
BAND SURGERY ON KNOTS AND LINKS, III

TAIZO KANENOBU

Abstract. We give two criteria of links concerning a band surgery: The first one is a
condition on the determinants of links which are related by a band surgery using Nakan-
ishi’s criterion on knots with Gordian distance one. The second one is a criterion on
knots with H(2)-Gordian distance two by using a special value of the Jones polynomial,
where an H(2)-move is a band surgery preserving a component number. Then, we give
an improved table of H(2)-Gordian distances between knots with up to seven crossings,
where we add Zeković’s result.

1. Introduction

Let L be a link in S3 and b : I×I → S3 an embedding such that L∪b(I×I) = b(I×∂I),
where I is the unit interval [0, 1]. Then we may obtain a new link M = (L \ b(I × ∂I)) ∪
b(∂I × I), which is called a link obtained from L by the band surgery along the band B,
where B = b(I×I); see Fig. 1. If L and M are oriented links, and a band surgery preserves
the orientations of L and M , the band surgery is said to be coherent, otherwise incoherent.
If L and M are unoriented links, and a band surgery preserves the number of components,
then it is called the H(2)-move.

Since any oriented link can be deformed into the trivial knot by a sequence of coherent
band surgeries, we define the coherent band-Gordian distance between two oriented links
L and M to be the least number of coherent band surgeries needed to deform L into M ,
which we denote by dcb(L,M). Similarly, since any knot can be deformed into the trivial
knot by a sequence of H(2)-moves, we define the H(2)-Gordian distance between two knots
J and K, which we denote by d2(J,K). In particular, the H(2)-unknotting number of a
knot K, u2(K), is the H(2)-Gordian distance between K and the trivial knot.

In this paper we give two criteria of links concerning a band surgery: The first one is
a condition on the determinant of a knot or link which is obtained from an unknotting
number one knot by a band surgery (Theorem 2.2). This is easily obtained by using a
condition on the determinant of a knot obtained from an unknotting number one knot by a
crossing change due to Nakanishi [10, 11] (Proposition 2.1). The idea of the proof is similar
to that of Theorem 4.2 in [8], which gives a condition on the determinant of a link or knot
obtained from a 2-bridge knot by a band surgery. This uses a condition on the determinant
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L L ∪B = M ∪B M

Figure 1. The link M is obtained from L by a band surgery along the
band B, and vice versa.

of a knot obtained from a 2-bridge knot by a crossing change due to Murakami [9]. Using
Theorem 2.2 we give tables of the values for which the determinant of a link L does not
take such that either d2(K, L) = 1 or dcb(K, L) = 1, where K is an unknotting number one
knot with determinant ≤ 115 (Tables 1 and 2). They yield a table of pairs of an unknotting
number one knot J and a knot K with d2(J,K) > 1 (Table 3), and a table of pairs of an
unknotting number one knot J and a 2-component link L with dcb(J, L) > 1, where the
crossing numbers of J , K and L are ≤ 8 (Table 4). As corollaries of Theorem 2.2, we
obtain a condition for an unknotting number one knot to have H(2)-unknotting number
two (Corollaries 2.4 and 2.5).

The second one is a criterion on knots with H(2)-Gordian distance two by using a special
value of the Jones polynomial (Theorem 3.1), which extends some criteria given in [6, 8].

As an application, we give tables of H(2)-Gordian distances between knots with up to 7
crossings (Tables 6 and 7). They improve the tables compiled in [6], where there remain 60
pairs of knots whose H(2)-Gordian distances are unsettled. Among these pairs we decide
the H(2)-Gordian distances for 20 pairs of knots using the criteria above together with
those given in [8]. Further, we can decide for 8 pairs of knots by virtue of the paper of
Zeković [14]. She has given a new method for searching pairs of knots related by either
a crossing change or an H(2)-move. Then she gave tables of pairs of knots with Gordian
distance one and those with H(2)-Gordian distance one with at most 9 crossings.

This paper is organized as follows: In Sec. 2 we give a condition on the determinant of
a knot or link which is obtained from an unknotting number one knot by a band surgery,
which is deduced from Nakanishi’s criterion. Then we give a condition for an unknotting
number one knot to have H(2)-unknotting number two in terms of the determinant of a
knot. In Sec. 3 we give a criterion of a pair of knots with H(2)-Gordian distance two using
the special value of the Jones polynomial. In Sec. 4 we give the tables of the H(2)-Gordian
distances between knots with up to seven crossings, which improves those in [6].

Notation. For knots and links we use Rolfsen notations [12, Appendix C]. For a knot or
link L, we denote by L! its mirror image.

2. Determinant of a link obtained from an unknotting number one knot by
a band surgery

The following criterion is due to Nakanishi, which is implied from Proposition 13 in [11]
and has been essentially given in Theorem 3 in [10].
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Proposition 2.1. Let K be an unknotting number one knot. If a knot J is obtained from
K by a crossing change, then there exists an integer s such that:

(1) detJ ≡ ±s2 (mod detK).

Using this proposition, we may deduce the following.

Theorem 2.2. Suppose that a knot or link L is obtained from an unknotting number one
knot K by a coherent or incoherent band surgery. Then there exists an integer s such that:

(2) 2 det L ≡ ±s2 (mod detK).

The proof is similar to that of Theorem 4.2 in [8]. In order to prove this, we use the
Jones polynomial [5]. We define the Jones polynomial V (L; t) ∈ Z[t±1/2] of an oriented
link L by the following formulas:

V (U ; t) = 1;(3)

t−1V (L+; t)− tV (L−; t) =
(
t1/2 − t−1/2

)
V (L0; t);(4)

where U is the unknot and L+, L−, L0 are three oriented links that are identical except
near one point where they are as in Fig. 2; we call an ordered set (L+, L−, L0) a skein
triple.

L+ L− L0 L∞

Figure 2. A skein triple (L+, L−, L0), and a knot L∞.

If L+ and L− are knots, then L0 is a 2-component link and we may consider another knot
L∞ which is of the diagram of Fig. 2. Then L+/L− and L∞ are related by an incoherent
band surgery, and we have the following relation [3, Theorem 2]:

(5) V (L+; t)− tV (L−; t) + t3λ(t− 1)V (L∞; t) = 0,

where λ is the linking number of L0.
For a c-component link L, ic−1V (L;−1) is an integer and the determinant det L is given

by detL = |V (L;−1)|. Putting t = −1 in Eqs. (4) and (5), we obtain

−V (L+;−1) + V (L−;−1) = 2iV (L0;−1);(6)

V (L+;−1) + V (L−;−1) = 2(−1)λV (L∞;−1).(7)

Proof of Theorem 2.2. Suppose that a 2-component link L is obtained from an unknotting
number one knot J by a coherent band surgery. Then there exists a knot K such that
(J,K, L) is a skein triple; cf. Lemma 2.1(i) in [8]. Then by Proposition 2.1 there exists an
integer s with Eq. (1). From Eq. (6) we have −V (J ;−1)+V (K;−1) = 2iV (L;−1), and so



4 TAIZO KANENOBU

since detJ = |V (J ;−1)| and det K = |V (K;−1)|, we obtain Eq. (2). For the case where
L and J are related by an incoherent band surgery we use Eq. (7). �

For an unknotting number one knot K with det K ≤ 115 we list the impossible values
of det L, where L is a knot or link with d2(K, L) = 1 or dcb(K, L) = 1 in Tables 1 and
2. They are obtained by using the Mathematica program. Notice that if K is a prime
knot with up to 10 crossings, then det K ≤ 111. Therefore, Tables 1 and 2 yield Tables 3
and 4. In Table 3 the symbol × means that the unknotting number one knots J in the
row and the knots K in the column are not related by an incoherent band surgery, which
also implies that the pairs (J !,K!), (J,K!), (J !,K) are not related by an incoherent band
surgery. For example, the pairs of knots (61, 74), (61!, 74!), (61, 74!), (61!, 74) are not related
by an incoherent band surgery. In Table 4 the symbol × means that the unknotting number
one knots J in the row and the oriented links L in the column with any orientation are
not related by a coherent band surgery, which implies that the pairs of oriented knots and
links (J, L), (J !, L!), (J, L!), (J !, L) with any orientation are not related by a coherent band
surgery.

Example 2.3. d2(52, 817) = d2(71, 817) = 2. Note that 817 is negative-amphicheiral. First,
by Table 3 we see d2(52, 817) > 1 and d2(71, 817) > 1. Notice that previously known
methods in [6] (Theorems 4.1, 5.5, 8.1) and [8] (Theorems 4.2, 5.2(iii), 7.2) do not prove
this; see Table 5. Conversely, we have

d2(52, 817) ≤ d2(52, 63) + d2(63, 817) = 2;(8)

d2(71, 817) ≤ d2(71, 41) + d2(41, 817) = 2.(9)

In fact, the knot 817 is transformed into 41 and 63 by the H(2)-moves using the band and the
crossing as shown in Fig. 3, respectively, which imply d2(817, 41) = 1 and d2(817, 63) = 1.

Figure 3. The knot 817 is transformed into 41 and 63 by H(2)-moves.

Since the H(2)-unknotting number of an unknotting number one knot is at most two by
Theorem 3.1 in [7], Theorem 2.2 implies:

Corollary 2.4. Let K be an unknotting number one knot and let d = detK. Suppose that
for any integer x

(10) x2 6≡ ±2 (mod d),

i.e., both 2 and −2 are quadratic non-residues modulo d. Then u2(K) = 2.
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Table 1. Values for which detL does not take with d2(K, L) = 1 or
dcb(K, L) = 1, K being an unknotting number one knot (I).

det K det L 6≡
5, 15, 35, 55, 95, 115 1, 4 (mod 5)

9, 27 3, 6 (mod 9)

13, 39, 91 1, 3, 4, 9, 10, 12 (mod 13)

17, 51 3, 5, 6, 7, 10, 11, 12, 14 (mod 17)

21 1, 4, 5, 16, 17, 20 (mod 21)

25, 75 1, 4, 5, 6, 9, 10, 11, 14, 15, 16, 19, 20, 21, 24 (mod 25)

29, 87 1, 4, 5, 6, 7, 9, 13, 16, 20, 22, 23, 24, 25, 28 (mod 29)

33 5, 7, 10, 13, 14, 19, 20, 23, 26, 28 (mod 33)

37, 111 1, 3, 4, 7, 9, 10, 11, 12, 16, 21, 25, 26, 27, 28, 30, 33, 34,

36 (mod 37)

41 3, 6, 7, 11, 12, 13, 14, 15, 17, 19, 22, 24, 26, 27, 28, 29, 30,

34, 35, 38 (mod 41)

45 1, 3, 4, 6, 9, 11, 12, 14, 15, 16, 19, 21, 24, 26, 29, 30, 31,

33, 34, 36, 39, 41, 42, 44 (mod 45)

49 7, 14, 21, 28, 35, 42 (mod 49)

53 1, 4, 6, 7, 9, 10, 11, 13, 15, 16, 17, 24, 25, 28, 29, 36, 37,

38, 40, 42, 43, 44, 46, 47, 49, 52 (mod 53)

57 5, 10, 11, 13, 17, 20, 22, 23, 26, 31, 34, 35, 37, 40, 44, 46,

47, 52 (mod 57)

61 1, 3, 4, 5, 9, 12, 13, 14, 15, 16, 19, 20, 22, 25, 27, 34, 36,

39, 41, 42, 45, 46, 47, 48, 49, 52, 56, 57, 58, 60 (mod 61)

63 1, 3, 4, 5, 6, 12, 15, 16, 17, 20, 21, 22, 24, 25, 26, 30, 33, 37,

38, 39, 41, 42, 43, 46, 47, 48, 51, 57, 58, 59, 60, 62 (mod 63)

65 1, 3, 4, 6, 9, 10, 11, 12, 14, 16, 17, 19, 21, 22, 23, 24, 25,

26, 27, 29, 30, 31, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44,

46, 48, 49, 51, 53, 54, 55, 56, 59, 61, 62, 64 (mod 65)

69 2, 7, 8, 10, 19, 22, 26, 28, 29, 32, 34, 35, 37, 40, 41, 43, 47,

50, 59, 61, 62, 67 (mod 69)

Let d (0 < d ≤ 115) be an integer such that both 2 and −2 are quadratic non-residues
modulo d. Then from Tables 1 and 2 we have:

d = 5, 13, 15, 21, 25, 29, 35, 37, 39, 45, 53, 55, 61, 63, 65,

69, 75, 77, 85, 87, 91, 93, 95, 101, 105, 109, 111, 115.
(11)

Consequently, the following unknotting number one knots have H(2)-unknotting number
two; see [1, 2, 7] for the table of H(2)-unknotting numbers of knots with up to nine crossings.

41, 63, 77; 8l, l = 1, 9, 13, 17, 21; 9m,m = 2, 12, 14, 24, 30, 33, 39;
10n;n = 9, 10, 18, 26, 32, 33, 59, 60, 71, 82, 84, 88, 95, 104, 107,

113, 114, 119, 129, 132, 136, 137, 141, 156, 159, 164.

(12)
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Table 2. Values for which detL does not take with d2(K, L) = 1 or
dcb(K, L) = 1, K being an unknotting number one knot (II).

det K det L 6≡
73 5, 7, 10, 11, 13, 14, 15, 17, 20, 21, 22, 26, 28, 29, 30, 31, 33, 34, 39, 40,

42, 43, 44, 45, 47, 51, 52, 53, 56, 58, 59, 60, 62, 63, 66, 68 (mod 73)

77 1, 4, 6, 9, 10, 13, 15, 16, 17, 19, 23, 24, 25, 36, 37, 40, 41, 52, 53, 54,

58, 60, 61, 62, 64, 67, 68, 71, 73, 76 (mod 77)

81 3, 6, 12, 15, 21, 24, 27, 30, 33, 39, 42, 48, 51, 54, 57, 60, 66, 69, 75,

78 (mod 81)

85 1, 3, 4, 5, 6, 7, 9, 10, 11, 12, 14, 16, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29,

31, 34, 36, 37, 39, 40, 41, 44, 45, 46, 48, 49, 51, 54, 56, 57, 58, 59, 61, 62,

63, 64, 65, 66, 69, 71, 73, 74, 75, 76, 78, 79, 80, 81, 82, 84 (mod 85)

89 3, 6, 7, 12, 13, 14, 15, 19, 23, 24, 26, 27, 28, 29, 30, 31, 33, 35, 37, 38, 41, 43,

46, 48, 51, 52, 54, 56, 58, 59, 60, 61, 62, 63, 65, 66, 70, 74, 75, 76, 77, 82, 83,

86 (mod 89)

93 1, 4, 7, 10, 11, 16, 17, 19, 23, 25, 26, 28, 29, 40, 44, 49, 53, 64, 65, 67, 68,

70, 74, 76, 77, 82, 83, 86, 89, 92 (mod 93)

97 5, 7, 10, 13, 14, 15, 17, 19, 20, 21, 23, 26, 28, 29, 30, 34, 37, 38, 39, 40, 41, 42,

45, 46, 51, 52, 55, 56, 57, 58, 59, 60, 63, 67, 68, 69, 71, 74, 76, 77, 78, 80, 82,

83, 84, 87, 90, 92 (mod 97)

99 3, 5, 6, 7, 10, 12, 13, 14, 15, 19, 20, 21, 23, 24, 26, 28, 30, 33, 38, 39, 40,

42, 43, 46, 47, 48, 51, 52, 53, 56, 57, 59, 60, 61, 66, 69, 71, 73, 75, 76, 78,

79, 80, 84, 85, 86, 87, 89, 92, 93, 94, 96 (mod 99)

101 1, 4, 5, 6, 9, 13, 14, 16, 17, 19, 20, 21, 22, 23, 24, 25, 30, 31, 33, 36, 37,

43, 45, 47, 49, 52, 54, 56, 58, 64, 65, 68, 70, 71, 76, 77, 78, 79, 80, 81, 82,

84, 85, 87, 88, 92, 95, 96, 97, 100 (mod 101)

105 1, 4, 5, 6, 9, 11, 14, 16, 17, 19, 20, 21, 22, 24, 25, 26, 29, 31, 34, 36, 37, 38,

39, 41, 43, 44, 46, 47, 49, 51, 54, 56, 58, 59, 61, 62, 64, 66, 67, 68, 69, 71,

74, 76, 79, 80, 81, 83, 84, 85, 86, 88, 89, 91, 94, 96, 99, 100, 101, 104 (mod 105)

109 1, 3, 4, 5, 7, 9, 12, 15, 16, 20, 21, 22, 25, 26, 27, 28, 29, 31, 34, 35, 36, 38,

43, 45, 46, 48, 49, 60, 61, 63, 64, 66, 71, 73, 74, 75, 78, 80, 81, 82, 83, 84,

87, 88, 89, 93, 94, 97, 100, 102, 104, 105, 106, 108 (mod 109)

113 3, 5, 6, 10, 12, 17, 19, 20, 21, 23, 24, 27, 29, 33, 34, 35, 37, 38, 39, 40, 42, 43, 45,

46, 47, 48, 54, 55, 58, 59, 65, 66, 67, 68, 70, 71, 73, 74, 75, 76, 78, 79, 80, 84, 86,

89, 90, 92, 93, 94, 96, 101, 103, 107, 108, 110 (mod 113)

The numbers in (11) have a divisor congruent to 5 modulo 8. Indeed, using Lemma 2.6
below, Corollary 2.4 is restated as folllows.

Corollary 2.5. Let K be an unknotting number one knot. If the determinant of K is a
multiple of 8k + 5 for some k, k = 0, 1, 2, . . . , then u2(K) = 2.

Lemma 2.6. A positive odd integer d is a multiple of 8k + 5 for some k, k = 0, 1, 2, . . . if
and only if both 2 and −2 are quadratic non-residues modulo d.
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Table 3. Knots J and K with d2(J,K) > 1, J being of unknotting number one.

J

41 61 63 77 89 813 817

821 811 81

K det K 820

U 1 × × × × × ×
31, 819 3 × × ×
41, 51 5 × × ×
52, 71 7 × ×
61, 31#31, 820 9 × × × × ×
62, 72 11 × × ×
63, 73, 81 13 ×
74, 31#41, 821, 31#51 15 × ×
75, 82, 83 17 × ×
76, 84 19 × ×
77, 85, 31#52 21 × × × ×
86, 87 23 × ×
88, 89, 41#41 25 × × × ×
810, 811 27 × ×
812, 813 29 × × ×
814 31 × ×
815 33 × × ×
816 35 × × ×
817 37 ×

39 × × ×
41 × × × ×
43 × ×

818 45 × ×

In order to prove Lemma 2.6 we use the Jacobi symbol; cf. [4]. For an integer m and an
odd prime number p the Legendre symbol (m/p) is defined by(

m

p

)
=

{
1 if m is a quadratic residue modulo p and m 6≡ 0 (mod p);
−1 if m is a quadratic non-residue modulo p.

(13)

For an odd positive integer n with prime factorization n = p1p2 · · · pr, where pi is a prime
number, the Jacobi symbol (m/n) is defined by(m

n

)
=

r∏
i=1

(
m

pi

)
.(14)

where (m/pi) is the Legendre symbol.
If pi is a quadratic residue modulo n for each i, then by the Chinese remainder theorem

m is a quadratic residue modulo n. If m is a quadratic residue modulo n, then the Jacobi
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Table 4. 2-component links L and unknotting number one knots J with
dcb(J, L) > 1.

J

41 61 63 77 89 813 817

821 811 81

L det L 820

U2 0

H−(= 22
1) 2

T4 = 42
1, 72

7 4 × × × × × ×
31#H−, T6(= 62

1) 6 × × × ×
52
1, 72

8, T8(= 82
1), 82

15 8

62
2, 41#H−, 51#H− 10 × × ×

62
3, 31#T4, 82

16 12 × × ×
72
1, 52#H− 14 × × ×

72
3, 72

4, 82
2, 82

12 16 × × × × × ×
72
2 18

72
5, 82

6 20 × × ×
82
3 22 × × ×

72
6, 82

4 24 × × × ×
82
5 26 × × × ×

82
9, 82

11 28 × ×
82
7 30 × × × × ×

82
10, 82

12 32

82
8 34 × × × ×

82
14 36 × × × × ×

38 × × × ×
82
13 40 × × ×

Table 5. Invariants of the knots 52, 71, and 817.

K σ(K) V (K;−1) Arf(K) u2(K)

52 2 −7 0 1

71 6 −7 0 1

817 0 37 1 2

symbol (m/n) is 1. We use the following formulas of the Jacobi symbol; cf. [13, p. 84].(
2
n

)
=

{
1 if n ≡ 1, 7 (mod 8);
−1 if n ≡ 3, 5 (mod 8),

(15)

(
−2
n

)
=

{
1 if n ≡ 1, 3 (mod 8);
−1 if n ≡ 5, 7 (mod 8).

(16)
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Proof of Lemma 2.6. If d is a multiple of 8k + 5 for some k, k = 0, 1, 2, . . . , then both 2
and −2 are quadratic non-residues modulo d. In fact, the Jacobi symbols (±2/(8k + 5))
are −1 by Eqs. (15) and (16).

Suppose that any divisor of d is not congruent to 5 modulo 8. Let d = p1p2 . . . pm be a
prime factorization; each pi is an odd prime number. Then we have two cases:

(i) pi ≡ 1, 3 (mod 8) for each i;
(ii) pi ≡ 1, 7 (mod 8) for each i.

In fact, if pi ≡ 3, pj ≡ 7 (mod 8), then pipj ≡ 5 (mod 8). Then in Case (i) by Eq. (16)
−2 is a quadratic residue modulo pi for each i, and so −2 is a quadratic residue modulo d.
Similarly, in Case (ii) 2 is a quadratic residue modulo d. This completes the proof. �

3. Criterion on knots with H(2)-Gordian distance two

In [6] we have compiled a table of H(2)-Gordian distances between knots with up to
seven crossings, where we use several criteria to give lower bounds. In [8] we gave further
criteria for giving a lower bound of the H(2)-Gordian distance. In Theorems 7.1 and 7.3 in
[6], the individual 6 pairs of knots are proved to have H(2)-Gordian distance two by using
the special value of the Jones polynomial, which is generalized to Theorem 5.2(iii) in [8].

We give a further criterion of a pair of knots with H(2)-Gordian distance two:

Theorem 3.1. Let K and K ′ be knots with d2(K, K ′) = 2 and V (K;ω) = V (K ′;ω) =
±(i

√
3)δ. If either

(i) σ(K)− σ(K ′) ≡ 0 (mod 8) and Arf(K) 6= Arf(K ′), or
(ii) σ(K)− σ(K ′) ≡ 4 (mod 8) and Arf(K) = Arf(K ′),

then

(17) V (K;−1) ≡ V (K ′;−1) (mod 3δ+1).

Proof. Let J be a knot which is obtained from both K and K ′ by an H(2)-move; d2(J,K) =
d2(J,K ′) = 1. First, we show σ(J) ≡ σ(K)±2 (mod 8). Indeed, if we assume σ(J) ≡ σ(K)
(mod 4), then by Lemma 6.1 in [6] we have:

• If σ(K)− σ(K ′) ≡ 0 (mod 8), then Arf(K) = Arf(K ′).
• If σ(K)− σ(K ′) ≡ 4 (mod 8), then Arf(K) 6= Arf(K ′).

This contradicts our assumption.
Next, we show V (J ;ω) = ±v0, where v0 = V (K;ω) = V (K ′;ω). By [6, Theorem 5.3]

we have V (J ;ω) ∈ {±v0,±i
√

3
±1

v0}. Assume V (J ;ω)/v0 = εi
√

3, ε = ±1. Then by
Theorem 5.5 in [6] we obtain:

(a) If σ(J)− σ(K) ≡ 2ε (mod 8), then Arf(J) = Arf(K).
(b) If σ(J)− σ(K) ≡ −2ε (mod 8), then Arf(J) 6= Arf(K).
(c) If σ(J)− σ(K ′) ≡ 2ε (mod 8), then Arf(J) = Arf(K ′).
(d) If σ(J)− σ(K ′) ≡ −2ε (mod 8), then Arf(J) 6= Arf(K ′).

Therefore, K and K ′ do not satisfy the conditions (i) nor (ii). Similarly, we may prove
V (J ;ω) 6= ±i

√
3
−1

v0.
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Thus we have V (J ;ω) = ηv0, η = ±1. Then by Theorem 5.2(iii) in [8] we obtain
ηV (J ;−1) ≡ V (K;−1) ≡ V (K ′;−1) (mod 3δ+1), completing the proof. �

Example 3.2. Let K = 61! and K ′ = 77. Then V (K;ω) = V (K ′;ω) = −i
√

3, σ(K) =
σ(K ′) = 0, Arf(K) = 0, Arf(K ′) = 1, and 9 = V (K;−1) 6≡ V (K ′;−1) = 21 (mod 9).
Thus by Theorem 3.1 we obtain d2(K, K ′) 6= 2, which implies d2(K, K ′) = 3 by [6, Table 3].

4. H(2)-Gordian distances of knots with up to seven crossings

In Tables 6 and 7 we list the H(2)-Gordian distances between knots with up to seven
crossings, which improves those in [6], where the meanings of the marks are as follows:

• The marks 1-2, 2-3, 1-3 mean 1 or 2, 2 or 3, 1 or 2 or 3, respectively.
• The mark 1z) means that the distance is confirmed to be 1 by Fig. 20 in [14], and

2z) means that the distance is decided to be 2 from the inequality d2(71, 77) ≤
d2(71, 63) + d2(63, 77) = 2.

• The mark 2m) means that the distance is decided to be 2 by using Theorem 4.2
(Example 4.5) in [8].

• The mark 2mn) means that the distance is decided to be 2 by using either by
Theorem 4.2 (Example 4.5) in [8] or Theorem 2.2 (Table 3).

• The mark 2v) means that the distance is decided to be 2 by using Theorem 5.8
(Example 5.10) in [8].

• The mark 2mnv) means that the distance is decided to be 2 by using by either Theo-
rem 4.2 (Example 4.5) in [8], Theorem 2.2 (Table 3), or Theorem 5.8 (Example 5.10)
in [8].

• The mark 3v) means that the distance is decided to be 3 by using Theorem 3.1
(Example 3.2).
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14. Ana Zeković, Computation of Gordian distances and H2-Gordian distances of knots, Yugosl. J. Oper.

Res. 25 (2015), no. 1, 133–152. MR 3331990

Department of Mathematics, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka 558-
8585, Japan

E-mail address: kanenobu@sci.osaka-cu.ac.jp



12 TAIZO KANENOBU

Table 7. H(2)-Gordian distances of knots with up to 7 crossings.

71 72 73 74 75 76 77 31#41

U 1 1 1 1 2 1 2 1
31 1 1 1 2 1 1 2 2
31! 2 2 1 2 1 2 1 2
41 1 2 2 1 1 2 2 1

51 2 1z) 2 2 2 1 2 2
51! 2 1 2 2 2 1-2 2 2

52 2 2 2m) 2 1 2 1 2

52! 1z) 1-2 2m) 2 1 1 2 2

61 2 1 1 2mnv) 2 2 2 2

61! 1-2 2 1 2mnv) 2 1 3v) 2

62 1-2 1z) 2m) 1 1 1 1 2

62! 2 2 2m) 2 1 2 2 1-2

63 1z) 1-2 2-3 2 2mn) 1 1 2
31#31 2 2 2 1 2 2 1 1
31!#31! 2 2 2 1-3 2 2 1-2 1-3
31!#31 2 2 2 1-2 2 2 2 1

71 0 1-2 2m) 2 1-2 1-2 2z) 2

71! 2 2 2m) 2 1z) 2 1z) 2

72 0 2m) 1-2 1-2 1-2 1-2 2

72! 2 2m) 2 1-2 2 2 1

73 0 2 2 2m) 2 2

73! 1-2 2 2 2m) 2 2
74 0 2 1-2 1 2

74! 2 2 2 2v) 1-2

75 0 2m) 2mn) 2

75! 1-2 2m) 2mn) 2
76 0 2 2
76! 2 1 1

77 0 2v)

77! 2 1-2
31!#41 2


