncin ` βIcrq
n.

The tuple pαI,1, . . . , αI,n, βIq is a linear relation on the vectors λpi1q, . . . , λpinq, v.
Therefore we may assume that βI “ ´1 and pαI,1, . . . , αI,nq are the coordinates of
v in the basis λpi1q, . . . , λpinq.

Left hand side of (6.4) does not depend on cr (it is a redundant support pa-
rameter), therefore we may put cr “ 0:

(6.5) V∆ “
ÿ

I“ti1,...,inuĂrms

AI ¨ wpIq ¨ pαI,1ci1 ` ¨ ¨ ¨ ` αI,ncinq
n.

To compute the constants AI take any J “ tj1, . . . , jnu P K and apply the
differential operator BJ “

B
Bcj1

¨ . . . ¨ B
Bcjn

to the identity (6.5). On the left we have

BJV∆ “
wpJq
| detλJ |

, according to Lemma 5.1. On the right side all summands with

I ‰ J vanish, and the one with I “ J contributes n! ¨ AJ ¨ wpJq
ś

i αJ,i. Thus
AJ “

1
n!

1
| detλJ |¨

ś

i αJ,i
and the statement follows. �

Remark 6.4. Note that the formula (6.2) can be applied to compute the volume
of a simple convex polytope in the case when the polytope is described as the
intersection of half-spaces with the given equations. In this case the formula is
known as Lawrence’s formula [8]. It has found applications in explicit volumes’
calculations.

Example 6.5. Consider the standard fan ∆ of CP 2, generated by the vectors
λp1q “ p1, 0q, λp2q “ p0, 1q, λp3q “ p´1,´1q. Take the generic vector v “ p1, 2q.
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We have
v “ λp1q ` 2λp2q “ λp2q ´ λp3q “ ´2λp3q ´ λp1q.

Theorem 6.3 implies

V∆ “
1

2

ˆ

1

2
pc1 ` 2c2q

2 ´ pc2 ´ c3q
2 `

1

2
p´c1 ´ 2c3q

2

˙

.

This expression equals 1
2 pc1`c2`c3q

2. The same expression is given by Lemma 6.1.

Example 6.6. Consider the normal fan of the standard n-cube. The un-
derlying simplicial complex is isomorphic to the boundary of cross-polytope. Let
t1, . . . , n,´1, . . . ,´nu be its set of vertices, so the maximal simplices have the form
t˘1, . . . ,˘nu. We have λp˘iq “ ˘ei. Take the generic vector v “ e1 ` ¨ ¨ ¨ ` en.
Then Theorem 6.3 implies

V∆ “
1

n!

ÿ

pε1,...,εnqPt`,´un

1
śn
i“1 εi

pε1cε11 ` ¨ ¨ ¨ ` εncεnnq
n.

On the other hand, we have V∆ “
ś

ipci` c´iq by geometrical reasons. Indeed, the
polytope dual to ∆ is the brick with sides tci ` c´iuiPrns. By setting c´i “ 0 for
each i we get the identity

(6.6)
n
ź

i“1

ci “
1

n!

ÿ

IĎrns

p´1qn´|I|cnI ,

where cI “
ř

iPI ci. This identity is well known as discrete polarization identity.

Remark 6.7. The proof of Theorem 6.3 implies the following consideration.
Take two simplicial n-chains zch,1, zch,2 P Cnp4rms;Rq endowed with functions
η1, η2 : rms Ñ Rn such that ηεpJq is in general position for any simplex J of the
chain zch,ε, ε “ 1, 2. Assume that dzch,1 “ dzch,2 and the functions η1, η2 agree
on the vertices of the boundary. Then the volume polynomial of the multi-fan
∆ “ pdzch,1, η1q “ pdzch,2, η2q can be expressed by two formulas:

ÿ

J“pj1,...,jn`1qĂrm1s

const ¨z1pJqpαJ,1cj1 ` ¨ ¨ ¨ ` αJ,n`1cjn`1
qn “ V∆

“
ÿ

J“pj1,...,jn`1qĂrm1s

const ¨z2pJqpαJ,1cj1 ` ¨ ¨ ¨ ` αJ,n`1cjn`1q
n.

We may take a difference of the left and right parts and summarize as follows. Let
us take any closed simplicial n-chain zch, dzch “ 0, on the vertex set rm1s, and
endow it with a function η : rm1s Ñ Rn which is in general position on any simplex
J of the chain. Then we get an identity

ÿ

J“pj1,...,jn`1qĂrm1s

const ¨zpJqpαJ,1cj1 ` ¨ ¨ ¨ ` αJ,n`1cjn`1q
n “ 0

(the constants may be computed by the same method as we used previously). This
seems to be a quite general way to construct algebraical identities from geometrical
data.

This idea can be illustrated by a simple identity obtained in Example 6.5:

1

2
pc1 ` 2c2 ´ c4q

2 ´ pc2 ´ c3 ´ c4q
2 `

1

2
p´c1 ´ 2c3 ´ c4q

2 “ pc1 ` c2 ` c3q
2.

This identity is induced by the schematic picture shown on Fig.3. Note that the
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Figure 3. Two simplicial chains with vector functions having the
same boundary

last step in the proof of Theorem 6.3 was to specialize c4 “ 0, but even without
this specialization the identity holds true.

7. Poincare duality algebra of a multi-fan

7.1. Poincare duality algebras.

Definition 7.1. Let k be a field. Let A˚ “
Àn

j“0 A2j be a finite-dimensional
graded commutative k-algebra such that

‚ there exists an isomorphism
ş

A : A2n Ñ k;

‚ the pairing A2p bA2n´2p Ñ k, ab b ÞÑ
ş

Apa ¨ bq is non-degenerate.

Then A is called a Poincare duality algebra of formal dimension 2n.

Let Bi “
B
Bci

, i P rms be the differential operator acting on the ring of poly-

nomials Rrc1, . . . , cms in a standard way. For a subset I Ă rms let BI denote the
product

ś

iPI Bi.
Consider the algebra of differential operators with constant coefficients D :“

RrB1, . . . , Bms. It will be convenient to double the degree, so we assume deg Bi “ 2,
i P rms (while still assuming that deg ci “ 1). For any non-zero homogeneous
polynomial Ψ P Rrc1, . . . , cms of degree n we may consider the following ideal in D:

Ann Ψ :“ tD P D | DΨ “ 0u.

It is not difficult to check that the quotient D{Ann Ψ is a Poincare duality algebra
of formal dimension 2n (see [20, Prop.2.5.1]), where the “integration map” assigns
the number DΨ P R to any differential operator of rank n (i.e. of formal degree 2n
in our setting).

It happens that every Poincare duality algebra generated by degree two can be
obtained by this construction as the following proposition shows.

Proposition 7.2. Suppose char k “ 0 and let krms “ krx1, . . . , xms be a poly-
nomial ring, where deg xi “ 2. Then the following three sets of objects are naturally
equivalent:

(1) Poincare duality algebras A˚ of formal dimension 2n which are the quo-
tients of the polynomial ring krms;

(2) Non-zero homogeneous polynomials Ψ P krc1, . . . , cms of degree n (where
deg ci “ 1) up to multiplication by a non-zero constant;

(3) Non-zero linear maps
ş

: krms2n Ñ k up to multiplication by a non-zero
constant.
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Proof. We give a very brief sketch of the proof. For details the reader is
referred to the monograph [11] which, among other things, describes the case
char k ‰ 0 (for general fields instead of a polynomial Ψ one should take an ele-
ment of divided power algebra). Also we would like to mention that an equivalence
of (1) and (2) is a manifestation of the well-known phenomenon called Macaulay
duality (or its extended version, Matlis duality).

(1)ñ(3). Let A˚ – krms{I be a Poincare duality quotient of the ring of
polynomials. Then we have a linear isomorphism

ş

A : A2n Ñ k. The composite

krms2n � A2n Ñ k
is the required linear map.

(3)ñ(1). Given a linear map
ş

: krms2n Ñ k we may define a pairing krms2p b
krms2n´2p Ñ k by a b b ÞÑ

ş

a ¨ b. This pairing is degenerate and we define its
kernel:

W˚ “
à

p
W 2p, W 2p “ tx P krms2p |

ż

x ¨ krms2n´2p “ 0u.

It is easy to check that W˚ Ă krms is an ideal and krms{W˚ is a Poincare duality
algebra.

(3)ñ(2). We construct a polynomial Ψ in c1, . . . , cm by

Ψ :“
1

n!

ż

pc1x1 ` ¨ ¨ ¨ ` cmxmq
n.

This polynomial is non-zero. Indeed, krms2n is additively generated by the mono-
mials of degree n in the variables xi. Each monomial can be expressed as a linear
combination of expressions of the form pc1x1 ` ¨ ¨ ¨ ` cmxmq

n for some constants ci
as follows from the polarization identity (see (6.6) in Example 6.6 below). Thus
expressions of the form pc1x1 ` ¨ ¨ ¨ ` cmxmq

n linearly span krms2n and therefore,
since

ş

is non-zero, the polynomial Ψ is not a constant zero as well.
(2)ñ(1). Given a homogeneous polynomial Ψ in the variables c1, . . . , cm, we

may construct a Poincare duality quotient krB1, . . . , Bms{Ann Ψ, where the action
of Bi “

B
Bci

on polynomials is defined formally in the usual way.
The consistency of all these constructions is a routine check. �

The same arguments can be used to prove that there is a one-to-one correspon-
dence between Poincare duality quotients of formal dimension 2n of an algebra B˚
and the non-zero linear functionals on the linear space B2n. For this correspondence
we do not need the assumptions that B is generated by degree 2 and chark “ 0.
This motivates the following definition.

Definition 7.3. Let B˚ “
À

j B2j be a graded commutative k-algebra and

suppose that for some n ą 0 a non-zero linear map
ş

: B2n Ñ k is given. The
corresponding Poincare duality quotient of B˚, i.e. the algebra

B˚{W˚, W 2p “ tb P B2p |

ż

b ¨ B2n´2p “ 0u.

is denoted by PDpB˚,
ş

q and called Poincare dualization of B˚ (w.r.t.
ş

).

Lemma 7.4. Consider two algebras B˚1 ,B˚2 with the given non-zero linear maps
ş

1
: B2n

1 Ñ k,
ş

2
: B2n

2 Ñ k. Let ϕ : B˚1 � B˚2 be an epimorphism of algebras con-

sistent with the integration maps:
ş

2
˝ϕ|B2n

1
“

ş

1
. Then ϕ induces an isomorphism

PDpB˚1 ,
ş

1
q – PDpB˚2 ,

ş

2
q.
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Proof. From the surjectivity of ϕ it easily follows that the kernel W˚
1 of the

intersection pairing in the first algebra maps to the kernel W˚
2 of the second algebra.

Thus the homomorphism rϕ : PDpB˚1 ,
ş

1
q Ñ PDpB˚2 ,

ş

2
q is well defined. Obviously

it is surjective. Let us prove that rϕ is injective. The map rϕ is an isomorphism in
degree 2n. Suppose that rϕpaq “ 0 for some 0 ‰ a P PDpB˚1 ,

ş

1
q2p. By the definition

of Poincare duality algebra, there exists b P PDpB˚1 ,
ş

1
q2n´2p such that ab ‰ 0. But

then we have rϕpabq “ rϕpaqrϕpbq “ 0 which gives a contradiction. �

In the following let A˚pΨq “ D{Ann Ψ denote the Poincare duality algebra
corresponding to the homogeneous polynomial Ψ of degree n.

7.2. Algebras associated with multi-fans. The linear maps
ş

∆
: H2np∆q Ñ

R and
ş

∆,Rrms : Rrx1, . . . , xms2n Ñ R are consistent with the natural projection

Rrx1, . . . , xms Ñ H˚p∆q. Thus Lemma 7.4 implies an isomorphism

PDpH˚p∆q,

ż

∆

q – PDpRrms,
ż

∆,Rrms
q.

According to the constructions mentioned in the proof of Proposition 7.2, this
Poincare duality algebra is also isomorphic to A˚pV∆q “ D{AnnV∆, where V∆ is
the volume polynomial.

Definition 7.5. Let ∆ be a complete simplicial multi-fan of dimension n with
m rays. Then the algebra

A˚p∆q :“ D{AnnV∆ – PDpH˚p∆q,

ż

∆

q – PDpRrms,
ż

∆,Rrms
q

is called a multi-fan algebra of ∆.

Remark 7.6. The constructions above show that there is a ring epimorphism
from H˚p∆q – RrKs{Θ to A˚p∆q – PDpH˚p∆q,

ş

∆
q, sending xi to Bi for each

i P rms. Therefore A˚p∆q can be considered as a quotient of H˚p∆q, and all the
relations in RrKs{Θ are inherited by A˚p∆q. We have

BJV∆ “ 0 for J R K (Stanley–Reisner relations),

p
ÿ

iPrms

λi,jBiqV∆ “ 0 for j “ 1, . . . , n (Linear relations).

This proves points 1 and 2 of Lemma 5.1 in a more conceptual way.

8. Structure of multi-fan algebra in particular cases

8.1. Ordinary fans. As was mentioned in the introduction, when ∆ is a
normal fan of a simple convex polytope P , the construction of the algebra A˚p∆q “
D{AnnV∆ was introduced by Timorin in [20]. In this case the underlying simplicial
complex of ∆ is a sphere and the weight function takes value `1 on all maximal
simplices of K. Using purely combinatorial and geometrical considerations Timorin
proved that A˚p∆q – RrKs{Θ. This means, in particular, that the dimension
di “ dimA2ip∆q is equal to hi, the h-number of K (see the definition below). The
developed technique is applied to prove that A˚p∆q is a Lefschetz algebra, meaning
that there exists an element ω P A2p∆q such that

ˆωn´2k : A2k Ñ A2n´2k
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is an isomorphism for each k “ 0, . . . , rn{2s. In particular this implies that the
distribution of h-numbers of convex simplicial spheres is unimodal, i.e.

h0 ď h1 ď ¨ ¨ ¨ ď hrn{2s “ hn´rn{2s ě ¨ ¨ ¨ ě hn´1 ě hn.

According to Timorin’s result, Lefschetz element ω may be chosen in the form
c1pP q “ c1B1 ` ¨ ¨ ¨ ` cmBm P A2p∆q where P is any convex simple polytope with
the normal fan ∆ and c1, . . . , cm are its support parameters.

For complete non-singular fans the algebra A˚r∆s – RrKs{Θ coincides with
the cohomology algebra H˚pX∆;Rq of the corresponding toric variety. It was the
original observation of Stanley [18], that in the case when a fan ∆ is polytopal,
the corresponding complete toric variety X∆ is projective, therefore there exists a
Lefschetz element in its cohomology ring according to hard Lefschetz theorem.

After Stanley’s work, several approaches were developed to prove the existence
of Lefschetz elements in elementary terms, i.e. without referring to hard Lefschetz
theorem. These approaches include in particular McMullen’s construction of the
polytope algebra [9], the approach based on continuous piece-wise polynomial func-
tions [2], and Timorin’s construction based on the volume polynomial and differ-
ential operators [20].

We will see that ordinary fans are not the only examples of multi-fans for which
the structure of A˚p∆q can be explicitly described. On the other hand, A˚p∆q is
always a Poincare duality algebra, so it is natural to ask if it is Lefschetz (or at
least if the dimension vector pd0, d1, . . . , dnq is unimodal). Later we will show that
this is not true in general, see Theorem 10.1.

8.2. Combinatorial preliminaries. For now we concentrate on multi-fans
based on oriented pseudomanifolds as described in Example 2.9. Let K be a pure
simplicial complex of dimension n´ 1 on the vertex set rms.

Let fj denote the number of j-dimensional simplices of K for j “ ´1, 0, . . . , n´
1, in particular we assume that f´1 “ 1 (this reflects the fact that the empty simplex
formally has dimension ´1). The h-numbers of K are defined by the formula:

(8.1)
n
ÿ

j“0

hjt
n´j “

n
ÿ

j“0

fj´1pt´ 1qn´j ,

where t is a formal variable. Let rβjpKq denote the reduced Betti number dim rHjpKq
of K. The h1- and h2-numbers of K are defined by the formulas

(8.2) h1j “ hj `

ˆ

n

j

˙

˜

j´1
ÿ

s“1

p´1qj´s´1
rβs´1pKq

¸

for 0 ď j ď n;

(8.3) h2j “ h1j ´

ˆ

n

j

˙

rβj´1pKq “ hj `

ˆ

n

j

˙

˜

j
ÿ

s“1

p´1qj´s´1
rβs´1pKq

¸

for 0 ď j ď n´ 1, and h2n “ h1n. The sum over an empty set is assumed zero.

8.3. Homology spheres.

Definition 8.1. K is called Cohen–Macaulay (over k), if rHjplkK I;kq “ 0 for

any I P K and j ă dim lkK I “ n´ 1´|I|. If, moreover, rHn´1´|I|plkK I;kq – k for
any I P K, then K is called Gorenstein* or (generalized) homology sphere.
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The famous theorems of Reisner and Stanley (the reader is referred to the
monograph [16]) tell that whenever K is Cohen–Macaulay (resp. Gorenstein*), its
Stanley–Reisner algebra krKs is Cohen–Macaulay (resp. Gorenstein).

Given a characteristic function λ : rms Ñ V – Rn we obtain a linear system of
parameters θ1, . . . , θn P RrKs. It generates an ideal which we denoted by Θ Ă RrKs
in subsection 4.2. In Cohen–Macaulay case every linear system of parameters is a
regular sequence. This implies [16]:

dimpRrKs{Θq2j “ hj .

If K is a homology sphere, then RrKs is Gorenstein. Thus its quotient by a linear
system of parameters RrKs{Θ is a Gorenstein algebra of Krull dimension zero. This
implies that RrKs{Θ is a Poincare duality algebra [11, Part 1].

Now let ∆ be a complete multi-fan based on a homology sphere K. We have the
ring epimorphism RrKs{Θ Ñ A˚p∆q (see Remark 7.6). Since both algebras have
Poincare duality, it is an isomorphism (see Lemma 7.4). This proves the following

Theorem 8.2. Let ∆ be a complete multi-fan based on a homology sphere K.
Then A˚p∆q – RrKs{Θ. It follows that dimA2jp∆q “ hj, the h-number of K.

Note that Poincare duality implies the well-known Dehn–Sommerville relations
for homology spheres: hj “ hn´j .

We are in position to prove Lemma 6.1 which states that the volume polynomial
of an elementary multi-fan ∆ on the vectors λpiq P V pi “ 1, . . . , n`1q, is equal, up

to multiplicative constant, to p
řn`1
i“1 αiciq

n, where pα1, . . . , αn`1q is a linear relation
on λpiq’s.

Proof of Lemma 6.1. The underlying simplicial complex of ∆ is the bound-
ary of a simplex, which is a sphere. Therefore, by Theorem 8.2 we have A˚p∆q –
RrB4rn`1ss{Θ. Hence the ideal AnnV∆ Ă RrB1, . . . , Bn`1s is generated by

śn`1
i“1 Bi

(Stanley–Reisner relation) and linear differential operators θj “
řn`1
i“1 λi,jBi for

j “ 1, . . . , n. Here pλi,jq
n
j“1 are the coordinates of the vector λpiq for each i “

1, . . . , n ` 1. Since
řn`1
i“1 αiλpiq “ 0 we have a linear relation

řn`1
i“1 αiλi,j “ 0 for

each j “ 1, . . . , n. Now it is easy to check that the differential operators
śn`1
i“1 Bi and

θj “
řn`1
i“1 λi,jBi, j “ 1, . . . , n annihilate the polynomial pα1c1 ` ¨ ¨ ¨ ` αn`1cn`1q

n.
Thus, according to Proposition 7.2, V∆ coincides with pα1c1` ¨ ¨ ¨`αn`1cn`1q

n up
to constant. �

8.4. Homology manifolds.

Definition 8.3. K is called Buchsbaum (over k), if rHjplkK I;kq “ 0 for any

I P K, I ‰ ∅ and j ă dim lkK I “ n´ 1´ |I|. If, moreover, rHn´1´|I|plkK I;kq – k
for any I P K, I ‰ ∅, then K is called a homology manifold. K is called an

orientable homology manifold if rHn´1pK;Zq – Z.

The difference from the Cohen–Macaulay case is that there are no restrictions
on the topology of K “ lkK ∅ itself. Similar to Cohen–Macaulay property, the
term “Buchsbaum” indicates that the corresponding algebra krKs is Buchsbaum
(the result of Schenzel [15]). In Buchsbaum case linear system of parameters is
no longer a regular sequence. Nevertheless, Buchsbaum complexes are extensively
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studied. First, Schenzel’s theorem [15] tells that if K is a Buchsbaum complex,
then

dimpkrKs{Θq2j “ h1j

for j “ 0, . . . , n and the h1-numbers determined by (8.2). Second, there is a theory
of socles of Buchsbaum complexes introduced by Novik and Swartz [12] which we
briefly review next.

Let M be a module over the graded polynomial ring krms :“ krx1, . . . , xms.
The socle of M is the following subspace

SocM :“ ta PM | a ¨ krms` “ 0u.

which is obviously a krms-submodule of M.
If K is Buchsbaum, then there exists a submodule INS Ă SocpkrKs{Θq such

that

pINSq2j –

ˆ

n

j

˙

rHj´1pK;kq,

where the right hand side means the direct sum of
`

n
j

˘

copies of rHj´1pK;kq. More-

over, the result of [13] tells that whenever K is an orientable connected homology
manifold, then INS coincides with SocpkrKs{Θq and the quotient

pkrKs{Θq{Iă2n
NS

is a Gorenstein algebra (thus Poincare duality algebra). Here Iă2n
NS is the part of

INS taken in all degrees except the top one, 2n. The definition of h2-numbers (8.3)
implies that

dimppkrKs{Θq{Iă2n
NS q2j “ h2j for 0 ď j ď n.

Now let ∆ be a complete multi-fan based on an orientable connected homology
manifold K. Recall from Definition 7.3 that W˚ denotes the subspace of H˚p∆q “
RrKs{Θ whose graded components are

(8.4) W 2j “ ta P pRrKs{Θq2j |
ż

a ¨ pRrKs{Θq2n´2j “ 0u

“ ta P pRrKs{Θq2j |
ż

a ¨ Rrms2n´2j “ 0u.

By definition, A˚p∆q “ PDpRrKs{Θq “ pRrKs{Θq{W˚. The socle SocpRrKs{Θq
lies in W˚ in all degrees except the top one since it is killed by Rrms`. Therefore
we have a well-defined ring epimorphism

pRrKs{Θq{Iă2n
NS � A˚p∆q.

Again, since both algebras have Poincare duality, there holds

Theorem 8.4. Let ∆ be a complete multi-fan based on oriented connected ho-
mology manifold K. Then A˚p∆q – pRrKs{Θq{Iă2n

NS . It follows that dimA2jp∆q “
h2j , the h2-number of K.

In this case Poincare duality implies the well-known generalized Dehn–Sommerville
relations for oriented homology manifolds: h2j “ h2n´j (see [12] and references
therein).
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8.5. General situation. Let ∆ be an arbitrary complete multi-fan. In the
largest generality we do not have a combinatorial description for the dimensions of
graded components of the multi-fan algebra.

Conjecture 8.5. Let wch be a simplicial cycle, λ : rms Ñ V a characteristic
map, and ∆ “ pwch, λq the corresponding complete multi-fan. The numbers dj “
dimA2jp∆q do not depend on λ.

9. Geometry of multi-polytopes and Minkowski relations

Here we give another proof of Theorem 8.4 which shows the geometrical nature
of the elements lying in the socle of RrKs{Θ when K is an oriented homology man-
ifold. It relates on explicit computations in coordinates but reveals an interesting
connection with the Minkowski type relations, appearing in convex geometry. Recall
the basic Minkowski theorem on convex polytopes.

Theorem (Minkowski). (1) (Direct) Let P be a convex full-dimensional poly-
tope in euclidian space Rn. Let V1, . . . , Vm be the pn ´ 1q-volumes of facets of P
and n1, . . . ,nm be the outward unit normal vectors to facets. Then

ř

i Vini “ 0
(the Minkowski relation).

(2) (Inverse). Let n1, . . . ,nm be the vectors of unit lengths, spanning Rn, and
let V1, . . . , Vm be positive numbers satisfying the Minkowski relation. Then there
exists a convex polytope P whose facets have outward normal vectors ni and volumes
Vi. Such polytope is unique up to parallel shifts.

Usually only part (2) is called Minkowski theorem, since part (1) is fairly simple.
The direct Minkowski theorem has a straightforward generalization.

Theorem 9.1. Let
ř

s asQs be a collection of k-dimensional multi-polytopes in
euclidian space Rn, forming a closed orientable cycle. Let VolpQsq be the k-volume,
and νs P Λn´kRn be the unit normal skew form of the multi-polytope Qs. Then
there holds a relation

ř

s as VolpQsqνs “ 0 in Λn´kRn.

In the next subsection we explain the precise meaning of the terms used in the
statement and give the proof.

9.1. Cycles of multi-polytopes. As before, V ˚ – Rn denotes the ambient
affine space of n-dimensional polytopes, coming with fixed orientation. Let k ď n
and let Π be an oriented k-dimensional affine subspace of V ˚. Let Q be a k-
dimensional multi-polytope in Π. Then Q will be called a k-dimensional multi-
polytope in V ˚.

First let k ą 0. Denote by GMPk the group (or a vector space over R)
freely generated by all k-dimensional multi-polytopes in V ˚, where we identify the
element Q (i.e. Q with reversed orientation of the underlying subspace) and ´Q.
If k “ 0, the multi-polytope is just a point with weight. In this case let GMP0

denote the group of formal sums of points whose weights sum to zero. Formally set
GMP´1 “ 0. Define the differential d : GMPk Ñ GMPk´1 by setting

dQ :“
ÿ

Fi: facet of Q

Fi,

and extending by linearity. Note that each facet comes with the canonical orienta-
tion: we say that the hyperplane Hi containing Fi is positively oriented if

pa positive basis of Hi, λpiqq
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is a positive basis of V . Thus the expression above is well defined.

Definition 9.2. An element A “
ř

s asQs P GMPk which satisfies dA “ 0 is
called a cycle of k-dimensional multi-polytopes.

As in Section 5, assume that there is a fixed inner product in V . This allows to
define the inner product on the skew forms. In particular, if Π is an oriented affine
k-subspace in V ˚ – V , we may define its unit normal skew form νΠ P Λn´kV as
the unique element of Λn´kΠK – R which corresponds to the positive orientation
of ΠK and satisfies }νΠ} “ 1. It is easy to see that if dim Π “ n´ 1, the form νΠ is
just the positive unit normal vector to Π.

Let us prove Theorem 9.1.

Proof. The idea of proof is straightforward and quite similar to the proof of
classical Minkowski theorem: at first we prove the case k “ n, then reduce the
general case to the case k “ n by projecting

ř

s as VolpQsqνs to all possible k-
subspaces. Note that the case n “ 0 should be treated separately, but in this case
the statement is trivial.

(1) Suppose k “ n. Then all multi-polytopes Qs are full-dimensional. Their
underlying subspaces Πs coincide with V up to orientation. Without loss of gener-
ality assume that all orientations coincide with that of V . Normal skew forms lie
in Λ0V – R and are equal to 1. Hence we need to prove that

ř

as VolpQsq “ 0 for
any cycle of n-multi-polytopes. Recall the wall-crossing formula [7, Lemma 5.3]:

Lemma 9.3. Let P be a multi-polytope and H “ Hi be one of the supporting
hyperplanes: H “ Hi. Let uα and uβ be elements in V ˚z

Ťm
i“1Hi such that the

segment from uα to uβ intersects the wall H transversely at µ, and does not intersect
any other Hj ‰ H. Then

DHP puαq ´DHP puβq “
ÿ

i:Hi“H

sgnxuβ ´ uα, λpiqyDHFipµq,

where Fi is the facet of P , and DHFi : Hi Ñ R is its Duistermaat–Heckman func-
tion.

Consider a cycle of multi-polytopes A “
řl
s“1 asQs. Let H denote the set of

all supporting hyperplanes of all polytopes Qs, s “ 1, . . . , l. We have a function

DHA : V ˚z
ď

HPH
H Ñ R, DHA :“

l
ÿ

s“1

as DHQs .

Let us choose a hyperplane H P H and two points uα and uβ in V ˚z
Ť

HPHH such
that the segment from uα to uβ intersects the wall H transversely at µ and does not
intersect any other wall from H. Let us sum the differences DHP puαq ´ DHP puβq
taken with coefficients as over all multi-polytopes Qs for which H is a supporting
hyperplane. Since dA “ 0, Lemma 9.3 implies that this sum is zero. Obviously,
this sum equals DHApuαq ´DHApuβq.

This argument shows that crossing of any wall does not change the value of
DHA. Therefore, DHA is constant (where it is defined). Since DHA has compact
support, it must be constantly zero. Thus

ÿ

as VolpQsq “

ż

V ˚
DHA “ 0.
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(2) Let us prove the theorem for general k. Consider a generic oriented k-
subspace Π Ă V ˚ and let ν P Λn´kV ˚ be its normal skew form. Let Γ: V ˚ Ñ Π
be the orthogonal projection. Then the image of Qs under Γ is a full-dimensional

multi-polytope in Π, which we denote by ΓpQsq. The sum
řl
s“1 asΓpQsq is a cycle

of k-dimensional multi-polytopes in Π. Therefore, step (1) implies

l
ÿ

s“1

as VolpΓpQsqq “ 0.

By the standard property of orthogonal projections we have

VolpΓpQsqq “ VolpQsq ¨ xνs, νy.

Hence
A

l
ÿ

s“1

as VolpQsqνs, ν
E

“ 0,

and this holds for any generic skew form ν. Thus
řl
s“1 as VolpQsqνs “ 0 which was

to be proved. �

9.2. Relations in A˚p∆q as Minkowski relations. Let K be an oriented
homology pn´ 1q-manifold and ∆ be a multi-fan based on K. Suppose that every
simplex I P K is oriented somehow. This defines an orientation of each subspace
HI “

Ş

iPI Hi (for example, by the rule “positive orientation of Hi”‘λpi1q ‘ ¨ ¨ ¨ ‘
λpikq is a positive orientation of V if pi1, . . . , ikq is a positive order of vertices of I).
Recall from Section 5 that λpIq denotes the skew form

Ź

iPI λpiq and covolpIq “

}λpIq}. Consider an arbitrary skew form µ P ΛkV ˚ and let

λpIqµ :“ xλpIq, µy.

Let CkpK;Rq, 0 ď k ď n´1 denote the group of cochains onK and δ : CkpK;Rq Ñ
Ck`1pK;Rq be the standard cochain differential. We also need to augment the
cochain complex in the top degree, so we formally set CnpK;Rq :“ R and let
δ : Cn´1pK;Rq Ñ CnpK;Rq be the evaluation of a cochain on the fundamental
chain of K.

An element a P Ck´1pK;Rq, k ď n will be called a (coaugmented) cocycle if
δa “ 0. Then, since K is an oriented manifold, the Poincare dual

ř

I:|I|“k apIqFI
of a is a cycle of pn ´ kq-dimensional multi-polytopes in V ˚. (Notice that in the
case k “ n we get a formal sum of points whose weights sum is zero. If we do
not require that a is coaugmented, then we do not get a cycle of 0-dimensional
multi-polytopes).

Proposition 9.4. For any coaugmented cocycle a P Ck´1pK;Rq and any µ P
ΛkV there exists a relation

ÿ

I:|I|“k

apIqλpIqµBI “ 0

in A˚p∆q – pRrKs{Θq{Iă2n
NS .

Proof. Let us apply
ř

I:|I|“k apIqλpIqµBI to the volume polynomial V∆ and

evaluate the result at a point c̄ “ pc1, . . . , cmq:

ÿ

I:|I|“k

apIqλpIqµBIV∆|c̄ “
ÿ

I:|I|“k

apIqλpIqµ
VolpFIq

covolpIq
.
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Here we used Lemma 5.1. Note that the skew form λpIq{ covolpIq is by definition
a unit normal skew form to the ambient subspace of a multi-polytope FI . Since
ř

I:|I|“k apIqFI is a cycle of multi-polytopes, Theorem 9.1 implies

ÿ

I:|I|“k

apIqVolpFIq
λpIq

covolpIq
“ 0.

Taking inner product with µ implies

ÿ

I:|I|“k

apIqλpIqµ
VolpFIq

covolpIq
“ 0.

Hence the polynomial
ř

I:|I|“k apIqλpIqµBIV∆ evaluates to zero at any point c̄.

Therefore it vanishes as a polynomial. Thus
ř

I:|I|“k apIqλpIqµBI P AnnV∆ which

proves the statement. �

We see that Minkowski theorem allows to construct linear relations in A˚p∆q.
Actually these relations exhaust all relations in A˚p∆q. Let us state the result of
[1] in terms of Minkowski relations:

Proposition 9.5 ([1]). Let K be an oriented homology manifold.

(1) There is an isomorphism of vector spaces

pRrKs{Θq2k – xxI | I P K, |I| “ ky{
A

ÿ

I:|I|“k

apIqλpIqµxI

E

where a runs over all exact pk ´ 1q-cochains on K and µ runs over ΛkV .
(2) There is an isomorphism of vector spaces

ppRrKs{Θq{Iă2n
NS q2k – xxI | I P K, |I| “ ky{

A

ÿ

I:|I|“k

apIqλpIqµxI

E

where a runs over all coaugmented closed pk ´ 1q-cochains on K and µ
runs over ΛkV .

Recall that pINSq2k –
`

n
k

˘

Hk´1pK;Rq. From Proposition 9.5 it can be seen

that the difference between the vector spaces RrKs{Θ and pRrKs{Θq{Iă2n
NS arises

from the difference between closed cochains on K and exact cochains. This explains
how the cohomology Hk´1pKq appears in the description of INS . The multiple

`

n
k

˘

comes from the choice of the skew form µ P ΛkV on which we project the Minkowski
relation.

Problem 9.6. Let ∆ be a general complete simplicial multi-fan. Is it true that
A˚p∆q is isomorphic, as a vector space, to the quotient of xxI | I P Ky by linear
relations arising from Minkowski relations? What are these Minkowski relations?

9.3. Inverse Minkowski theorem. It is tempting to formulate and prove
the inverse Minkowski theorem for multi-polytopes. First, we need to modify the
statement. The original formulation tells that there exists a convex polytope with
the given normal vectors and the volumes of facets, but it tells nothing about the
combinatorics of the polytope. We may ask a more specific question, namely

Question 9.7. For a given complete simplicial multi-fan ∆ with the rays gen-
erated by unit vectors n1, . . . ,nm, and a given m-tuple of real numbers V1, . . . , Vm
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satisfying
ř

Vini “ 0, does there exist a multi-polytope based on ∆ whose facets
have pn´ 1q-volumes V1, . . . , Vm? If yes, is it unique?

A simple example shows that the answer, even for the question of existence,
may be negative.

Example 9.8. Let ∆ be the normal fan of a 3-dimensional cube. ∆ is an ordi-
nary fan supported by a simplicial complex K, which is the boundary of an octa-
hedron. Let t1, 2, 3,´1,´2,´3u be the set of vertices of K and λp˘1q “ p˘1, 0, 0q,
λp˘2q “ p0,˘1, 0q, λp˘3q “ p0, 0,˘1q be the generators of the corresponding rays of
∆ (see Example 6.6). The multi-polytopes based on ∆ are the bricks with sides par-
allel to coordinate axes. Minkowski relations can be written as VolpFiq “ VolpF´iq
for i “ 1, 2, 3. Let us take the numbers V˘1 “ 0, V˘2 “ V˘3 “ 1. These numbers
satisfy Minkowski relations, but we cannot find a brick whose facets have volumes
V˘1, V˘2, V˘3. Indeed, V˘1 “ 0 implies that one of the sides of a brick has length
0, but this would imply that either V˘2 “ 0 or V˘3 “ 0.

Nevertheless, the answer to Question 9.7 is completely controlled by the multi-
fan algebra. Recall that A˚p∆q may be interpreted as the algebra of differential
operators D up to AnnpV∆q. Therefore, for every a P A2jp∆q, there is a well-defined
homogeneous polynomial aV∆ of degree n ´ j. In particular, each element a P
A2n´2p∆q determines a linear homogeneous polynomial aV∆ “ V1c1`¨ ¨ ¨`Vmcm P
Rrc1, . . . , cms1. This linear polynomial is annihilated by θj “

ř

iPrms λi,jBj P

AnnV∆, j “ 1, . . . , n, see Lemma 5.1 or Remark 7.6. This means

(9.1)
ÿ

iPrms

Viλpiq “ 0,

which can be considered as a Minkowski relation. Let Mink denote the vector space
of all m-tuples pV1, . . . , Vmq satisfying (9.1). Thus we obtain a natural monomor-
phism η : A2n´2p∆q Ñ Mink, a ÞÑ pV1, . . . , Vmq, where aV∆ “ V1c1 ` ¨ ¨ ¨ ` Vmcm.

Theorem 9.9. Let ∆ be a complete simplicial multi-fan with characteristic
function λ and assume that |λpiq| “ 1 for each i P rms. Let V “ pV1, . . . , Vmq P
Mink. Let P P Polyp∆q be a multi-polytope and BP “ c1B1 ` ¨ ¨ ¨ ` cmBm P A2p∆q
be its first Chern class. Then the polytope P has facet volumes V1, . . . , Vm if and
only if ηpBn´1

P q “ pn´ 1q!V .

Proof. Assume that ηpBn´1
P q “ pn´1q!V . Then Bn´1

P V∆ “ pn´1q!pV1c1`¨ ¨ ¨`

Vmcmq. Hence BiB
n´1
P V∆ “ pn´1q!Vi for i P rms. On the other hand, Corollary 5.7

implies

BiB
n´1
P V∆ “ pn´ 1q! VolpFiq{ covolpiq “ pn´ 1q! VolpFiq{|λpiq| “ pn´ 1q! VolpFiq.

Thus Vi “ VolpFiq. The other direction is proved similarly. �

Note that dim Mink “ m´ n.

Corollary 9.10. Existence in Question 9.7 holds for a given multi-fan ∆ and
all m-tuples pV1, . . . , Vmq P Mink if and only if the following two conditions hold:

(1) dimA2p∆q “ dimA2n´2p∆q “ m´ n;
(2) the power map A2p∆q Ñ A2n´2p∆q, B ÞÑ Bn´1 is surjective.

Uniqueness holds if the power map is bijective.
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Remark 9.11. Note that even the condition dimA2p∆q “ m ´ n may fail
to hold. As an example, consider a multi-fan having a ghost vertex, say 1. As
in general, we have n relations θ1, . . . , θn, lying in the kernel of the linear map
xB1, . . . , Bmy� A2p∆q. But the element B1, corresponding to the ghost vertex, also
vanishes in A2p∆q. Thus dimA2p∆q ă m´ n.

There exist more nontrivial examples. For example, if the underlying simpli-
cial complex K is disconnected, with connected components K1, . . . ,Kr on disjoint
vertex sets rm1s, . . . , rmrs, r ą 1, then each connected component contributes at
most m1 ´ n in the total dimension of A2p∆q (see the operation of connected sum
of Poincare duality algebras introduced in subsection 11.1). Thus in the discon-
nected case dimA2p∆q ď m ´ rn. Nevertheless, the inverse Minkowski theorem
can be refined in an obvious way: we should consider Minkowski relations on each
connected component.

Remark 9.12. The power map A2p∆q Ñ A2n´2p∆q is a polynomial map of
degree n ´ 1 between real vector spaces of equal dimensions. It is a complicated
object which may be interesting on its own. One of the consequences from Corollary
9.10 is that the existence in the inverse Minkowski theorem holds for a multi-fan ∆
whenever dimA2p∆q “ m´ n and n is even.

10. Recognizing volume polynomials and multi-fan algebras

A natural question is: which homogeneous polynomials are the volume polyno-
mials, and which Poincare duality algebras appear as A˚p∆q? The answer to the
second question seems quite unexpected.

Theorem 10.1. For every Poincare duality algebra A˚ generated in degree 2
there exists a complete simplicial multi-fan ∆ such that A˚ – A˚p∆q.

Recall that the symmetric array of nonnegative integers pd0, d1, . . . , dnq, dj “
dn´j , is called unimodal, if

d0 ď d1 ď ¨ ¨ ¨ ď dtn{2u.

Corollary 10.2. There exist multi-fans ∆, for which the array

pdimA0p∆q,dimA2p∆q, . . . ,dimA2np∆qq

is not unimodal.

Proof. An example of Poincare duality algebra generated in degree 2, for
which dimensions of graded components are not unimodal was given by Stanley
in [19]. Theorem 10.1 implies that there exists a multi-fan, which produces this
algebra. �

The construction of the volume polynomial is additive with respect to weights.
Let MultiFansλ denote the vector space of all multi-fans with the given character-
istic function λ : rms Ñ V . Then we obtain a linear map

(10.1) Ωλ : MultiFansλ Ñ Rrc1, . . . , cmsn,

which maps ∆ to its volume polynomial V∆.
Before giving the proof of Theorem 10.1 we characterize volume polynomials of

general position, in the sense explained below. For this goal we study the properties
of the map Ωλ.
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10.1. Characterization of volume polynomials in general position.
There is a necessary condition on V∆. If λ is a characteristic function and θj “
ř

iPrms λi,jBi P xB1, . . . , Bmy, j “ 1, . . . , n are the corresponding linear forms, then

θjV∆ “ 0, see Remark 7.6. Thus the subspace

Ann2 V∆ “ tD P xB1, . . . , Bmy | DV∆ “ 0u

has dimension at least n. It happens that in most situations this is also a sufficient
condition for a polynomial to be a volume polynomial.

At first let us consider the situation of general position to demonstrate the
argument. Assume that all characteristic vectors λp1q, . . . , λpmq P Rn are in general
position, which means that every n of them are linearly independent. Given a
fixed characteristic function λ : rms Ñ V in general position, we may pick up any

simplicial cycle wch P Zp4pn´1q
rms ;Rq, consider a complete multi-fan ∆ “ pw, λq and

take its volume polynomial. This defines a map which we previously denoted by Ωλ:

Ωλ : Zp4pn´1q
rms ;Rq Ñ Rrc1, . . . , cmsn,

from the pn ´ 1q-simplicial cycles on m vertices to homogeneous polynomials of
degree n. This map is linear and injective by Corollary 5.5. As before, let θj ,
j “ 1, . . . , n be the linear differential operators associated with λ (i.e. a basis of
the image of the map λJ : V ˚ Ñ pRmq˚). Let

Annn Θ “ tΨ P Rrc1, . . . , cmsn | θjΨ “ 0 for each j “ 1, . . . , nu

be the vector subspace of polynomials annihilated by differential operators Θ “

pθ1, . . . , θnq. As we have seen, if ∆ has a characteristic function λ, then V∆ P

Annn Θ. Thus the image of Ωλ lies in Annn Θ.

Lemma 10.3. If λ is in general position, then Ωλ : Zn´1p4pn´1q
rms ;Rq Ñ Annn Θ

is an isomorphism.

Proof. Let us compute the dimensions of domain and target. There are no

n-simplices in 4pn´1q
rms , thus Zn´1p4pn´1q

rms q “ Hn´1p4pn´1q
rms q. All Betti numbers of

4pn´1q
rms between the top and the bottom vanish, thus via Euler characteristic we

get

(10.2) dimHn´1p4pn´1q
rms q “

ˆ

m

n

˙

´

ˆ

m

n´ 1

˙

`

ˆ

m

n´ 2

˙

´ ¨ ¨ ¨ ` p´1qn
ˆ

m

0

˙

.

Now let us compute dim Annn Θ. Take a linear change of variables c1, . . . , cm ù

c11, . . . , c
1
m such that θj becomes the partial derivative B

Bc1j
for j “ 1, . . . , n. Thus,

after the change of variables, Annn Θ becomes the set tΨ P Rrc11, . . . , c1msn | B
Bc1j

Ψ “

0, j “ 1, . . . , nu which is the same as Rrc1n`1, . . . , c
1
msn. Thus dim Annn Θ “

`

m´n`n´1
n

˘

“
`

m´1
n

˘

. This number coincides with (10.2). �

Let Gm,n denote the Grassmann manifold of all (unoriented) n-planes in pRmq˚.
We can introduce the standard Plücker coordinates on Gm,n. If

(10.3)
!

θj “
m
ÿ

i“1

λi,jxi

)

j“1,...,n

is a basis in L P Gm,n, then the Plücker coordinates of L are all maximal minors
of the mˆ n matrix pλi,jq.
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Any n-plane L P Gm,n determines an m-tuple of vectors in V – Rn as follows:
the basis (10.3) determines the tuple tλpiq “ pλi,1, . . . , λi,nquiPrms. The base change
in L induces the natural action of GLpn,Rq on the m-tuples. By abuse of termi-
nology we call λ : rms Ñ V the characteristic function corresponding to L P Gm,n
although this characteristic function is determined only up to automorphism of V .

Proposition 10.4. Let Ψ P Rrc1, . . . , cmsn be a homogeneous polynomial. Sup-
pose that the vector subspace Ann2 Ψ “ tD P xB1, . . . , Bmy | DΨ “ 0u contains an
n-dimensional subspace L P Gm,n with all Plücker coordinates non-zero. Then Ψ
is a volume polynomial of some multi-fan.

Proof. Let us pick a basis tθj “
ř

i λi,jxiuj“1,...,n in L arbitrarily. Non-
vanishing of all Plücker coordinates means that the corresponding characteristic
function λ is in general position. By assumption, Ψ P Annn Θ. Thus Ψ is a volume
polynomial of some multi-fan based on λ according to Lemma 10.3. �

10.2. Proof of Theorem 10.1. Let A˚ be an arbitrary Poincare duality
algebra over R generated by A2. Let 2n be the formal dimension of A and p “
dimA2. Take any p` n elements x1, . . . , xp`n P A2 in general position (i.e. every
p of them are linearly independent). There are n linear relations on x1, . . . , xp`n in
A2 of the form

ř

i λi,jxi “ 0, j “ 1, . . . , n. Since xi are in general position, every
maximal minor of the pp` nq ˆ n-matrix |λi,j | is non-zero.

As in the proof of Proposition 7.2, consider the polynomial

ΨApc1, . . . , cmq “
1

n!

ż

pc1x1 ` ¨ ¨ ¨ ` cmxmq
n,

where
ş

: A2n –
Ñ R is any isomorphism. The linear differential operator θj “

ř

i λi,jBi annihilates ΨA for j “ 1, . . . , n. Indeed:

´

m
ÿ

i“1

λi,j
B

Bci

¯ 1

n!

ż

pc1x1`¨ ¨ ¨`cmxmq
n “

1

n!
¨n

ż

´

m
ÿ

i“1

λi,jxi

¯

pc1x1`¨ ¨ ¨`cmxmq
n´1 “ 0.

Since θj are in general position, Proposition 10.4 implies that ΨA “ V∆ for some
multi-fan ∆. Therefore the corresponding Poincare duality algebras A˚ and A˚p∆q
are isomorphic by Proposition 7.2.

10.3. Non-general position. Now we want to study which polynomials are
volume polynomials without the assumption of general position.

Let I Ă rms and let αI : RI Ñ Rm be the inclusion of the coordinate subspace.
Then α˚I : pRmq˚ “ xB1, . . . , Bmy Ñ pRIq˚ is a projection map. For a linear subspace
Π Ă pRmq˚ of dimension at least n consider the following collection of subsets of
rms:

deppΠq :“ tI Ă rms | |I| ď n and α˚I |Π : Π Ñ pRIq˚ is not surjectiveu.

Lemma 10.5. Let Π Ă pRmq˚ and dim Π ě n. Then there exists a subspace
L Ă Π such that dimL “ n and deppLq “ deppΠq.

Proof. When dim Π “ n the statement is trivial so we assume dim Π ą n. The
proof follows from the general position argument. If ϕ : Π Ñ U is an epimorphism,
and dim Π ą n ě dimU , then the set of all n-planes in Π which map surjectively
to U is a complement to a subvariety of positive codimension inside the set of all
n-subspaces of Π. This argument applied to all maps α˚I |Π : Π Ñ pRIq˚ proves that
any generic n-plane L in Π satisfies deppLq “ deppΠq. �
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Let Ψ be a homogeneous polynomial of degree n and Ann2 Ψ Ă xB1, . . . , Bmy “
pRmq˚ be its annihilator subspace.

Theorem 10.6. A homogeneous polynomial Ψ P Rrc1, . . . , cmsn is a volume
polynomial of some complete simplicial multi-fan if and only if the following condi-
tions hold:

(1) dim Ann2 Ψ ě n,
(2) BIΨ “ 0 whenever I P deppAnn2 Ψq.

Proof. The necessity of these conditions is already proved. Indeed, the first
condition follows from the fact that Ann2 V∆ contains the image of λJ : V ˚ Ñ
pRmq˚ “ xB1, . . . , Bmy which has dimension n, see Remark 7.6. If I P deppAnn2 V∆q,
then ˚-condition (see subsection 2.2) implies I R K, and therefore BIV∆ “ 0 by
Lemma 5.1.

Let us prove sufficiency. By Lemma 10.5 we may choose an n-dimensional
plane L Ă Ann2 Ψ such that deppLq “ deppAnn2 Ψq. Therefore, by assumption,
I P deppLq implies BIΨ “ 0. Let λ : rms Ñ V be the characteristic function
corresponding to L P Gm,n. The condition I P deppLq is equivalent to the condition
that vectors tλpiquiPI are linearly dependent.

Consider a simplicial complexMatrλ determined by the condition: ti1, . . . , iku P
Matrλ if and only if λpi1q, . . . , λpikq are linearly independent. Thus Matrλ “
2rmszdeppLq. In a sense, the complex Matrλ can be considered as a maximal sim-
plicial complex on rms for which λ is a characteristic function (this construction is
similar to the universal complexes introduced in [5]).

We have I RMatrλ if and only if Θ Ñ xBiyiPI is not surjective. It is easily seen
that multi-fans having characteristic function λ are encoded by the simplicial pn´1q-
cycles on Matrλ. As before, we have a map Ωλ : Zn´1pMatrλ;Rq Ñ Rrc1, . . . , cmsn
which associates a volume polynomial V∆ with a multi-fan ∆ “ pwch, λq for wch P
Zn´1pMatrλ;Rq. Let

AnnnpL, tBIuIPdeppLqq

denote the subspace of all homogeneous polynomials of degree n which are annihi-
lated by linear differential operators from L and by the products BI , I P deppLq (ô
I RMatrλ). We already proved that the image of Ωλ lies in AnnnpL, tBIuIPdeppLqq.
We need to prove that the map

Ωλ : Zn´1pMatrλ;Rq Ñ AnnnpL, tBIuIPdeppLqq

is surjective. Since Ωλ is injective, it is enough to show that dimensions of the two
spaces are equal.

First of all notice that Matrλ is by construction the underlying simplicial com-
plex of a linear matroid. Hence Matrλ is a Cohen–Macaulay complex of dimension

n ´ 1 (see e.g. [17]). The number dimZn´1pMatrλ;Rq “ dim rHn´1pMatrλ;Rq is
called the type of the Cohen–Macaulay complex Matrλ.

Consider the Stanley–Reisner ring RrMatrλs “ RrB1, . . . , Bms{pBI | I RMatrλq,
and its quotient by a linear system of parameters L Ă xB1, . . . , Bmy:

RrMatrλs{pLq “ RrB1, . . . , Bms{pL, tBIuIPdeppLqq

Claim 10.7. dimpRrMatrλs{pLqq2n “ dim AnnnpL, tBIuIPdeppLqq.

This follows from basic linear algebra. There is a non-degenerate pairing

RrB1, . . . , Bms2n b Rrc1, . . . , cmsn Ñ R.
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For any subspace U Ă RrB1, . . . , Bms2n we have dimRrB1, . . . , Bms2n{U “ dimUK.
Taking the degree 2n part of the ideal pL, tBIuIPdeppLqq as U proves the claim.

Now, since Matrλ is Cohen–Macaulay, the socle of RrMatrλs{pLq coincides
with pRrMatrλs{pLqq2n. On the other hand, the dimension of the socle coincides
with the type of Cohen–Macaulay complex [16]. We have

dim AnnnpL, tBIuIPdeppLqq “ dim SocRrMatrλs{pLq

“ type of Matrλ “ dim rHn´1pMatrλ;Rq

which finishes the proof of the theorem. �

Remark 10.8. Lemma 10.3 describing the general position is a particular case
of Theorem 10.6. In the case of general position the matroid complex Matrλ is just
the pn´ 1q-skeleton of a simplex on m vertices.

10.4. Global structure of the set of multi-fans. LetGnm denote the Grass-
maniann of all codimension n planes in Rm – Rrc1, . . . , cms1. Obviously, Gm,n can
be identified with Gnm by assigning LK Ă Rm to L Ă pRmq˚. We have already
seen, that characteristic function λ : Rm Ñ V determines the element L P Gm,n
defined as the image of λJ : V ˚ Ñ pRmq˚. The corresponding element of Gnm is the
subspace Y “ LK “ Kerλ Ă Rm.

Let SkY denote the k-th symmetric power of Y P Gnm, so we have SkY Ă

SkRm “ Rrc1, . . . , cmsk. We have

SkY Ă Annk Y K “ tΨ P Rrc1, . . . , cmsk | DΨ “ 0 for any D P Y Ku,

and both spaces have dimension
`

m´n`k´1
k

˘

. This implies that the vector bundle

tpY,Ψq P Gnm ˆ Rrc1, . . . , cmsk | Ψ P Annk Y Ku Ñ Gnm

is Skγ, the k-th symmetric power of the canonical bundle γ over Gnm. We denote
its total space by EpSkγq.

Consider the set of all characteristic functions in V up to linear automorphism
of V :

CharFunc :“ tλ : Rm Ñ V | Imλ “ V u{GLpV q.

Let MultiFans denote the set of all complete simplicial multi-fans on the set rms
(considered up to automorphisms of V again). We have a map MultiFans Ñ
CharFunc which maps a multi-fan to its characteristic function. The fiber of this
map over λ is the vector space MultiFansλ – Zn´1pMatrλ;Rq introduced earlier.

We have a commutative square

MultiFans //

��

EpSnγq

Snγ

��
CharFunc

– // Gnm

The lower map associates a codimension n subspace Y “ Kerλ to a characteristic
function λ. The upper map associates a volume polynomial to a multi-fan. The
upper map is linear on each fiber. The subset of characteristic functions in general
position maps isomorphically to the subset of Gnm with non-zero Plücker coordi-
nates; the fiber over a generic point maps isomorphically according to Lemma 10.3.
Exceptional fibers map injectively and their images are described by Theorem 10.6.
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11. Surgery of multi-fans and algebras

In this section we study the behavior of the dimensions dj “ dimA2jp∆q under
connected sums and flips of multi-fans.

11.1. Connected sums. Recall that A˚pΨq “ RrB1, . . . , Bms{AnnpΨq de-
notes the Poincare duality algebra associated with the homogeneous polynomial
Ψ. For a graded algebra (or a graded vector space) A˚ “

À

j A
2j let HilbpA˚; tq “

ř

jpdimAjqtj denote its Hilbert function. Sometimes it will be convenient to use

the notation dmpA˚q :“ pd0, d1, . . . , dnq, where dj “ dimA2j , and dmp∆q :“

dmpA˚p∆qq.
Let A1#A2 denote a connected sum of two Poincare duality algebras of the

same formal dimension 2n. By definition, A1#A2 “ A1‘A2{ „ where „ identifies
A0

1 with A0
2 and A2n

1 with A2n
2 . Actually, there is an ambiguity in the choice of

the latter identification, so in fact there exists a 1-dimensional family of connected
sums of the given two algebras. We prefer to ignore this ambiguity in the following
(the statements hold for any representative in the family).

We have dmpA1#A2q “ dmpA1q ` dmpA2q ´ p1, 0, . . . , 0, 1q.

Lemma 11.1. Let Ψ1 P Rrc1, . . . , cmsn, Ψ2 P Rrc11, . . . , c1m1sn be the polynomials
in distinct variables. Then A˚pΨ1 `Ψ2q – A˚pΨ1q#A˚pΨ2q.

Proof. The mixed differential operators BiB
1
i1 vanish on Ψ1`Ψ2, while BIpΨ1`

Ψ2q equals BIpΨ1q (resp. BIpΨ2q) if I Ă rms (resp. I Ă rm1s). �

Let ∆1, ∆2 be two multi-fans, whose vertex sets are rms “ t1, . . . , n, n `

1, . . . ,mu and rrms “ t1, . . . , n, Ćn` 1, . . . , rmu respectively, and let I denote the set
of common vertices: I “ t1, . . . , nu. Assume that the weight of I is non-zero in
both multi-fans and assume that characteristic functions of ∆1 and ∆2 coincide
on I. Then we may consider ∆1 and ∆2 as multi-fans with vertices rms YI rrms “

t1, . . . , n, n`1, . . . ,m, Ćn` 1, . . . , rmu and a common characteristic function. In this
case we call the cone-wise sum ∆1`∆2 a connected sum and denote it by ∆1#I∆2

or simply ∆1#∆2.

Remark 11.2. It would be natural to assume that w1pIq “ ´w2pIq, so that
the cone spanned by I contracts in the connected sum. This is consistent with the
geometrical understanding how “the connected sum” should look like. However, we
do not need this assumption in the following proposition.

Proposition 11.3. For a connected sum ∆1#∆2 there holds

A˚p∆1#∆2q – A˚p∆1q#A˚p∆2q,

so that dmp∆1#∆2q “ dmp∆1q ` dmp∆2q ´ p1, 0, . . . , 0, 1q.

Proof. We need a technical lemma

Lemma 11.4. Let ∆ be a multi-fan and I Ă rms be a vertex set such that the
corresponding characteristic vectors tλpiquiPI are linearly independent. Let V∆ be
the volume polynomial and V∆zI P Rrci | i P rmszIsn be the homogeneous polynomial
obtained by specializing ci “ 0 in V∆ for each i P I. Then A˚pV∆zIq – A˚pV∆qp“

A˚p∆qq as Poincare duality algebras.
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Proof. Using linear relations θj “
řm
i“1 λi,jBi “ 0 in A2p∆q we can exclude

the variables Bi for i P I. This proves that the set tBiuiPrmszI spans A2p∆q. There-
fore the polynomial

V∆zI “
1

n!

ż

∆

´

ÿ

iPrmszI
cixi

¯n

determines the same Poincare duality algebra as V∆. �

By the lemma we have A˚p∆1q – A˚pV∆1zIq and A˚p∆2q – A˚pV∆2zIq. Poly-
nomials V∆1zI and V∆2zI have distinct variables, thus

A˚pV∆1zI ` V∆2zIq – A˚pV∆1zIq#A
˚pV∆2zIq

according to Lemma 11.1. It remains to note that V∆1zI ` V∆2zI is the result of
specializing ci “ 0 for i P I in the polynomial V∆1 ` V∆2 . Finally, we have

A˚p∆1#∆2q “ A˚pV∆1#∆2q – A˚pV∆1#∆2zIq

– A˚pV∆1zI ` V∆2zIq – A˚p∆1q#A˚p∆2q.

�

11.2. Flips. In this section we assume that ∆ is based on an oriented pseu-
domanifold K. Our goal is to define a flip in a multi-fan. Consider separately two
situations.

(1) Flips changing the number of vertices. Let us take a maximal simplex
I P K, |I| “ n. Let Flip1

IpKq be a simplicial complex whose maximal simplices are
the same as in K except that we substitute I by Cone BI. This operation adds the
new vertex i, the apex of the cone. If λ : rms Ñ Rn is a characteristic function on
K, we extend it to the set rms \ tiu by adding new value λpiq such that the result
is a characteristic function on Flip1

IpKq. This defines an operation on multi-fans
which we call the flip of type p1, nq.

The inverse operation will be denoted Flipni . It is applicable to ∆ if lkK i is
isomorphic to the boundary of a simplex and λpVertplkK iqq is a linearly independent
set. The inverse operation will be called the flip of type pn, 1q.

(2) Flips preserving the set of vertices. Let S be a subset of VertpKq of cardi-
nality n ` 1 such that the induced subcomplex KS on the set S is isomorphic to
B∆p´1 ˚∆q´1 with p` q “ n` 1, p, q ě 2. Let FlippSpKq be the simplicial complex
whose maximal simplices are the same as in K away from S, and B∆p´1 ˚∆q´1 is
replaced by ∆p´1 ˚ B∆q´1. If the set of vectors λpSq is in general position, then
this operation is defined on multi-fans. We call it the flip of type pp, qq. It is easily
seen that flips of types pp, qq and pq, pq are inverse to each other.

Of course p1, nq- and pn, 1q-flips can be viewed as particular cases of this con-
struction if we allow ghost vertices and formally set B∆0 to be such a ghost vertex.

The following proposition tells that dimension vectors of multi-fan algebras
change under the flips in the same way as h-vectors of simplicial complexes.

Theorem 11.5. Let ∆1 be a multi-fan obtained from ∆ by a pp, qq-flip, p, q ě 1.
Then

dmp∆1q ´ dmp∆q “ p1, . . . , 1
loomoon

q

, 0, . . . , 0q ´ p1, . . . , 1
loomoon

p

, 0, . . . , 0q.

Proof. For p1, nq- and pn, 1q-flips this follows from Proposition 11.3 and Lemma
6.1, since p1, nq-flip is just the connected sum with an elementary multi-fan, and
pn, 1q-flip is its inverse.
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Now we consider the remaining cases. pp, qq-flips with p ‰ 1 and q ‰ 1 do not
change the vertex set. Let rms denote the vertex set of K and K 1, and S Ă rms
denote the set of vertices at which the flip is performed. We have |S| “ n` 1 and
K|S – B∆

p´1 ˚∆q´1 and K 1|S – ∆p´1 ˚ B∆q´1. Let rps be the set of vertices of
∆p´1. Let IrmszS denote the ideal in RrB1, . . . , Bms generated by Bi, pi P rmszSq.

Claim 11.6. IrmszS XAnnV∆ “ IrmszS XAnnV∆1 .

Proof. In the group of multi-fans with a given characteristic function we have
a relation ∆1 “ ∆` T , where T is an elementary multi-fan based on the vertex set
S. Informally, to perform a flip on a multi-fan is the same as “to add a boundary
of a simplex”, which cancels the cones from B∆p´1 ˚ ∆q´1 and adds the cones
from ∆p´1 ˚ B∆q´1. Therefore V∆1 “ V∆ ` VT , where VT is the polynomial which
essentially depends only on the variables ci, i P S. If D P AnnV∆ X IrmszS then
D annihilates both V∆ and VT . Thus it annihilates V∆1 “ V∆ ` VT and the claim
follows. �

We have a diagram of inclusions of graded ideals in RrB1, . . . , Bms:

AnnV∆� _

��

IrmszS XAnnV∆ “ IrmszS XAnnV∆1
? _oo � � //

� _

��

AnnV∆1� _

��
IrmszS `AnnV∆ IrmszS? _oo � � // IrmszS `AnnV∆1

It follows that the quotients of the vertical inclusions are isomorphic as graded
vector spaces. Therefore

(11.1) dmp∆1q ´ dmp∆q “ dmpRrms{AnnV∆1q ´ dmpRrms{AnnV∆q

“ dmpRrms{pIrmszS `AnnV∆1qq ´ dmpRrms{pIrmszS `AnnV∆qq.

Since IrmszS is the ideal generated by Bi, pi R Sq, the ring Rrms{pIrmszS `AnnV∆q

coincides with some quotient ring B of the polynomials in variables Bi, pi P Sq, that
is B “ RrSs{Rels. The linear relations θj “

ř

iPrms λi,jBi in AnnV∆ induce the

relations
ř

iPS λi,jBi in Rels. Since the values of λ on S are in general position,
these induced relations are linearly independent. We have n linear relations on
n` 1 variables, thus all variables are expressed through a single variable t, and we
have B – Rrts{J . Since we are in a graded situation, and B is a finite dimensional
algebra, J is a principal ideal generated by tp̃ for some p̃ ě 0. Hence

dmpRrms{pIrmszS `AnnV∆qq “ dmB “ p1, . . . , 1
loomoon

p̃

, 0, . . . , 0q.

Now notice that there is a Stanley–Reisner relation
ś

iPrps Bi “ 0 corresponding to

non-simplex rps in K (recall that rps is the set of vertices of B∆p´1 inside B∆p´1 ˚

∆q´1 Ă K). Therefore we have a relation tp “ 0 in B. This implies p̃ ď p.
Applying the same arguments to ∆1, we get

dmpRrms{pIrmszS `AnnV∆1qq “ p1, . . . , 1
loomoon

q̃

, 0, . . . , 0q,
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where q̃ ď q. Hence we have

dmp∆1q ´ dmp∆q “ p1, . . . , 1
loomoon

q̃

, 0, . . . , 0q ´ p1, . . . , 1
loomoon

p̃

, 0, . . . , 0q.

Note that the vector on the left hand side is symmetric. Hence the vector on the
right hand side is symmetric. If at least one inequality p̃ ď p or q̃ ď q is strict,
the vector at the right is not symmetric. Thus p̃ “ p, q̃ “ q, and the statement
follows. �

12. Cohomology of torus manifolds

12.1. Multi-fans of torus manifolds. Recall that a torus manifold X is an
oriented closed manifold of dimension 2n with an effective action of n-dimensional
compact torus T having at least one fixed point, and prescribed orientations of
characteristic submanifolds. Any torus manifold determines a non-singular multi-
fan in the lie algebra LpT q – Rn of the torus as follows (see details in [7]).

Let Xi, i P rms be the characteristic submanifolds. Let M be a connected
component of a non-empty intersection Xi1 X ¨ ¨ ¨ X Xik for some k ą 0 and
ti1, . . . , iku Ă rms, and assume that M has at least one fixed point. Such sub-
manifold will be called a face submanifold. We also assume that the manifold X
itself is a face submanifold corresponding to k “ 0. It easily follows from the
transversality of characteristic submanifolds that M has codimension 2|k|. Let ΣX
be a poset of all face submanifolds of X ordered by reversed inclusion. The basic
representation theory of a torus implies that ΣX is a pure simplicial poset of di-
mension n´ 1 on the vertex set rms. The maximal simplices of ΣX correspond to
the fixed points of X.

Given orientations of X and Xi, i P rms, each fixed point obtains a sign. This

determines a sign function σX : Σ
xny
X Ñ t´1,`1u.

Finally, let Ti denote a circle subgroup fixing Xi, for i P rms. The orientation
of Xi determines the orientation of the 2-dimensional normal bundle of Xi, which
in turn determines an orientation of Ti. Therefore we have a well-defined primitive
element

λXpiq P HompS1, Tnq – Zn Ă Rn – LpTnq.

This gives a characteristic function λX : rms Ñ Rn. These constructions determine
a multi-fan ∆X :“ pΣX , σX , λXq associated with a torus manifold X. This multi-
fan is non-singular and complete [7].

As described in subsection 2.2, we may turn the data “simplicial poset + sign
function” into the data “simplicial complex + weight function”. Let KX and wX
denote the simplicial complex and the weight function corresponding to ∆X .

In the following we assume that each non-empty intersection of characteristic
submanifolds is connected and contains at least one fixed point. The assumption
implies, in particular, that ΣX is a simplicial complex, and therefore KX “ ΣX
and the weight function wX coincides with σX .

12.2. Face subalgebra in cohomology. Let X be a torus manifold and ∆X

be the corresponding multi-fan. Let F˚pXq Ă H˚pX;Rq be the vector subspace
spanned by the cohomology classes Poincare dual to face submanifolds. Since the
intersection of two face submanifolds is either a face submanifold or empty, F˚pXq
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is a subalgebra. This subalgebra is multiplicatively generated by the classes of
characteristic submanifolds.

The simplices of KX “ ΣX correspond to face submanifolds, and there exists
a ring homomorphism RrKX s Ñ H˚T pXq defined as follows: the element xI “
ś

iPI xi P RrKX s2|I| corresponding to the simplex I P KX maps to the equivariant
cohomology class dual to the face submanifold XI “

Ş

iPI Xi. There is a natural
homomorphism H˚T pXq Ñ H˚pXq induced by the inclusion of a fiber in the Borel

fibration X ãÑ X ˆT ET
π
Ñ BT . We have a commutative square of algebra

homomorphisms

(12.1)

H˚T p∆Xq ÝÝÝÝÑ H˚p∆Xq
§

§

đ

§

§

đ

H˚T pXq ÝÝÝÝÑ H˚pXq.

Recall from the end of subsection 4.2 that H˚T p∆Xq denotes the Stanley–Reisner
ring of the underlying simplicial complex KX , H˚p∆Xq is its quotient by the linear
system of parameters, so the upper horizontal arrow in the diagram (12.1) is the
natural quotient homomorphism. By definition, F˚pXq is the image of the right
vertical map. Hence we have an epimorphism of algebras H˚p∆Xq� F˚pXq.

Theorem 12.1. There exists a well-defined epimorphism of algebras F˚pXq�
A˚p∆Xq.

Proof. The epimorphism H˚p∆Xq Ñ F˚pXq is compatible with the integra-
tion maps

ş

∆X
: H2np∆Xq Ñ R (the multi-fan integration) and

ş

X
: F2npXq Ñ R

(integration over the manifold X), see [7]. Lemma 7.4 implies that the induced map
PDpH˚p∆Xq,

ş

∆X
q Ñ PDpF˚pXq,

ş

X
q is an isomorphism. Thus we have a natural

epimorphism F˚pXq� PDpF˚pXq,
ş

X
q – PDpH˚p∆Xq,

ş

∆X
q “ A˚p∆Xq. �

Therefore the part of the cohomology ring generated by characteristic subman-
ifolds is clamped between two algebras defined combinatorially:

(12.2) H˚p∆Xq // // F˚pXq // //
� _

��

A˚p∆Xq

H˚pXq

Corollary 12.2. Betti numbers of a torus manifold X are bounded below by
the dimensions of graded components of A˚p∆Xq.

Remark 12.3. For complete smooth toric varieties and for quasitoric mani-
folds all arrows in the diagram above are isomorphisms as follows from Danilov–
Jurkiewicz and Davis–Januszkiewicz [5] theorems respectively. If KX is a sphere,
both horizontal maps are isomorphisms, so the face part of cohomology is com-
pletely determined by a multi-fan, while the vertical map may be non-trivial. As
an example in which such phenomena occur, take an equivariant connected sum of
a (quasi)toric manifold with a manifold on which the torus acts freely and whose
orbit space has nontrivial homology. Finally, there exist many examples of torus
manifolds for which all arrows in (12.2) are nontrivial [1].

Recall that H˚p∆Xq is linearly generated by the square-free monomials xI
corresponding to simplices I P K. There may exist certain linear relations on these
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elements coming from Minkowski relations:
ř

I:|I|“k apIqλpIqµxI , where µ P ΛkV

and a is a function on pk ´ 1q-simplices of K.

Conjecture 12.4. As a vector space, F2kpXq is generated by the elements
txIuIPK subject to the Minkowski relations

ř

I:|I|“k apIqλpIqµxI “ 0, where µ runs

over ΛkV and a runs over all functions such that the element
ÿ

I:|I|“k

apIqrXI{T s

bounds in Cn´kpX{T ;Rq.

This question is closely related to Problem 9.6. It can be seen that when-
ever

ř

I:|I|“k apIqrXI{T s bounds in Cn´kpX{T ;Rq, the element
ř

I:|I|“k apIqFI is a

cycle of multi-polytopes, therefore
ř

I:|I|“k apIqλpIqµxI vanishes in A˚p∆Xq. How-

ever, there may be cycles of multi-polytopes such that the corresponding elements
ř

I:|I|“k apIqrXI{T s do not bound in the orbit space. This observation represents

the fact that the right arrow in (12.2) can be nontrivial.
If X is an oriented manifold with locally standard torus action, having trivial

free part and acyclic proper faces of the orbit space, the conjecture is proved in [1].
Informally, this situation corresponds to the case when the underlying simplicial
complex of ∆X is an oriented homology manifold.
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