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Abstract On a bounded domainΩ, we consider the minimization problem associated
with the optimal constant of generalized critical Hardy inequalities in the boundary
singularity case and other cases. Especially, in the boundary singularity case, we
show that the validity of the inequality depends on the sharpness of the corner of
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inequalities on balls.
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1 Introduction and main results

LetΩ be a bounded domain inRN with 0 ∈ Ω. In the subcritical case 1< p < N, the
classical Hardy inequality holds for allu ∈W1,p

0 (Ω) as follows:(
N − p

p

)p ∫
Ω

|u|p
|x|p dx≤

∫
Ω

∣∣∣∣∣∇u · x
|x|

∣∣∣∣∣p dx, (1)

Here W1,p
0 (Ω) is a completion ofC∞0 (Ω) with respect to the norm∥∇ · ∥Lp(Ω). We

refer the celebrated work [29] in 1920. For physical background of (1), see e.g. [38].
For (1), it is known that the optimal constant (N−p

p )p is not attained for any bounded
domainΩ. Therefore we can expect the existence of remainder terms of (1). Indeed
there exist several remainder terms of (1), see [7], [17], [4], [5], [18], [21], [12]. And
also there are applications of remainder terms to PDE, see [58], [3], [8], [1], [2].
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In this paper, we focus on the critical casep = N. In this case, the classical one
loses its meaning. However, instead of (1), the critical Hardy inequality(

N − 1
N

)N ∫
Ω

|u|N

|x|N(log aR
|x| )

N
dx≤

∫
Ω

∣∣∣∣∣∇u · x
|x|

∣∣∣∣∣N dx (2)

holds for allu ∈ W1,N
0 (Ω) anda ≥ 1, whereR = supx∈Ω |x| andN ≥ 2 (see e.g. [36],

[20] Corollary 9.1.2., [4], [5], [44], [56]). It is known that the optimal constant of (2)
with a ≥ e is (N−1

N )N and is not attained for any bounded domainΩ with 0 ∈ Ω by
using rearrangement technique and a improvement of (2) (see [3], [2], [54] etc.). On
the other hand, in the case 1≤ a < e, the optimal constant (N−1

N )N is also not attained
in spite of luck of rearrangement technique (see [32], [21] Theorem 9.1.4., Theorem
1(ii) in §1, Corollary 2 in§2). For a generalization of (2), the following inequality

C

∫
Ω

|u(x)|q

|x|N(log aR
|x| )

β
dx


N
q

≤
∫
Ω

|∇u|Ndx (3)

holds for allu ∈W1,N
0 (Ω) anda > 1, where appropriateq andβ, see [43], Corollary 1

in §2. We defineG as the optimal constant of the inequality (3) as follows:

G = G(Ω; a,q, β) := inf
u∈W1,N

0 (Ω)\{0}

∫
Ω
|∇u|N dx(∫

Ω

|u|q
|x|N(log aR

|x| )
β dx

) N
q

(4)

for a ≥ 1 andq, β > 1. Our aim of this paper is to study positivity and attainability of
G for a general bounded domainΩ with 0 ∈ Ω. Note that some results are obtained
by [31] only for balls.

Our minimization problem (4) is related to the followingN−Laplace equation
with the singular potential:−div ( |∇u|N−2∇u ) = |u|q−2u

|x|N(log aR
|x| )

β in Ω

u = 0 on ∂Ω.
(5)

The minimizers forG are grand state solutions of the Euler-Lagrange equation (5).
One virtue of our problem is that the phenomenon occurring onG undergoes a drastic
change with respect to the exponentsa, β and the boundary∂Ω sinceG is affected by
the shape of the potential functionfa, β(x) := |x|−N(log aR

|x| )
−β. Especially the structure

of the singularity of the potential functionfa, β is quite different betweena > 1 and
a = 1. Indeed, the singularity of it witha > 1 is only at the origin. In contrast, the
singularity of it with a = 1 is not only at the origin but also on a portion of the
boundary, that is∂BR(0)∩ ∂Ω. In this paper, we calla = 1 case as “sharp” one and
a > 1 case as “non-sharp” one. First result is concerning non-sharp case.

Theorem 1 (Non-sharp case : a> 1) Let a > 1, Ω be a bounded domain inRN,
0 ∈ Ω, N ≥ 2, R= supx∈Ω |x|, q, β > 1 satisfyβ > N−1

N q+ 1 if 1 < q < N,

β ≥ N−1
N q+ 1 if N ≤ q.

(6)
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G is defined by (4). Then the following statements (i)～(iii) hold.
(i) If β > N−1

N q+ 1, then G is attained.
(ii) If β = q = N, then G= ( N−1

N )N independent ofΩ and a, and G is not attained.

(iii) If β = N−1
N q + 1, q > N, and a≥ e

β
N , then G is independent ofΩ and is not

attained.

Remark 1In Theorem 1 (iii), we assume the conditiona ≥ e
β
N . In this case, the

potential function fa, β is radially decreasing in the domainΩ. Therefore, we can
apply the rearrangement technique to our minimization problem (4). We do not know
whether Theorem 1 (iii) holds for anya > 1.

In sharp casea = 1, the positivity ofG heavily depends on geometry of∂Ω near
∂BR(0) and the exponentβ which expresses the strength of the boundary singularity
of the potential functionf1, β. Roughly speaking, ifβ is small, then the singularity
of f1,β at the origin is too strong. On the other hand, ifβ is large, then the boundary
singularity of f1, β is too strong. Moreover the sharpness of the corner ofΩ, which
touches∂BR(0), plays the role of weakening the boundary singularity off1, β. We
can observe that the critical Hardy inequality has a good balance concerning these
singularities. Second result is as follows.

Theorem 2 (Sharp case : a= 1) Let N ≥ 2, β,q > 1 satisfy (6),Ω ⊂ RN be
a bounded domain with0 ∈ Ω, and R= supx∈Ω |x|. G is defined by (4). Then the
following statements (i), (ii) hold.
(i) If there exists a neighborhoodΓ ⊂ ∂Ω ∩ ∂BR(0) in ∂BR(0), then G> 0 if and only
if q = β = N.
(ii) Let ∂Ω ∩ ∂BR(0) = {(0, · · · ,0,−R)}. There exist a functionϕ : RN−1 → [−R,∞)
and a smallδ > 0 such that∂Ω is represented by the graph : xN = ϕ(x′) for |x′| ≤ δ.
Furthermore there exist positive constants C1,C2 and0 < α ≤ 1 such that C1|x′|α ≤
ϕ(x′) + R ≤ C2|x′|α for |x′| ≤ δ. Then there existsβ∗ = β∗(α,q) such thatN−1

α
+ 1 ≤

β∗ ≤ N
α

, and the following statements (ii)’, (ii)” hold.
(ii)’ If β < β∗, then G> 0. Moreover, ifN−1

N q+ 1 < β < β∗, then G is attained.
(ii)” If β > β∗, then G= 0.

Third result is concerning the explicit optimal constant and its minimizers ofG
for radial functions.

Theorem 3 (Optimal constant and its minimizers) Set

Grad = Grad(BR(0);a,q, β) = inf
u∈W1,N

0,rad(BR(0))\{0}

∫
BR(0)
|∇u|N dx(∫

BR(0)
|u|q

|x|N(log aR
|x| )

β dx
) N

q

. (7)

Then the following statements (i)～(iii) hold.
(i) Grad is independent of a≥ 1 if β = N−1

N q+ 1.
(ii) G rad(1,q, β) > 0 if and only if q≥ N andβ = N−1

N q+ 1. In the caseβ = N−1
N q+ 1,

Grad(a,q, β) is attained if and only if a= 1 and q> N.
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(iii) When q> N andβ = N−1
N q+ 1, the optimal constant Grad(1, q, β) is given by

Grad = ω
1− N

q

N (N − 1)

(
N
q

)1− 2N
q

(
1− N

q

)−2+ 2N
q

Γ
(

q(N−1)
q−N

)
Γ

(
N

q−N

)
Γ

(
qN

q−N

) 
1− N

q

,

whereΓ(·) is the gamma function, and the minimizers are given by the family of
functions

U(y) = Cλ−
N−1

N

1+ (
λ log

R
|y|

)− q−N
N


− N

q−N

, C ∈ R \ {0}, λ > 0.

Only for two dimensional caseN = 2, the form of minimizer in Theorem 3 (iii)
was already found by [59].

Remark 2In the caseq = N,a = 1 in Theorem 3 (ii), Ioku-Ishiwata [32] showed
not only the non-existence of the minimizers ofGrad(1,N,N) = ( N−1

N )N but also the

existence of “virtual” minimizer (logR
|x| )

N−1
N . To be more precise, if there exists a

minimizer u of Grad(1,N,N), thenu(x) = (log R
|x| )

N−1
N . However, since (logR|x| )

N−1
N <

W1,N
0 (B(R)), the radial minimizer does not exist. This phenomenon is also observed

in other Hardy type inequalities (see [12], [33], [52]).

A few comments are in order.
Scale invariance often plays a important role in consideration of minimization prob-
lems. It is well-known that the Hardy-Sobolev type inequality (1) has the scale in-
variance under the scaling

uλ(x) = λ−
N−p

p u
( x
λ

)
(8)

for λ > 0 whenΩ = RN. WhenΩ , RN, the inequality (1) is also invariant under (8)
excluding variation of the domain. For simplicity, we call this invariance as “quasi-
scale” invariance. On the other hand, the critical Hardy inequality (2) is not invariant
under the scalinguλ(x) = u(λx) due to the logarithmic term. However, under the
non-standard scaling

uλ(x) = λ−
N−1

N u

( |x|aR

)λ−1

x

 (λ > 0), (9)

the inequality (2) has the scale invariance in the casea = 1 and has the quasi-scale
invariance in the casea > 1 whenΩ = BR(0) (see [32], Proposition 3 in§5). Unfor-
tunately, the generalized critical Hardy inequality (3) does not have even the quasi-
scale invariance under the scaling (9) due to the derivative term

∫
Ω
|∇u|Ndxof (3) (see

Proposition 3 in§5). The lack of the scale invariance makes it difficult to study our
minimization problem (4).
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In the subcritical casep < N (especiallyp = 2 case), there is an enormous number of
researches concerning the following type minimization problem associated with the
optimal constant of the Hardy-Sobolev inequality:

inf
u∈W1,p

0 (Ω)\{0}

∫
Ω
|∇u|p dx(∫

Ω

|u|p∗(s)
|x|s dx

) p
p∗(s)

, (10)

wherep∗(s) := p(N−s)
N−p . On the whole spaceΩ = RN, the explicit optimal constant

and its minimizers were revealed (see [57], [39] [13], [26], [30] and the references
therein). On the other hand, ifΩ is a bounded domain and 0∈ ∂Ω, it is known that the
existence of minimizers heavily depend on the mean curvature of∂Ω at 0 (see [19],
[22], [25], [23], [11], [41]). We refer the survey paper [24] and the book [20].
In the critical casep = N, there are several researches of maximization problem
associated with the Trudinger-Moser inequality which expresses the embedding of
the the critical Sobolev spaceW1,N to the Orlicz space (see e.g. [10], [55], [16], [42],
[51], [37], [34], [35] and so on). On the other hand, our problem (4) is a minimization
problem associated with the embedding of it to the weighted Lebesgue space like the
subcritical one. In this view, we can consider our minimization problem (4) as a
limiting case of (10) (see also§4).

This paper is organized as follows: In§2, we show Theorem 1. Again, note that
the generalized critical Hardy inequality (3) does not have even the quasi-scale in-
variance in general. However, only for radial functions, (3) has the quasi-scale invari-
ance. The key tools of the proof of Theorem 1 (iii) are the rearrangement technique
and the quasi-scale invariance only for radial functions. For Theorem 1 (ii), in the
case 1< a < e, we can not apply the rearrangement technique, because the potential
function (|x| log aR

|x| )
−N is not radially decreasing onBR(0). Instead of the rearrange-

ment technique, we take some spherical averaging (26) in order to use the quasi-scale
invariance. In§3, we give the proof of Theorem 2. Theorem 2 (i) says that (3) can not
hold except for the Hardy case (q = β = N) if ∂Ω touches∂BR(0) enough. However,
Theorem 2 (ii) implies that (3) can hold if∂Ω touches∂BR(0) at only one point very
sharply. In order to show these, we make several test functions, which concentrate
on the boundary or the origin, and the weighted inequality in a domain with a sharp
corner. In§4, we firstly explain the transformation which introduced by [53] in order
to prove Theorem 3. Roughly speaking, this transformation says that the Hardy in-
equality with the optimal constant is equivalent to the critical Hardy inequality with
it in the radial case. By showing that this transformation also connects the Hardy-
Sobolev type inequality and the generalized critical Hardy inequality (3), we shall
reveal the explicit optimal constant and its minimizers ofGrad . In §5, we state some
Propositions about our inequality (3).

Before stating the proof, we fix several notations:BR(a) andBN
R(a) are balls cen-

tereda with radiusR in RN. Especially, whena is the origin, we writeB(R) for
the sake of simplicity.ωN is an area of the unit sphere inRN. |A| denotes the mea-
sure of a setA ⊂ RN. The Schwarz symmetrizationu# : RN → [0,∞] is given by
u#(|x|) = inf

{
τ > 0 : |{x ∈ RN : |u(x)| > τ} | ≤ |B|x|(0)|

}
. Xrad is a set of radial func-

tions in a functional spaceX. Throughout the paper, ifu is a radial function inRN,
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then we can write asu(x) = ũ(|x|) by some function ˜u = ũ(r) in R+. Then we write
u(x) = u(|x|) with admitting some ambiguity. We hope no confusion occurs by this
abbreviation. And also, we useC as a general constant.

2 Non-sharp case :a > 1

At first, we confirm that the necessary and sufficient condition for the validity of the
inequality (3) is the assumption (6) in Theorem 1. To do so, we shall show Corollary
1 from Theorem A proved by Machihara-Ozawa-Wadade [43]. They proved more
general critical Hardy inequality in Sobolev-Lorentz spaceHs

p,q(RN) as follows (see
also [15], [27], [28], [47], [48], [49]).

Theorem A ([43] Theorem 1.1.) Let N∈ N,1 < p < ∞,1 < r ≤ ∞ and1 < α, β <

∞. Then there exists a constant C> 0 such that for all u∈ H
N
p
p,r (RN), the inequality∫

B( 1
2 )

|u(x)|α

|x|N(log 1
|x| )

β
dx


1
α

≤ C∥u∥
H

N
p

p,r (RN)
(11)

holds true if and only if one of the following conditions (i)～(iii) is fulfilled
(i) 1+ α − β < 0,

(ii ) 1+ α − β ≥ 0 and r< α
1+α−β ,

(iii ) 1+ α − β > 0, r = α
1+α−β , andα ≥ β.

(12)

SinceH1
N,N(RN) is equivalent to the Sobolev spaceW1,N(RN), we can obtain the

following Corollary.

Corollary 1 Let a> 1,Ω ⊂ RN be a bounded domain with0 ∈ Ω, R= supx∈Ω |x|,N ≥
2 and q, β > 1. Then there exists a constant C> 0 such that the inequality (3) holds
for all u ∈W1,N

0 (Ω) if and only ifβ is fulfilled (6).

Remark 3In fact, we can obtain the following inequality with the only radial deriva-
tive term

C

∫
Ω

|u(x)|q

|x|N(log aR
|x| )

β
dx


N
q

≤
∫
Ω

∣∣∣∣∣∇u · x
|x|

∣∣∣∣∣N dx (13)

if q < N andβ > N−1
N q+ 1. In contrast, ifq > N, the inequality (13) does not hold for

all u ∈W1,N
0 (Ω), see Proposition 2 in§5.

Proof of Corollary 1. Let β be fulfilled (6). Foru ∈ W1,N
0 (Ω), setũ(x) = u(y) (y =

2Rx). Thenũ ∈W1,N
0 ( 1

2RΩ) and 1
2RΩ ⊂ B( 1

2). If we take (p, r,N, α, β) = (N,N,N, q, β),
then we can check that a set (p, r,N, α, β) in Theorem A satisfies (12). Thus we can
apply Theorem A for ˜u. Then there exists a constantC > 0 such that the inequality

C

∫
Ω
2R

|ũ(x)|q

|x|N(log 1
|x| )

β
dx


N
q

≤
∫

Ω
2R

|∇ũ|Ndx
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holds. Therefore we obtain the following inequality

C

∫
Ω

|u|q

|y|N(log 2R
|y| )

β
dy


N
q

≤
∫
Ω

|∇u|Ndy.

Since log2R
|y| ≥ C log aR

|y| for anyy ∈ BR(0) and someC = C(a) > 0, the inequality

C

∫
Ω

|u|q

|y|N(log aR
|y| )

β
dy


N
q

≤
∫
Ω

|∇u|Ndy

holds for allu ∈W1,N
0 (Ω).

On the other hand, ifβ does not satisfy (6), we consider the following test function
us ∈W1,N

0 (Ω): We chooseb > 0 which satisfiesBbaR(0) ⊂ Ω. Let s< N−1
N be a positive

parameter. We define

us(x) :=


(
log aR

|x|

)s
if 0 ≤ |x| ≤ baR

2(
log 2

b

)s 2(baR−|x|)
baR if baR

2 ≤ |x| ≤ baR

0 if baR≤ |x|.
(14)

Then direct calculation shows that
∫
Ω

|us|q

|x|N
(
log aR

|x|

)β dx


N
q

≥
ωN

∫ baR
2

0

(
log

aR
r

)sq−β dr
r


N
q

=

ωN

∫ ∞

log 2
b

tsq−β ds

 N
q

=

C
(

N−1
N − s

)− N
q , if β = N−1

N q+ 1 andq < N,

∞, if β < N−1
N q+ 1,∫

Ω

|∇us|Ndx≤ ωNsN

N
(

N−1
N − s

) (
log

2
b

)−N( N−1
N −s)

+C

for sclose toN−1
N . Thus we obtain∫

Ω
|∇us|N dx(∫

Ω

|us|q
|x|N(log aR

|x| )
β

) N
q

→ 0 as s→ N − 1
N

.

Hence the inequality (3) holds for allu ∈W1,N
0 (Ω) if and only if β is fulfilled (6).

⊓⊔
In order to prove Theorem 1, we prepare the following Lemmas and Proposition.
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Lemma 1 (Compactness of the embedding) Let a> 1, Ω ⊂ RN be a bounded do-
main with 0 ∈ Ω, R = supx∈Ω |x|,N ≥ 2, and q, β > 1 satisfy (6). Set fa, β(x) =

|x|−N
(
log aR

|x|

)−β
. Then the continuous embedding W1,N

0 (Ω) ↪→ Lq(Ω; fa, β(x)dx) is

(i) compact ifβ > N−1
N q+ 1,

(ii) non-compact ifβ = N−1
N q+ 1 and q≥ N.

Proof of Lemma 1. (i) Let (um)∞m=1 ⊂ W1,N
0 (Ω) be a bounded sequence. Then there

exists a subsequence (umk)
∞
k=1 such that

umk ⇀ u in W1,N
0 (Ω),

umk → u in Lr (Ω) for any 1≤ r < ∞. (15)

Let α satisfy N−1
N q+ 1 < α < β. For allε > 0, there existsδ > 0 such that(

log
aR
|x|

)α−β
< ε for all x ∈ B(δ). (16)

From (15) and (16), we obtain∫
Ω

|umk − u|q

|x|N(log aR
|x| )

β
dx≤ ε

∫
B(δ)

|umk − u|q

|x|N(log aR
|x| )

α
dx+ δ−N

(
log

aR
δ

)−β
∥umk − u∥Lq(Ω)

≤ εC∥∇(umk − u)∥q
LN(Ω)

+C∥umk − u∥Lq(Ω)

≤ Cε +C∥umk − u∥Lq(Ω) → 0 asε→ 0, k→ ∞.

Therefore, the embeddingW1,N
0 (Ω) ↪→ Lq(Ω; fa, β(x)dx) is compact ifβ > N−1

N q+ 1.
(ii) Let ε > 0 satisfyB(ε) ⊂ Ω, u ∈ W1,N

0 (B(ε)) be a positive radial function and

uλ ∈W1,N
0 (B(a1− 1

λ ε)) be defined by (9). For 0< λ ≤ 1, we set

ũλ(x) :=

uλ(x) if x ∈ B(a1− 1
λ ε),

0 if x ∈ Ω \ B(a1− 1
λ ε).

By applying Proposition 3 in§5 andβ = N−1
N q+1, we obtain the sequence{ũ 1

m
}∞m=1 ⊂

W1,N
0 (Ω) such that ∫

Ω

|∇ũ 1
m
(x)|N dx=

∫
B(ε)
|∇u(y)|N dy< ∞,∫

Ω

|ũ 1
m
(x)|q

|x|N(log eR
|x| )

β
dx=

∫
B(ε)

|u(x)|q

|x|N(log eR
|x| )

β
dx> 0. (17)

If we assume that the continuous embeddingW1,N
0 (Ω) ↪→ Lq(Ω; fa, β(x)dx) is com-

pact, then there exist a subsequence{ũ 1
mk
}∞k=1 and u0 ∈ Lq(Ω; fa, β(x)dx) such that

ũ 1
mk
→ u0 in Lq(Ω; fa, β(x)dx). Thereforeũ 1

mk
→ u0 a.e. inΩ. By the definition of

ũ 1
m
, we haveu0 = 0. However this contradicts (17). Hence the continuous embedding

W1,N
0 (Ω) ↪→ Lq(Ω; fa, β(x)dx) is non-compact.
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⊓⊔

Lemma 2 (Positivity of minimizers) Let q≥ N,a > 1, andβ = N−1
N q + 1. If u ∈

W1,N
0 (B(R)) is a nonnegative minimizer of G(B(R); a,q, β), then u∈ C1(B(R) \ {0})

and u> 0 in B(R) \ {0}.

Proof of Lemma 2. Letu ∈W1,N
0 (B(R)) be a nonnegative minimizer ofG(B(R); a,q, β).

Then, by the method of Lagrange multiplier, there existsA ∈ R such thatu is a weak
solution of the Euler-Lagrange equation−∆Nu = A uq−1

|x|N
(
log aR

|x|
)β in B(R)

u = 0 on ∂B(R),

where∆Nu := div(|∇u|N−2∇u). We observe thatA > 0. Forε > 0,

the function|x|−N

(
log

aR
|x|

)−β
is bounded inB(R) \ B(ε). (18)

Furthermore the Sobolev inequality yields that

u ∈ Lr (B(R)) for all 1 ≤ r < ∞. (19)

Thus we see that∆Nu ∈ Lr (B(R) \B(ε)) for all 1 ≤ r < ∞ by (18) and (19). If we take
larger , thenu ∈ C1(B(R) \B(ε)). (see [14]) Hence, by applying the strong maximum
principle for the distributional solutionu ∈ C1(B(R)\B(ε)) to the inequality−∆Nu ≥ 0
in B(R) \ B(ε), we obtainu > 0 in B(R) \ B(ε). (see [50] Theorem 2.5.1.) Sinceε > 0
is arbitrary, we have proved thatu ∈ C1(B(R) \ {0}) andu > 0 in B(R) \ {0}. Therefore
nonnegative minimizers ofG(B(R); a,q, β) are positive inB(R) \ {0}.

⊓⊔

Proposition 1 (Non-existence of radial minimizers) Let q≥ N,a > 1,R > 0, and
β = N−1

N q+ 1. For R̃ ∈ (0,aR), set

Grad(B(R̃); a, q, β) = inf
u∈W1,N

0,rad(B(R̃))\{0}

∫
B(R̃)
|∇u|N dx(∫

B(R̃)
|u|q

|x|N(log aR
|x| )

β dx
) N

q

.

Then Grad(B(R̃); a,q, β) is independent of̃R, and is not attained for anỹR ∈ (0,aR)
and a> 1.

Proof of Proposition 1. For u ∈ W1,N
0,rad(B(R)), we consider the scaled functionuλ ∈

W1,N
0,rad(B(a1− 1

λ R)) which is given by (9). Thanks to the quasi-scale invariance for radial
functions (see Proposition 3 in§5), we have∫

B(R)
|∇u|N dx(∫

B(R)
|u|q

|x|N(log aR
|x| )

β dx
) N

q

=

∫
B(a1− 1

λ R)
|∇uλ|N dx(∫

B(a1− 1
λ R)

|uλ |q
|x|N(log aR

|x| )
β dx

) N
q
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which yields that

Grad(B(R); a,q, β) = Grad(B(R̃); a,q, β) (20)

for anyR̃ ∈ (0,aR). ThereforeGrad(B(R̃); a,q, β) is independent of̃R.
Next we shall show thatGrad(B(R̃); a,q, β) is not attained by a contradiction. As-

sume that there exists a minimizeru ∈ W1,N
0 (B(R̃)) of Grad(B(R̃); a,q, β). Then the

scaled functionuλ ∈ W1,N
0,rad(B(a1− 1

λ R̃)) is also a minimizer ofGrad(B(R̃); a,q, β) for

λ ∈ (0,1), because it holds thatW1,N
0,rad(B(a1− 1

λ R̃)) ⊂ W1,N
0,rad(B(R̃)) for λ ∈ (0,1). Note

thatuλ ≡ 0 onB(R̃) \ B(a1− 1
λ R̃). This contradicts Lemma 2.

⊓⊔

Proof of Theorem 1. (i) If β > N−1
N q+ 1, we can easily show thatG is attained from

Lemma 1 (i). We omit the proof.
(iii) [Step 1] First, we shall show thatG(Ω; a,q, β) is independent ofΩ if β = N−1

N q+

1,q > N, anda ≥ e
β
N . For u ∈ W1,N

0 (B(R)), it is known the Ṕolya-Szeg̈o inequality
(see e.g. [40]): ∫

B(R)
|∇u|N dx≥

∫
B(R)
|∇u#|N dx (21)

and the Hardy-Littlewood inequality (see e.g. [40]):∫
B(R)

|u(x)|q

|x|N(log aR
|x| )

β
dx≤

∫
B(R)

 1

|x|N(log aR
|x| )

β

#

|u#(x)|qdx (22)

hold true. By the assumptiona ≥ e
β
N , the potential function|x|−N(log aR

|x| )
−β is radially

decreasing onB(R). Therefore it holds that 1

|x|N(log aR
|x| )

β

#

=
1

|x|N(log aR
|x| )

β
(x ∈ B(R)). (23)

From (21), (22), and (23), we obtain∫
B(R)
|∇u|N dx(∫

B(R)
|u|q

|x|N(log aR
|x| )

β dx
) N

q

≥

∫
B(R)
|∇u#|N dx(∫

B(R)
|u#|q

|x|N(log aR
|x| )

β dx
) N

q

which yields that

G(B(R); a, q, β) = Grad(B(R); a,q, β). (24)

Especially, if we take small̃R> 0 such thatB(R̃) ⊂ Ω, then we obtain

Grad(B(R̃); a, q, β) ≥ G(Ω; a,q, β) ≥ G(B(R); a,q, β) (25)

by zero extension. From (24), (25), and Proposition 1, we observe thatG(Ω; a,q, β)
is independent ofΩ.
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[Step 2] In order to show thatG(Ω; a,q, β) is not attained, assume that there ex-
ists a minimizeru ∈ W1,N

0 (Ω) of G(Ω; a,q, β). We shall deduce a contradiction.
If Ω ⫋ B(R), then the zero-extended functionu ∈ W1,N

0 (B(R)) is a minimizer of
G(B(R); a,q, β) sinceG(Ω; a, q, β) is independent ofΩ from Step 1. However,u ≡ 0
in B(R) \ Ω. This contradicts Lemma 2. Therefore we suppose thatΩ = B(R). In this
case,u# ∈ W1,N

0,rad(B(R)) becomes a radial minimizer ofG(B(R); a, q, β) from (24) in
Step 1. However this contradicts Proposition 1. HenceG(Ω; a,q, β) is not attained.
(ii) Now we consider the caseβ = q = N. Let x = rω (r = |x|, ω ∈ SN−1) for x ∈ B(R).
For u ∈W1,N

0 (B(R)), we consider the following radial functionU:

U(r) =

(
ω−1

N

∫
SN−1
|u(rω)|NdSω

) 1
N

. (26)

Then we can check that

U′(r) ≤
(
ω−1

N

∫
SN−1

∣∣∣∣∣ ∂∂r
u(rω)

∣∣∣∣∣N dSω

) 1
N

which yields that ∫
B(R)
|∇U |Ndx≤

∫
B(R)

∣∣∣∣∣∇u · x
|x|

∣∣∣∣∣N dx. (27)

And also we have∫
B(R)

|U |N

|x|N(log aR
|x| )

N
dx=

∫
B(R)

|u|N

|x|N(log aR
|x| )

N
dx (28)

for all a ≥ 1. Therefore, from (27), (28), we obtain

G(B(R); a,N,N) = Grad(B(R); a,N,N),

for all a ≥ 1. If we recall thatG(B(R); a,N,N) = ( N−1
N )N in [3] Lemma 2.5, the rest

of the proof is the same as (iii).
The proof of Theorem 1 is now complete.

⊓⊔
From Theorem 1 (ii), we obtain the following Corollary.

Corollary 2 G(Ω; 1,N,N) = ( N−1
N )N is not attained for any bounded domainsΩ with

0 ∈ Ω.

Remark 4In the two dimensional caseN = 2, the above result is already known by
[21] Theorem 9.1.4.

Proof of Corollary 2. Since logR
|x| ≤ log aR

|x| for any x ∈ BR(0) anda > 1, we

have
(

N−1
N

)N ≤ G(Ω; 1,N,N) ≤ G(Ω; a,N,N). From Theorem 1 (ii), it holds that

G(Ω; a,N,N) =
(

N−1
N

)N
. Therefore we obtainG(Ω; 1,N,N) =

(
N−1

N

)N
independent of

Ω. Therefore we observe that if there exists a minimizeru of G(Ω; 1,N,N), thenu is
also a minimizer ofG(BR(0); 1,N,N). However it is known thatG(BR(0); 1,N,N) is
not attained (see [32]). This is a contradiction.

⊓⊔
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3 Sharp case :a = 1

In this section, we consider the sharp case. Key tools of the proof of Theorem 2 are
the test function method and the Hardy inequality on the half space.

Proof of Theorem 2.
(i) Let Γ be a neighborhood in∂B(R), which satisfiesΓ ⊂ ∂Ω∩ ∂B(R). First we show
thatG(Ω; 1, q, β) = 0 if β > N−1

N q+ 1. Setx = rω (r = |x|, ω ∈ SN−1) for x ∈ Ω. Let

δ > 0 satisfy
{
(r, ω) ∈ [0,R) × SN−1 |R− 2δ ≤ r ≤ R, ω ∈ 1

RΓ
}
⊂ Ω. Define

us(x) =


(
log R

r

)s
ψ(ω) if R− δ ≤ r ≤ R

smooth if R− 2δ ≤ r ≤ R− δ
0 if 0 ≤ r ≤ R− 2δ,

whereψ ∈ C∞0 ( 1
RΓ). Then we obtain∫

B(R)
|∇us|Ndx=

∫
SN−1

∫ R

0

∣∣∣∣∣∂us

∂r
ω +

1
r
∇SN−1us

∣∣∣∣∣N rN−1 drdSω

≤ 2N−1
∫

SN−1

∫ R

0

∣∣∣∣∣∂us

∂r

∣∣∣∣∣N rN−1 + |∇SN−1us|N r−1 drdSω

≤ sNC
∫ R

R−δ

(
log

R
r

)(s−1)N dr
r
+C

∫ R

R−δ

(
log

R
r

)sN dr
r
+C

≤ sNC
∫ log R

R−δ

0
t(s−1)N dt+C

= C
sN

N

(
s− N − 1

N

)−1 (
log

R
R− δ

)s−N+1

+C < ∞.

Thusus ∈W1,N
0 (Ω) for all s> N−1

N . However, direct calculation shows that∫
Ω

|us|q

|x|N
(
log R

|x|

)β dx≥ C
∫ R

R−δ

(
log

R
r

)sq−β dr
r
= C

∫ log R
R−δ

0
tsq−β dt

which implies that ∫
Ω

|us|q

|x|N
(
log R

|x|

)β dx= ∞

for sclose toN−1
N sinceβ > N−1

N q+ 1. Therefore we proved that

G(Ω; 1,q, β) = 0 if β >
N − 1

N
q+ 1. (29)

Next we show thatG(Ω; 1,q, β) = 0 if β > N. Set xε = (R− 2ε) y
R. Note that

Bε(xε) ⊂ Ω for smallε > 0. Then we define the test functionuε as follows:

uε(x) =

v
( |x−xε |

ε

)
if x ∈ Bε(xε)

0 if x ∈ Ω \ Bε(xε),
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where

v = v(t) =

1 if 0 ≤ t ≤ 1
2

2(1− t) if 1
2 < t ≤ 1.

(30)

Since logt ≤ t − 1 for t ≥ 1, we obtain∫
Ω

|∇xuε(x)|N dx=
∫

B(1)
|∇yv(|y|)|N dy< ∞,∫

Ω

|uε(x)|q

|x|N
(
log R

|x|

)β dx≥ C
∫

Bε(xε)

|uε(x)|q
(R− |x|)β dx

≥ C
(3ε)β

∫
B ε

2
(xε)

dx= C εN−β → ∞

asε→ 0 whenβ > N. Hence we proved that

G(Ω; 1,q, β) = 0 when β > N. (31)

From (29), (31), and the assumption (6), we showed thatG(Ω; 1,q, β) > 0 if and only
if q = β = N.
(ii) Let 0 < α ≤ 1. Setxε = (R− 2ε) y

R andQδ := BN−1
δ (0) × (−R,−R+ δ) for small

ε > 0 andδ > 0. Since∂Ω is represented by the graphxN = ϕ(x′) for x′ ∈ BN−1
δ (0)

andϕ satisfiesC1|x′|α − R≤ ϕ(x′) ≤ C2|x′|α − R for x′ ∈ BN−1
δ (0), we obtain{

(x′, xN) ∈ Qδ | xN ≥ C2|x′|α − R
} ⊂ Ω ∩ Qδ ⊂

{
(x′, xN) ∈ Qδ | xN ≥ C1|x′|α − R

}
.

(32)

First we shall show thatG(Ω; 1,q, β) = 0 if β > N
α

. From (32), we can observe
thatB

Aε
1
α
(xε) ⊂ Ω for smallε,A > 0. Then we define the test functionwε as follows:

wε(x) =

v
(
|x−xε |
Aε

1
α

)
if x ∈ B

Aε
1
α
(xε)

0 if x ∈ Ω \ B
Aε

1
α
(xε),

wherev is given by (30). In the same way as (i), we have∫
Ω

|∇xwε(x)|N dx< ∞,∫
Ω

|wε(x)|q

|x|N
(
log R

|x|

)β dx≥ C ε
N
α −β → ∞

asε→ 0 if β > N
α

. Therefore we obtain

G(Ω; 1,q, β) = 0 if at least β >
N
α
. (33)
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Next we shall show thatG(Ω; 1,q, β) > 0 if β < N−1
α
+ 1. Foru ∈ W1,N

0 (Ω), we
divide the domain into three parts as follows:∫

Ω

|u(x)|q

|x|N
(
log R

|x|

)β dx=
∫
Ω∩B( R

2 )
+

∫
Ω\(B( R

2 )∪Qδ)
+

∫
Ω∩Qδ

=: I1 + I2 + I3. (34)

From Theorem A, we obtain

I1 ≤ C

(∫
Ω

|∇u|Ndx

) q
N

. (35)

Since the potential function|x|−N(log R
|x| )
−β does not have any singularity inΩ \(

B( R
2 ) ∪ Qδ

)
, Sobolev inequality yields that

I2 ≤ C
∫
Ω

|u|qdx≤ C

(∫
Ω

|∇u|Ndx

) q
N

. (36)

Finally, we shall estimateI3 as above. Since logt ≥ 1
2(t − 1) (1≤ t ≤ 2), we obtain

I3 ≤ C
∫
Ω∩Qδ

|u(x)|q
(R− |x|)β dx≤ C

∫ zN=δ

zN=0

∫
zN≥C1|z′ |α

|ũ(z′, zN)|q
|z|β dz, (37)

whereu(x) = ũ(z) (z = x + (0, · · · ,0,R)). If β < N−1
α
+ 1, then there existsε > 0

andp > N
N−ε such that (β − ε)p < N−1

α
+ 1. By using Ḧolder inequality and Sobolev

inequality, we obtain∫ zN=δ

zN=0

∫
zN≥C1|z′ |α

|ũ(z′, zN)|q
|z|β dz

=

∫ ∫ |ũ|ε
|z|ε |ũ|

q−ε|z|β−εdz

≤
(∫ ∫ |ũ|N

|z|N dz

) ε
N
(∫ ∫

|ũ|(q−ε)
Np

Np−N−pε dz

) Np−N−pε
Np

(∫ ∫
|z|−(β−ε)pdz

) 1
p

≤ C

(∫ ∫ |ũ|N
|zN|N

dz

) ε
N
(∫

Ω

|∇ũ|Ndz

) q−ε
N

∫ ∫
|z′ |≤

(
zN
C1

) 1
α

z−(β−ε)p
N dz


1
p

≤ C

(∫ ∫ |ũ|N
|zN|N

dz

) ε
N
(∫

Ω

|∇ũ|Ndz

) q−ε
N

(∫ zN=δ

zN=0
z

N−1
α −(β−ε)p

N dzN

) 1
p

.

SinceN−1
α
− (β − ε)p > −1,

∫ δ

0
z

N−1
α −(β−ε)p

N dzN < ∞. Furthermore, applying the Hardy
inequality on the half spaceRN

+ :(
r − 1

r

)r ∫
RN
+

|u|r
|xN|r

dx≤
∫
RN
+

|∇u|rdx (1 ≤ r < ∞)
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yields that ∫ zN=δ

zN=0

∫
zN≥C1|z′ |α

|ũ(z′, zN)|q
|z|β dz≤ C

(∫
Ω+(0,··· ,0,R)

|∇ũ|Ndz

) q
N

. (38)

By (37) and (38), we obtain

I3 ≤ C

(∫
Ω

|∇u|Ndx

) q
N

. (39)

Therefore, from (34), (35), (36), and (39), the inequality

C


∫
Ω

|u(x)|q

|x|N
(
log R

|x|

)β dx


N
q

≤
∫
Ω

|∇u|Ndx

holds for allu ∈W1,N
0 (Ω). Hence

G(Ω; 1,q, β) > 0 if at least β <
N − 1
α
+ 1. (40)

From (33) and (40), there existsβ∗ ∈ [ N−1
α
+ 1, N

α
] such thatG(Ω; 1,q, β) > 0 if β

satisfies (6) andβ < β∗, on the other handG(Ω; 1,q, β) = 0 if β > β∗.
Lastly we shall show thatG(Ω; 1,q, β) is attained ifN−1

N q+1 < β < β∗. In order to
show it, we should prove that the continuous embeddingW1,N

0 (Ω) ↪→ Lq(Ω; f1,β(x)dx)
is compact if N−1

N q + 1 < β < β∗, where fa,β(x) = |x|−N(log aR
|x| )
−β. Let (um)∞m=1 ⊂

W1,N
0 (Ω) be a bounded sequence. Then there exist a subsequence (umk)

∞
k=1 such that

umk ⇀ u in W1,N
0 (Ω),

umk → u in Lr (Ω) for all 1 ≤ r < ∞. (41)

We divide the domain into two parts as follows:∫
Ω

|umk − u|q

|x|N
(
log R

|x|

)β dx=
∫
Ω\Qδ

+

∫
Ω∩Qδ

=: J1(umk − u) + J2(umk − u). (42)

Since logR
|x| ≥ C log aR

|x| in Ω \Qδ for somea > 1 andC = C(a, δ,R) > 0, it holds that

J1(umk − u) ≤ C
∫
Ω\Qδ

|umk − u|q

|x|N
(
log aR

|x|

)β dx≤ C
∫
Ω

|umk − u|q

|x|N
(
log aR

|x|

)β dx.

Note that the continuous embeddingW1,p
0 (Ω) ↪→ Lq(Ω; fa,β(x)dx) is compact from

Lemma 1 and the assumptionβ > N−1
N q+ 1, we obtain

J1(umk − u)→ 0 ask→ ∞. (43)
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On the other hand, for anyε > 0, we takeγ > 0 which satisfiesβ < γ < β∗ and
(log R

|x| )
γ−β < ε for x ∈ Qδ (If necessary, we take smallδ > 0 again.). Then we have

J2(umk − u) ≤ ε
∫
Ω∩Qδ

|umk − u|q

|x|N
(
log R

|x|

)γ dx≤ Cε

(∫
Ω

|∇(umk − u)|N dx

) q
N

≤ Cε. (44)

From (42), (43), and (44), we obtain∫
Ω

|umk − u|q

|x|N
(
log R

|x|

)β dx→ 0 ask→ ∞.

Therefore the continuous embeddingW1,N
0 (Ω) ↪→ Lq(Ω; f1,β(x)dx) is compact if

N−1
N q + 1 < β < β∗. In conclusion, we have showed thatG(Ω; 1,q, β) is attained

if N−1
N q+ 1 < β < β∗.

⊓⊔

4 Optimal constant and its minimizers

In this section, we discuss the explicit value of the optimal constant and its minimizers
of Grad(B(R); a,q, β). In order to show Theorem 3, we need some results about the
following type inequality:

C

(∫
Ω

|x|α|u|qdx

) p
q

≤
∫
Ω

|∇u|pdx (45)

for radial functions, whereΩ is a domain inRn, α ≥ −p, andq > 1. The necessary
and sufficient condition for the validity of one-dimensional weighted inequality is
known as follows:

Theorem B ( [6] Bradley, [45] Muckenhoupt ) Let1 < ρ ≤ σ < ∞ and let U and V
be measurable weights. Then there exists a constant C> 0 such that the inequality(∫ ∞

0

∣∣∣∣∣U(t)
∫ ∞

t
|ψ(s)|ds

∣∣∣∣∣σ dt

) 1
σ

≤ C

(∫ ∞

0
|V(t)ψ(t)|ρdt

) 1
ρ

(46)

holds for all measurable functionsψ such that the integral on the right hand side of
(46) is finite if and only if

sup
r>0

(∫ r

0
|U(t)|σdt

) 1
σ
(∫ ∞

r
|V(t)|−ρ

′
dt

) 1
ρ
′

< +∞.

Especially, if we takeu(t) =
∫ ∞

t
|ψ(s)|ds,U(t) = t

n+α−1
σ , σ = q, ρ = p, andV(t) =

t
n−1
ρ in Theorem B, then we show that

sup
r>0

(∫ r

0
|U(t)|σdt

) 1
σ
(∫ ∞

r
|V(t)|−ρ

′
dt

) 1
ρ
′

= sup
r>0

(∫ r

0
tn+α−1dt

) 1
q
(∫ ∞

r
t−

n−1
p−1 dt

) p−1
p

< +∞

if n+ α = (n−p)q
p . Thus we obtain the following Corollary.
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Corollary 3 LetΩ = Rn. Then the inequality (45) hold for all u∈ W1,p
0,rad(Rn) if and

only if q= p∗(α) := p(n+α)
n−p .

Remark 5Note that even ifq = p∗(α), the inequality (45) can not hold for allu ∈
W1,p

0 (Rn) whenα > 0 whenΩ = Rn (see [9]).

Set

Hrad(p, α,n) = inf
u∈W1,p

0,rad(Ω)\{0}

∫
Ω
|∇u|p dx(∫

Ω
|x|α|u|p∗(α)dx

) p
p∗(α)

, (47)

whereΩ is a ball orRn. For the minimization problem (47), the following is known.
We refer to [57], [39], [13], [26], [30].

Theorem C The following statements (i)～(iii) hold.
(i) Hrad(p, α,n) is independent ofΩ.
(ii) WhenΩ , Rn, Hrad(p, α, n) is not attained. On the other hand, whenΩ = Rn,
Hrad(p, α, n) is attained if and only ifα > −p.
(iii) Whenα > −p andΩ = Rn, the explicit optimal constant Hrad(p, α, n) is given by

Hrad(p, α, n) =
ω

p+α
n+α
n (n+ α)(n− p)p− n−p

n+α (p− 1)
n+2α+p

n+α −p

(p+ α)
2(p+α)

n+α

Γ
(

(p−1)(n+α)
p+α

)
Γ

(
n−p
p+α

)
Γ

(
p(n+α)

p+α

) 
p+α
n+α

,

and the minimizers are given by the family of functions

W(x) = Cλ
n−p

p (1+ |λx|
p+α
p−1 )−

n−p
p+α , C ∈ R \ {0}, λ > 0.

WhenΩ = Rn andα = −p, Hrad(p,−p,n) = ( n−p
p )p is not attained, because the

function |x|−
n−p

p which is the solution of the Euler-Lagrange equation

−div ( |∇u|p−2∇u) =

(
n− p

p

)p |u|p−2u
|x|p in Rn

is not in suitable functional spaceW1,p
0 (Rn), see also Remark 2.

In the radial case, the authors in [53] proved that the critical Hardy inequality (2)
on the ballBN

R(0) ⊂ RN is equivalent to the subcritical Hardy inequality (45) with
exponentα = −p, p = N(< n) onRn. Concretely, they showed the following.

Theorem D ([53] Sano-Takahashi) Let n,N ∈ N satisfy n> N ≥ 2. Then for any
w ∈ C1

rad(BN
R(0) \ {0}) (resp. u∈ C1

rad(Rn \ {0})), there exists u∈ C1
rad(Rn \ {0}) (resp.

w ∈ C1
rad(BN

R(0) \ {0})) such that the equality∫
Rn
|∇u|N dx−

(n− N
N

)N ∫
Rn

|u|N
|x|N dx (48)

=
ωn

ωN

(m− N
N − 1

)N−1

∫

BN
R(0)
|∇w|N dy−

(
N − 1

N

)N ∫
BN

R(0)

|w|N

|y|N
(
log R

|y|

)N
dy


holds true.
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A key ingredient of their proof is the transformation (49) which connects two
Hardy inequalities. The transformation (49) also plays an important role on the gen-
eralized critical Hardy inequality (3). Indeed, the transformation (49) connects our
inequality (3) witha = 1 on the ballBN

R(0) and the inequality (45) onRn. Moreover
(52) also connects (3) witha > 1 on the ballBN

R(0) and (45) onBn
R(0).

Proof of Theorem 3. First we consider the sharp casea = 1. Let x ∈ Rn, r = |x|, y ∈
RN, t = |y| andN < n. For a nonnegative radial functionw = w(y) ∈ C1(BN

R(0) \ {0}),
we define a radial functionu = u(x) ∈ C1

0(Rn) as follows:

u(r) = w(t), wherer = r(t) =
(
log

R
t

)− N−1
n−N

. (49)

Note thatr ′(t) > 0 for any t ∈ [0,R) andr(0) = 0, r(R) = +∞. Also u(r) ≡ 0 near
r = +∞ sincew(t) ≡ 0 neart = R. Furthermore we obtain

dr
r
=

N − 1
n− N

dt

t log R
t

.

Let α > −N satisfyq = N(n+α)
n−N . Direct calculation shows that∫

Rn
|x|α|u|qdx= ωn

∫ ∞

0
|u(r)|qrn+α dr

r

= ωn
N − 1
n− N

∫ R

0
|w(t)|q

(
log

R
t

)− (N−1)(n+α)
n−N −1 dt

t

=
ωn

ωN

N − 1
n− N

∫
BN

R(0)

|w|q

|y|N(log R
|y| )

β
dy,

sinceβ = N−1
N q+ 1 = (N−1)(n+α)

n−N + 1. In the same way as above, we have

∫
Rn
|∇u|Ndx=

ωn

ωN

(n− N
N − 1

)N−1 ∫
BN

R(0)
|∇w|Ndy.

Therefore the following equality holds.∫
BN

R(0)
|∇w|N dy(∫

BN
R(0)

|w|q
|y|N(log R

|y| )
β dy

) N
q

=

(
ωN

ωn

)1− N
q
(
N − 1
n− N

)N−1+ N
q

∫
Rn |∇u|N dx(∫
Rn |x|α|u|qdx

) N
q

.

Thus we obtain

Grad(B(R); 1,q, β) =

(
ωN

ωn

)1− N
q
(
N − 1
n− N

)N−1+ N
q

Hrad(N, α, n). (50)
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Concretely, by using equalitiesn− N = N
q (n+ α),N + α = (1− N

q )(n+ α), and (iii)
in Theorem C, we have

Hrad(N, α, n)

=
ω

N+α
n+α
n (n+ α)(n− N)N− n−N

n+α (N − 1)
n+2α+N

n+α −N

(N + α)
2(N+α)

n+α

Γ
(

(N−1)(n+α)
N+α

)
Γ

(
n−N
N+α

)
Γ

(
N(n+α)

N+α

) 
N+α
n+α

,

=
ω

1− N
q

n (n+ α)
(

N
q (n+ α)

)N− N
q (N − 1)2−

N
q −N((

1− N
q

)
(n+ α)

)2
(
1− N

q

)
Γ

(
q(N−1)

q−N

)
Γ

(
N

q−N

)
Γ

(
qN

q−N

) 
1− N

q

. (51)

By (50) and (51), we observe that

Grad(B(R); 1,q, β) =

(
ωN

ωn

)1− N
q
(
q(N − 1)
N(n+ α)

)N−1+ N
q

Hrad(N, α, n)

= ω
1− N

q

N (N − 1)

(
N
q

)1− 2N
q

(
1− N

q

)−2+ 2N
q

Γ
(

q(N−1)
q−N

)
Γ

(
N

q−N

)
Γ

(
qN

q−N

) 
1− N

q

which is independent of exponentsn, α. Also we obtain the minimizerU of Grad(B(R); 1, q, β)
from the minimizerW of Hrad(N, α, n). Indeed, by the transformation (49) and the
equality n−N

N+α =
N

q−N , it holds

W(x) = λ
n−N

N

(
1+ |λx| N+αN−1

)− n−N
N+α
= µ−

N−1
N

1+ (
µ log

R
|y|

)− q−N
N


− N

q−N

= U(y),

whereλn−N = µ1−N. Thus we have (iii) in Theorem 3.
On the other hand, in the casea > 1, if we modify the transformation (49) a little

as follows:

u(r) = w(t), where
r
R
=

 log aR
t

loga

− N−1
n−N

, (52)

then we also obtain a similar result as (50):

Grad(B
N
R(0);a,q, β) =

(
ωN

ωn

)1− N
q
(
N − 1
n− N

)N−1+ N
q

Hrad(B
n
R(0);N, α, n). (53)

Namely, we can observe thatGrad with a > 1 is equivalent toHrad on a ball. Hence
we can see that (i) in Theorem 3 follows from (50), (53), and (i) in Theorem C. And
also (ii) in Theorem 3 follows from (50), Corollary 3, (53), and (ii) in Theorem C.

⊓⊔
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5 Appendix

First we shall show that on the generalized critical Hardy inequalities (3), we can not
replace the derivative term

∫
Ω
|∇u|Ndxby the radial derivative term

∫
Ω
|∇u· (x/|x|)|Ndx

in general.

Proposition 2 LetΩ ⊂ RN be a bounded domain with0 ∈ Ω and R= supx∈Ω |x|. If
q > N, then

inf
0,u∈W1,N

0 (Ω)

∫
Ω

∣∣∣∣∇u · x
|x|

∣∣∣∣N dx(∫
Ω

|u|q
|x|N(log R

|x| )
β

) N
q

= 0.

The proof is inspired by the idea of Musina [46].

Proof We use polar coordinate (r, θ1, · · · , θN−1) ∈ [0,∞) × [0, π)N−2 × [0, 2π) of x =
(x1, x2, · · · , xN) ∈ RN as follows:

x1 = r cosθ1,

x2 = r sinθ1 cosθ2,
...

xN−1 = r sinθ1 sinθ2 · · · sinθN−2 cosθN−1,

xN = r sinθ1 sinθ2 · · · sinθN−2 sinθN−1.

Moreover its Jacobian is given by

J

(
∂(x1, x2, · · · , xN)
∂(r, θ1, · · · , θN−1)

)
= rN−1

N−2∏
i=1

(sinθi)
N−1−i . (54)

Let δ > 0 satisfy B(δ) ⊂ Ω. Then we consider the following test functionuµ ∈
W1,N

0 (B(δ)) for all µ > 1:

uµ(x) = uµ(r, θN−1) := f (r)gµ(θN−1) (0 < r < δ,0 ≤ θN−1 ≤ 2π)

where

gµ(θN−1) :=

g(µθN−1) if 0 ≤ θN−1 ≤ 2π
µ
,

0 if 2π
µ
≤ θN−1 < 2π,

f ∈ C∞0 ( (0, δ) ) andg ∈ C∞0 ( (0,2π) ). Sinceq > N and the JacobianJ
(
∂(x1,x2,··· ,xN)
∂(r,θ1,··· ,θN−1)

)
is

independent ofθN−1, we obtain∫
Ω

∣∣∣∣∇uµ · x
|x|

∣∣∣∣N dx(∫
Ω

|uµ |q
|x|N(log R

|x| )
β

) N
q

= C

∫ 2π
µ

0 |gµ(θN−1)|N dθN−1(∫ 2π
µ

0 |gµ(θN−1)|q dθN−1

) N
q

= C µ
N
q −1→ 0 asµ→ ∞.
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Hence we have

inf
0,u∈W1,N

0 (Ω)

∫
Ω

∣∣∣∣∇u · x
|x|

∣∣∣∣N dx(∫
Ω

|u|q
|x|N(log R

|x| )
β

) N
q

= 0.

⊓⊔
LetΩ ⊂ RN be a bounded domain,a ≥ 1, andR := supx∈Ω |x|. Under the suitable

setting concerningq, β, Ω, andu (see Theorem 2, Corollary 1, Remark 3, Theorem 3,
Proposition 2), we can see that inequalities∫

Ω

∣∣∣∣∣∇u · x
|x|

∣∣∣∣∣N dx≥ C

∫
Ω

|u|q

|x|N(log aR
|x| )

β
dx


N
q

, (55)

∫
Ω

|∇u|Ndx≥ C

∫
Ω

|u|q

|x|N(log aR
|x| )

β
dx


N
q

(56)

hold for all u ∈ W1,N
0 (Ω). In the next Proposition, we discuss the scale and the quasi-

scale invariance of the generalized critical Hardy inequalities (55), (56) under the
scaling (9).

Proposition 3 (i) If β = N−1
N q + 1, then the inequality (55) has the quasi-scale in-

variance under the scaling (9). Furthermore, in the case a= 1, if Ω = B(R) or Ω is a
open cone, then (55) has the scale invariance under the scaling (9).
(ii) The inequality (56) does not have the quasi-scale invariance under the scaling
(9) for any q, β, a, andΩ. However, only for radial functions, (56) also satisfies (i).

Proof (i) Let r = |x|, s = |y|, y =
( |x|

aR

)λ−1
x ∈ Ω andΩλ = {x ∈ RN | y ∈ Ω}.

Then we can easily check thats = rλ(aR)1−λ and ds
dr r = λs. Also we observe that

Ωλ ⊂ B(a1− 1
λ R) sinceΩ ⊂ B(R). Foru = u(y) ∈W1,N

0 (Ω) ⊂W1,N
0 (B(R)), we obtain∫

Ωλ

∣∣∣∣∣∇xuλ(x) · x
|x|

∣∣∣∣∣N dx=
∫

B(a1− 1
λ R)

∣∣∣∣∣ ∂∂r
uλ(x)

∣∣∣∣∣N dx

= λ1−N
∫

SN−1

∫ a1− 1
λ R

0

∣∣∣∣∣ ∂∂r
u(sω)

∣∣∣∣∣N rN−1 drdSω

= λ1−N
∫

SN−1

∫ R

0

∣∣∣∣∣ ∂∂s
u(sω)

∣∣∣∣∣N (
ds
dr

r

)N−1

dsdSω

=

∫
SN−1

∫ R

0

∣∣∣∣∣ ∂∂s
u(sω)

∣∣∣∣∣N sN−1 dsdSω

=

∫
Ω

∣∣∣∣∣∇yu(y) · y
|y|

∣∣∣∣∣N dy. (57)

In the same manner as above, we have∫
Ωλ

|uλ(x)|q

|x|N(log aR
|x| )

β
dx= λβ−

N−1
N q−1

∫
Ω

|u(y)|q

|y|N(log aR
|y| )

β
dy. (58)
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The assumptionβ = N−1
N q + 1, (57), and (58) yield that (55) has the quasi-scale

invariance under the scaling (9). Furthermore, in the casea = 1, if Ω = B(R) or Ω
is a open cone, then we can easily check thatΩλ = Ω. Therefore (56) has the scale
invariance under the scaling (9).

(ii) In the same way as (i), we obtain∫
Ωλ

|∇xuλ(x)|Ndx= λ1−N
∫

SN−1

∫ a1− 1
λ R

0

∣∣∣∣∣ ∂∂r
u(sω)ω +

1
r
∇SN−1u(sω)

∣∣∣∣∣N rN−1 drdSω.

= λ1−N
∫

SN−1

∫ R

0

∣∣∣∣∣∣∣ ∂∂s
u(sω)ω +

(
ds
dr

r

)−1

∇SN−1u(sω)

∣∣∣∣∣∣∣
N (

ds
dr

r

)N−1

dsdSω.

=

∫
SN−1

∫ R

0

∣∣∣∣∣ ∂∂s
u(sω)ω +

1
λs
∇SN−1u(sω)

∣∣∣∣∣N sN−1 dsdSω.

Therefore, ifu is a non-radial function, then we can see that∫
Ωλ

|∇xuλ(x)|Ndx,
∫
Ω

|∇yu(y)|Ndy.

for λ , 1. Therefore (56) does not have the quasi-scale invariance under the scaling
(9) in general. However, only for radial functionsu, it holds∣∣∣∣∣∇u(x) · x

|x|

∣∣∣∣∣ = |∇u(x)|.

Since inequalities (55), (56) are same in the radial case, (56) also satisfies (i) only for
radial functions.

⊓⊔
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