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Abstract. We consider the skew Howe duality for the action of certain dual pairs of Lie groups
(G1, G2) on the exterior algebra

∧
(Cn ⊗ Ck) as a probability measure on Young diagrams by the

decomposition into the sum of irreducible representations. We prove a combinatorial version of this
skew Howe for the pairs (GLn, GLk), (SO2n+1,Pin2k), (Sp2n, Sp2k), and (O2n, SOk) using crystal
bases, which allows us to interpret the skew Howe duality as a natural consequence of lattice paths
on lozenge tilings of certain partial hexagonal domains. The G1-representation multiplicity is given
as a determinant formula using the Lindström–Gessel–Viennot lemma and as a product formula.
These admit natural q-analogs that we show equals the q-dimension of a G2-representation (up
to an overall factor of q), giving a refined version of the combinatorial skew Howe duality. Using
these product formulas (at q = 1), we take the infinite rank limit and prove the diagrams converge
uniformly to the limit shape.
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1. Introduction

The study of multiplicity-free actions of reductive dual pairs of groups has been very fruitful,
and is now usually called Howe duality [How95]. The most well-known of such dualities is the
(GLn, GLk) duality from the action ofGLn×GLk on the symmetric space S

(
Cn ⊗ Ck

)
. This duality

generalizes Schur–Weyl duality (see, e.g., [How95, Sec. 2.4]), which is described combinatorially by
the Robinson–Schensted–Knuth (RSK) algorithm, which bijectively maps a multiset with elements
in {1, . . . , n} × {1, . . . , k} to a pair of semistandard (Young) tableaux of the same shape λ. The
semistandard tableaux encode the GLn×GLk action and irreducible highest weight representation
V (λ) by using Kashiwara’s crystal bases [Kas90, Kas91] (see also [Las03, vL06] and the relation
with coplactic operators [Lot02, Ch. 5]).

This duality is related to the most famous result in asymptotic representation theory, the Vershik–
Kerov–Logan–Shepp limit shape [LS77, VK77]. We can embed the regular representation of Sk into
Sk
(
Ck ⊗ Ck

)
by using two-line representation of the permutations. RSK then bijectively maps a

permutation of k elements to a pair of standard Young tableaux of the same shape λ. Since there
are more permutations of k than partitions of k, the image of uniform random permutations under
RSK defines the famous Plancherel probability measure on partitions of k. This measure has the
probability of λ given by the ratio of the square of fλ, the number of standard Young tableaux
of shape λ, and k!. We can reinterpret this using representation theory (over C) as the regular
representation has dimension k! and decomposes into all of its irreducible representations Sλ with
multiplicity equal to dimSλ. For Sk, irreducible modules Sλ are the Specht modules, where λ
ranges over all partitions of k with dimSλ = fλ. Hence, the Plancherel measure is given by

µPk (λ) =
(fλ)2

k!
=

(dimSλ)2

k!
.

In the limit k → ∞, the Plancherel measure is concentrated on the Vershik–Kerov–Logan–Shepp
limit shape computed in [LS77, VK77].

Next, Schur–Weyl duality is described as the decomposition of commuting actions of Sk and
GLn on (Cn)⊗k. In the paper [Ker86], S.V. Kerov used Schur–Weyl duality1 to construct a similar
measure on Young diagrams λ of size k as

µSWn,k (λ) =
dimSλ · dimVGLn(λ)

nk
.

We can see this formula through RSK by embedding (Cn)⊗k into Sk(Cn ⊗ Ck) by v1 ⊗ · · · ⊗ vk 7→
v1 ⊗ e1 + · · ·+ vk ⊗ ek, where {e1, . . . , ek} is the standard basis of Ck. In the limit n, k →∞ such
that k/n→ const, the Vershik–Kerov–Logan–Shepp limit shape is recovered.

Returning back to our (GLn, GLk) duality, we note that the symmetric space is infinite dimen-
sional, so it does not allow an immediate measure on partitions. If we restrict to Sm(Cn ⊗ Ck) or
so that the degree of e1 ∈ Cn to be at most m, we can define two probability measures on Young
diagrams of size m or with λ1 ≤ m (or λ is contained in a min(n, k)×m rectangle) as

µ
(m)
n,k (λ) =

dimVGLn(λ) dimVGLk(λ)(
nk +m− 1

m

) , µ�mn,k (λ) =
dimVGLn(λ) dimVGLk(λ)
n∏
a=1

m∏
b=0

k∏
c=0

a+ b+ c− 1

a+ b+ c− 2

.

1 In [Ker86] the group SUn was considered, but the complexification is GLn and this does not change the dimension
of the irreducible representations.
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The measure µ
(m)
n,k has appeared in [GTW01] in relation to Johansson’s result [Joh01] on the

Krawtchouk ensemble. The latter measure µ�mn,k is related to the arctic circle limit shape of lozenge

tilings of a hexagon [BKMM03, CLP98, Gor08, Pet14, Pet15] (see also [Gor21]) by applying RSK,
taking the corresponding pair of Gelfand–Tsetlin (GT) patterns, and joining them together to form
a plane partition inside of a n×m× k box (see, e.g., [Sta99, Ch. 7]; the number of plane partitions
in a box is due to MacMahon [Mac96, Mac15]) and projecting. In order to get the full symmetric
space we can take the refined data of the characters instead of taking dimensions, we obtain a
well-defined probability measure by the Cauchy identity of Schur functions

∑
`(λ)≤min(n,k)

sλ(x1, . . . , xn)sλ(y1, . . . , yk) =
n∏
i=1

k∏
j=1

1

1− xiyj
. (1.1)

When n, k →∞, we obtain the famous Schur measure on partitions [Oko00, Oko01].
Another variant of Howe duality is skew Howe duality [How95, Thm. 4.1.1], where there is a

multiplicity-free action of a pair of Lie groups (G1, G2) on the exterior algebra
∧(

Cn ⊗ (Ck)∗
)
. This

is usually proven with the use of the Schur duality, and we have the multiplicity-free decomposition∧(
Cn ⊗ (Ck)∗

)
∼=
⊕
λ

VG1(λ)⊗ VG2(λ
′
),

where λ
′

is the conjugate of the complement diagram of λ inside an n × k rectangle. One key
advantage of the exterior algebra over the symmetric algebra is that it is finite dimensional, which
allows us to introduce a probability measure on diagrams

µn,k(λ) =
dimVG1(λ) · dimVG2(λ

′
)

2nk
.

The exterior algebra can be also seen as a tensor power (
∧
Cn)⊗k, and thus skew Howe duality can

be used to provide multiplicity formulas for a tensor power decomposition(∧
Cn
)⊗k ∼= ⊕

λ

Mk(λ) · VG1(λ),

where Mk(λ) = dimVG2(λ
′
). Hence, if the multiplicity of V (λ) in V ⊗k for some G1-representation

V equals the dimension of the irreducible G2-representation V (λ
′
), then we call this combinatorial

skew Howe duality . Moreover, the probability measure becomes µn,k(λ) = 2−nkMk(λ) dimV (λ).
For skew Howe duality over other fields, see also [AB95, Mœg89].

We look at some known examples at the level of characters, all of which give rise to character
measures on partitions. We first consider the case of (G1, G2) = (GLn, GLk), which can be proven
using a variation of RSK [Knu70] (called dual RSK in [Sta99, Ch. 7]) showing pairs of semistandard
Young tableaux of shape λ and λ′ are in one-to-one correspondence with the n×k matrices of zeros
and ones, yielding the dual Cauchy identity:

∑
λ⊆kn

sλ(x1, . . . , xn)sλ′(y1, . . . , yk) =
n∏
i=1

k∏
j=1

(1 + xiyj).

Here we used VGLk(λ
′
)∗ ∼= VGLk(λ′) up to a shift of the determinant representation (cf. [How95,

Thm. 4.1.1]). This has been applied to the random matrix theory with computing the correlations
of characteristic polynomials of the unitary group [BG06] with generalizations to other random
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G1 GLn SO2n+1, k even SO2n+1, k odd Sp2n O2n

G2 GLk Pink Spk−1 Sp2k SOk

Table 1. The combinatorial skew Howe duality obtained for V ⊗k.

matrix ensembles given in [JKM21]. Panova and Śniady [PŚ18] considered the analog of µ
(m)
n,k ,

where they consider the exterior power
∧m (Cn ⊗ Ck

)
with the corresponding probability measure

µ
〈m〉
n,k (λ) =

dimVGLn(λ) · dimVGLk(λ
′
)(

nk
m

)
for the diagrams of m boxes in the n × k rectangle. They compute the limit shapes for the limit
n, k,m→∞, k

n → const, m
nk → const by reformulating the problem in terms of the representations

of permutation group as the level lines of the limit shape for plane partitions presented in [PR07].
For (Sp2n, Sp2k), this yields the following character identity first due to King [Kin75] with later

proofs due to Jimbo and Miwa [JM85] and Howe [How95]:∑
λ⊆kn

χSp2nλ (x1, . . . , xn)χSp2k
λ
′ (y1, . . . , yk) =

n∏
i=1

k∏
j=1

(xi + x−1
i + yj + y−1

j ). (1.2)

This also has an RSK-like proof [Ber86, Sun90a, Ter93] and has been applied to random matrix
theory in [LO20]. The case (G1, Sp2k) was examined in Heo and Kwon [HK20], which recovers (1.2)
and other identities such as [HK20, Eq. (1.4)]. Proctor [Pro93] also provides proofs of numerous
character identities, including skew Howe dualities, using the reflection method. An RSK-type
algorithm has also been used for the orthogonal group by Sundaram [Sun90b]. Generalizations
of some of these identities are known, such as using Macdonald polynomials [Mac15, p. 329],
Koornwinder polynomials [Oko98], and an extension of continuous q-Hermite polynomials [Nte18].

In the present paper, we first examine the pairs (GLn, GLk), (SO2n+1,Pin2k), (Sp2n, Sp2k), and
(O2n, SOk) and prove a natural q-analog of combinatorial skew Howe duality. We begin by looking
at the multiplicity Mk(λ) of V (λ) inside V ⊗k, where V is the following representation for the
group G1:

GLn: V =
∧
Cn, the exterior algebra of the natural representation;

SO2n+1: V is the spinor representation;
Sp2n: V =

∧
C2n, the exterior algebra of the natural representation;

SO2n: V is the sum of the two nonisomorphic spinor representations, which is irreducible as an
O2n representation.

Our proof uses the crystal basis and the nonintersecting lattice paths approach formulated in [OS19]
to write Mk(λ) as certain determinants of binomial coefficients or Catalan triangle numbers using
the Lindström–Gessel–Viennot (LGV) lemma [GV85, Lin73]. Next, we take a natural q-deformation
of these determinants and use techniques from [Kra99] to transform the determinant formulas for
the multiplicities into product formulas with q-integers, which when q = 1 is similar to those in
the work of Kulish, Lyakhovsky, and Postnova [KLP12a, KLP12b]. Again using the LGV lemma,

we show that the q-analogs of our determinant formulas give dimq V (λ
′
), the q-dimension of the

irreducible G2-representation. Taking q = 1, we obtain the combinatorial skew Howe duality. We
summarize our results in Table 1. We remark that the cases for SON when k is an odd power is not
a skew Howe duality in the sense we have described above as it does not come from a decomposition
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of an exterior algebra. However, this can be described as a type of Howe duality and our product
formulas do not depend on the parity of k.

While the q-analog of combinatorial skew Howe duality was previously known from specializing
the aforementioned character formulas, our proofs are new with more of a direct representation
theory application. Furthermore, the q-analogs of the determinant formulas are generally new,
even for the case q = 1, and the product formulas are entirely new except for q = 1 for G1 =
SO2n+1 in [KLP12a, KLP12b, KLP12c]. For (GLn, GLk), the determinant formula was previously
obtained in [EG95] purely combinatorially as a number of certain lattice path, and the q-analog
was independently shown by Cigler [Cig21, Thm. 8]. In both of these cases, the connection to the
representation theory was not established. In [KLP12a, KLP12b], the case (SO2n+1,Pin2k) was
derived without noticing the importance of skew Howe duality. Determinant multiplicity formulas
for (SO2n+1,Pin2k) and (Sp2n, Sp2k) were shown in [OS19] also without noticing the skew Howe
duality. In all of these cases, the q-analog of these formulas were not known.

Let us discuss the dependence on the parity of k for the decomposition for V (Λn)⊗k of the spin
representation for SO2n+1. We note that there is an alternating form on V (Λn), which means
the tensor power can embed in an orthogonal or symplectic space depending on the parity of k
by building a symmetric or alternating form, respectively. Thus, we have an action of Pink or
Spk−1, respectively, since they preserve a symmetric or alternating form (see also [How95]). There
is also an RSK-type algorithm that recovers the corresponding character identities [Pro93, (DpxBy),
(BxCy)] due to Benkart and Stroomer [BS91]. An analogous RSK-type algorithm for the O2n spinor
was given by Okada [Oka93]. We also note that tensor powers of spin representations has been
examined by Rowell and Wenzl [RW17, Lemma 2.1].

We also provide a natural interpretation of the appearance of lattice paths as they have an innate
description with lozenge tilings of a certain half hexagonal domain. Indeed, lozenge tilings of the
half hexagon naturally correspond to GT patterns that arise to describe the representations of
GLk, which also correspond to the lattice paths describing dimq V (λ′). By taking a different set of
paths, we recover the lattice paths that we used to compute the multiplicity of V (λ). Joining this
to be the full hexagon with side lengths alternating between k and n and a seam down the middle
encoding λ, we recover our GLn×GLk probability measure (up to the normalization factor of 2nk).
The other dual pairs arise from imposing extra symmetries on the hexagon from the symmetries
on GT patterns described by Proctor [Pro94], which have also been considered by Bufetov and
Gorin [BG15, Sec. 3.2]. Similarly, many of the representations we consider can be seen as arising
from

∧
Cn from the branching rule from the inclusion G1 → GLn. We are using a refined version

of the skew Howe duality for G1 = SO2n+p arising from the relation (1 + p)V ⊗2 ∼=
∧
C2n+p.

The second part of this paper is dedicated to our novel asymptotic results on the limit shapes of
generalized Young diagrams. We apply our product formulas at q = 1 to undertake the asymptotic
analysis to compute the limit shapes for the probability measure µn,k(λ) introduced above in the
limit n, k →∞, n/k → const. Since the exterior algebra can be seen as a tensor power, we obtain
new results on the asymptotic analysis of the tensor power decomposition. The asymptotic analysis
of the tensor power multiplicities and corresponding probability measure was previously done for
a fixed n and k going to infinity in [NP18, TZ04]. The asymptotics of the probability measure
for the tensor power 2k of spinor representation of SO2n+1 for both n, k going to infinity was
considered in [NNP20], where the convergence of generalized Young diagrams to the limit shape
was proven. In the present paper we demonstrate that this result is a consequence of skew Howe
duality for (SO2n+1,Pin2k), derive the limit shapes for all the dual pairs (G1, G2) mentioned above
and prove the convergence of the diagrams to the limit shapes. This main asymptotic result is
formulated as Theorem 5.1. This relies strongly on our product formulas, which are well-suited to
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this asymptotic analysis. We discover that the limit shapes of Young diagrams for the symplectic
and orthogonal groups are “halves” of the limit shape of the general linear group. This can be seen
as a reflection of the fact that the branching rule from GLN to Sp2n and SON induces a symmetry
in the combinatorics, such as the GT patterns (see, e.g., [Pro94]). Our limit shapes for (GLn, GLk)

are related to those of Panova and Śniady [PŚ18] by noting

µn,k(λ) =
nk∑
m=0

2−nk
(
nk

p

)
µ
〈m〉
n,k (λ),

where our limit shape is their limit at m = nk
2 . We demonstrate that the probability measure

for the (GLn, GLk) skew Howe duality is given by the Krawtchouk ensemble (cf. [BO07, Sec. 5];
Johansson [Joh01] attributes the first appearance of this ensemble to Seppäläinen [Sep98]). The
Krawtchouk ensemble is a specialization [BO06] of the z-measure [KOV93], and we show that the
skew Howe dualities for the series SO2n+1, Sp2n, SO2n is a specialization of the BC z-measure
recently introduced by Cuenca [Cue18a] up to a sign and renormalization. We also show that µn,k
equals the spectral measure [BO05b, BK10, OO12] for a particular extremal weight. We discuss
these relationships more precisely in Section 5.6.

This paper is organized as follows. In Section 2, we recall basic facts on skew Howe duality. In
section 3, we provide a general background to the combinatorial methods that are employed in this
paper. In Section 4, we derive the multiplicity formulas, prove combinatorial skew Howe duality,
and establish the connection to lozenge tilings. In Section 5, we derive the limit shapes and prove
the convergence of the diagrams to the limit shape. We discuss the relation of the limit shapes to
the insertion algorithms. In Section 6 we list some open problems.

Acknowledgements. The authors thank Pavel Etingof and Nicolai Reshetikhin for useful conver-
sions. The authors thank Grigory Olshanski and Evgeny Feigin for pointing out the relation of this
work to the skew Howe duality. The authors thank Pavel Nikitin for pointing out the connection
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2. Classical groups and skew Howe duality

2.1. Clifford algebras and orthogonal groups. To study the action of Lie groups on exterior
algebras, we will first recall basic facts about Clifford algebra from [FH91]. The Clifford algebra
C(Q) = Cliff(V,Q) associated to a finite-dimensional, complex, positive-definite inner product
space (V,Q) is defined as the quotient of the tensor algebra T (V ) =

⊕∞
k=0 V

⊗k by the two-sided
ideal of T (V ) generated by the elements of the form v⊗v+2Q(v, v) ·Id. The natural Z2-grading of
T (V ) into even and odd tensors induces a Z2-grading of the Clifford algebra C(Q) = Ceven⊕Codd.
The space V is also the subspace of C(Q). We let gl(V ) := End(V ) denote the Lie algebra of all
linear endomorphisms of V .
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Let N = dimV . We have the special orthogonal Lie algebra soN (C) = soN (Q) = C(Q)[2], where

C(Q)[2] is the (homogeneous) degree 2 elements of C(Q) from the Z-filtration induced from the
natural Z-grading on the tensor algebra. Denote by PinN the subgroup of the group of all invertible
elements of C(Q) generated by the elements v ∈ V such that v2 = 1 (equivalently Q(v, v) = 1). The
group PinN is a two-fold cover of ON , where ON is the orthogonal group of invertible linear maps
of V that preserve Q. We will denote by SpinN the preimage of SON under natural projection
PinN → ON , which is also equal to PinN ∩C(Q)even. Note that the Lie algebra of SpinN and SON
is isomorphic to soN , and V is the natural representation of soN .

Below we will consider when V is even and odd dimensional separately.

2.1.1. The even dimensional case. Let V := C2n, and we write V = V+⊕V−, where V+ has a basis
{e1, . . . , en} and V− has a basis {e−n, . . . , e−1}. Furthermore, we choose V+ and V− to be maximal
isotropic subspaces for Q.

We define S =
∧
V−. The standard basis of S consists of the elements ei1 ∧ · · · ∧ ein with

i1 < · · · < in. There is a unique way, up to isomorphism, to make S into a simple C(Q)-module.
The decomposition V = V+ ⊕ V− determines an isomorphism of algebras [FH91]:

C(Q) ∼= End(S).

Moreover, there is an isomorphism

C(Q)even ∼= End(
∧even

V−)⊕ End(
∧odd

V−)

that leads to an embedding of Lie algebras so2n(C) ⊆ C(Q)even ∼= gl(
∧even V−) ⊕ gl(

∧odd V−).
Hence, there are two representations of so2n, which we denote by

S+ =
∧even

V− and S− =
∧odd

V−.

These representations are the half-spin representations of so2n and their highest weights are the
fundamental weights Λn and Λn−1:

for even n: S+ = Vso2n(Λn−1) and S− = Vso2n(Λn),

for odd n: S− = Vso2n(Λn−1) and S+ = Vso2n(Λn).

Their sum
∧
V− = S+ ⊕ S− is called the spin representation of so2n. The vector space S when

regarded as Pin2n-module is called the spinor Pin2n-module.

2.1.2. The odd dimensional case. Let V = C2n+1, which we can decompose as V = V+ ⊕ V0 ⊕ V−,
where we take V+ and V− to be maximal isotropic subspaces as before. Thus, we have dimV0 = 1,
which can be described as the orthogonal complement, under the inner product defined by Q, of
V+⊕ V−. There is a unique up to isomorphism structure of simple C(Q)even-module on S =

∧
V−.

The decomposition V = V+ ⊕ V0 ⊕ V− determines an isomorphism of algebras [FH91]:

C(Q) ∼= End
(∧

V−

)
⊕ End

(∧
V+

)
.

Moreover, there is an isomorphism

C(Q)even ∼= End
(∧even

V−

)
that leads to an embedding of Lie algebras so2n+1 ⊆ C(Q)even ∼= gl (

∧
V−) = gl(S). The represen-

tation S =
∧
V− is the irreducible representation of so2n+1 with highest weight Λn:

S =
∧
V− = Vso2n+1(Λn).
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2.2. Skew Howe duality. In the paper [How89], Roger Howe gives dual pairs of Lie groups and
what are now known as Howe correspondences. We will be interested in the following cases. Let
n, k be nonnegative integers and let (G1, G2) be one of the following pairs of classical groups:

(GLn, GLk), (Sp2n, Sp2k), (SO2n, O2k), (SO2n+1,Pin2k).

The skew Howe duality for the pairs (G1, G2) of classical groups above is given in [AR96], where
the corresponding G1×G2-module is constructed explicitly. We will follow notations from [AR96].

Denote by V the natural G1-module and by W the natural G2-module. Below we will consider
the above mentioned pairs of groups separately. We will denote by VG1(λ) the simple G1-module

and by VG2(λ
′
) the simple G2-module.

We begin by considering the (GLn, GLk)-case. For G1 = GLn the natural module is V = Cn.
Similarly, for G2 = GLk the natural module is W = Ck.

Firstly, recall that skew Howe duality in (GLn, GLk)-case∧(
Cn ⊗ (Ck)∗

)
=
∧

(V ⊗W ∗) ∼=
⊕
λ

VGLn(λ)⊗ VGLk(λ
′
), (2.1)

where VGLn(λ) and VGLk(λ
′
) are irreducible modules of GLn and GLk correspondingly and λ

′
is

the conjugate of the complement diagram of λ in the n × k rectangle. The skew Howe duality
decomposition (2.1) could also be viewed as the decomposition of a GLn-module into irreducible
submodules (∧

V
)⊗k ∼= ⊕

λ

dim
(
VGLk(λ

′
)
)
VGLn(λ). (2.2)

Thus, the dimension of GLn-module that corresponds to the complement diagram λ
′

can be seen
as a tensor product decomposition multiplicity

Mk(λ) = dimVGLk(λ
′
).

Consider (Sp2n, Sp2k) case. We have

V = C2k = V+ ⊕ V−, W = C2n = W+ ⊕W−,

such that dimV± = n and V± are isotropic with respect to the preserved skew-symmetric bilinear
form, and similarly for W . The skew Howe duality implies multiplicity free decomposition∧

(C2n ⊗ Ck) =
∧

(W ⊗ Ck) ∼=
⊕
λ

VSp2n(λ)⊗ VSp2k(λ
′
) (2.3)

and could be viewed as the decomposition of a Sp2n-module into irreducible submodules(∧
W
)⊗k ∼= ⊕

λ

dim
(
VSp2k(λ

′
)
)
VSp2n(λ).

For the other two pairs of groups, we can simplify the decomposition by expressing the exte-
rior algebra of standard representation in terms of fundamental representations. We will use the
decomposition and notation given in Section 2.1.

We consider the (SO2n+1,Pin2k) case, which is

V = C2k = V+ ⊕ V−, W = C2n+1 = W+ ⊕W0 ⊕W−.

The skew Howe duality implies multiplicity free decomposition∧
(C2n+1 ⊗ Ck) =

∧
(W ⊗ Ck) ∼=

⊕
λ

VSO2n+1(λ)⊗ VPin2k
(λ
′
). (2.4)
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It could be viewed as the decomposition of a SO2n+1-module into irreducible submodules(∧
W
)⊗k ∼= ⊕

λ

dim
(
VPin2k

(λ
′
)
)
VSO2n+1(λ).

Let us look closely at the left hand side of this decomposition. There exists an isomorphism∧
W ∼=

∧
W− ⊗

∧
W0 ⊗

∧
W+
∼= 2

(
VSO2n+1(Λn)

)⊗2

due to the fact that
∧
W0 is two dimensional (recall dimW0 = 1) and

VSO2n+1(Λn) =
∧
W− ∼=

∧
W+

is a spinor SO2n+1-module. On the other hand, recall that the group Pin2k is a two-fold cover
of the group O2k. Due to [KW92, Thm. 4.9], if λ has exactly k rows then the O2k-module is
decomposable on restriction to SO2k into the direct sum of two inequivalent irreducible SO2k-
modules, the dimension of each being half that of original O2k-module:

dim
(
VPin2k

(λ
′
)
)

= dim
(
VO2k

(λ
′
)
)

= 2 dim
(
VSO2k

(λ
′
)
)
.

Therefore, this skew Howe duality implies a decomposition of a SO2n+1-module into irreducible
submodules

2k
(
VSO2n+1(Λn)

)⊗2k ∼=
⊕
λ

2 dim
(
VSO2k

(λ
′
)
)
VSO2n+1(λ). (2.5)

Finally, consider the (SO2n, O2k) case, where

V = C2k = V+ ⊕ V−, W = C2n = W+ ⊕W−,

The skew Howe duality [AR96] implies multiplicity free decomposition in (SO2n,Pin2k) case:∧
(C2n ⊗ Ck) =

∧
(W ⊗ Ck) ∼=

⊕
λ

VSO2n(λ)⊗ VO2k
(λ
′
), (2.6)

It could be viewed as the decomposition of a SO2n-module into irreducible submodules(∧
W
)⊗k ∼= ⊕

λ

2 dim(VSO2k
(λ
′
))VSO2n(λ).

The exterior algebra of the standard representation of SO2n decomposes as∧
W ∼=

∧
W− ⊗

∧
W+
∼=
∧
W⊗2
− .

The spin module
∧
W− decomposes into even and odd parts:∧
W− ∼=

∧even
W− ⊕

∧odd
W− = VSO2n(Λn−1)⊕ VSO2n(Λn).

Therefore, the skew Howe duality implies a decomposition of a sum of half spin SO2n fundamental
modules into irreducible submodules(

VSO2n(Λn−1)⊕ VSO2n(Λn)
)⊗2k ∼=

⊕
λ

dim
(
VSO2k

(λ
′
)
)
VSO2n(λ).
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3. Combinatorics

We give the necessary background on partitions, tableaux, highest weight representations, crys-
tals, and the Lindström–Gessel–Viennot (LGV) lemma. Fix a positive integer n. Denote [n] :=
{1, 2, . . . , n}. Let g denote a finite-dimensional simple Lie algebra of classical type (i.e., Cartan
type ABCD) with indexing set I, simple roots {αi}i∈i, fundamental weights {Λi}i∈i, weight lattice
P , simple coroots {α∨i }i∈i, and inner product 〈αi, α∨j 〉 = Cij with [Cij ]i,j∈I the Cartan matrix. Let

{εi}ni=1 denote the standard basis of (1
2Z)n with the standard embedding of P .

A partition λ is a weakly decreasing finite sequence of positive integers, and we draw the Young
diagram of λ using English convention. We use the standard identification of partitions with
elements in the dominant weight lattice P+. We denote

|λ| =
∑̀
i=1

λi, ‖λ‖ =
∑̀
i=1

(i− 1)λi.

the size and weighted size, respectively.
The q-analogs of numbers, factorials, and binomials are the standard

[k]q = 1 + q + · · ·+ qk−1, [k]q! =
k∏

m=1

[m]q,

[
k

m

]
q

=
[k]q!

[m]q![k −m]q!
.

Following [OS19], we will also require the natural (Mahonian) q-analog of the triangle Catalan
number given by

Cn,k(q) =
[n+ k]q![n− k + 1]q

[k]q![n+ 1]q!
=

[n− k + 1]q
[n+ 1]q

[
n+ k

k

]
q

for all n ≥ 0 and 0 ≤ k ≤ n. We consider Cn,k(q) = 0 if n < 0, k < 0, or k > n.

3.1. Crystals. An crystal is a set B with crystal operators ẽi, f̃i : B → Bt{0}, for i ∈ I, such that
for the functions

εi(b) := max{k | ẽki b 6= 0}, ϕi(b) := max{k | f̃ki b 6= 0}, wt: B → P,

the relations

ẽib = b′ ⇐⇒ b = f̃ib
′, 〈wt(b), αi〉+ εi(b) = ϕi(b)

hold for all i ∈ I and b, b′ ∈ B and forms the crystal basis as defined by Kashiwara [Kas90, Kas91]
of a Drinfel’d–Jimbo quantum group Uq(g)-module. Our definition is what is called a regular or
seminormal crystal in the literature (see, e.g., [BS17] for additional information on crystals). We
call an element b ∈ B highest weight if ẽib = 0 for all i ∈ I. For any λ ∈ P+, there exists a unique
crystal B(λ) with a unique highest weight element uλ of weight λ corresponding to the highest
weight irreducible representation V (λ) [Kas90, Kas91].

We can construct the tensor product of crystals B1, . . . ,BL as follows. Let B = BL ⊗ · · · ⊗ B1

be the set BL × · · · × B1. We define the crystal operators using the signature rule. Let b =
bL ⊗ · · · ⊗ b2 ⊗ b1 ∈ B, and for i ∈ I, we write

− · · ·−︸ ︷︷ ︸
ϕi(bL)

+ · · ·+︸ ︷︷ ︸
εi(bL)

· · · − · · · −︸ ︷︷ ︸
ϕi(b1)

+ · · ·+︸ ︷︷ ︸
εi(b1)

.

Then by successively deleting any (+−)-pairs (in that order) in the above sequence, we obtain a
sequence

sigi(b) := − · · ·−︸ ︷︷ ︸
ϕi(b)

+ · · ·+︸ ︷︷ ︸
εi(b)



SKEW HOWE DUALITY AND LIMIT SHAPES 11

called the reduced signature. Suppose 1 ≤ j−, j+ ≤ L are such that bj− contributes the rightmost
− in sigi(b) and bj+ contributes the leftmost + in sigi(b). Then, we have

ẽib = bL ⊗ · · · ⊗ bj++1 ⊗ ẽibj+ ⊗ bj+−1 ⊗ · · · ⊗ b1,

f̃ib = bL ⊗ · · · ⊗ bj−+1 ⊗ f̃ibj− ⊗ bj−−1 ⊗ · · · ⊗ b1.

If one of the factors in a tensor product is 0, then we consider the entire element to be 0. For type
A, the highest weight condition is the classical Yamanouchi condition (see, e.g., [Sta99]).

Remark 3.1. Our tensor product convention follows [BS17], which is opposite of the tensor product
rule used by Kashiwara [Kas90, Kas91].

For two crystals B1 and B2, a crystal morphism ψ : B1 → B2 is a map B1 t {0} → B2 t {0} with
ψ(0) = 0 such that the following properties hold for all b ∈ B1 and i ∈ I:

(1) If ψ(b) ∈ B2, then wt
(
ψ(b)

)
= wt(b), εi

(
ψ(b)

)
= εi(b), and ϕi

(
ψ(b)

)
= ϕi(b).

(2) We have ψ(ẽib) = ẽiψ(b) if ψ(ẽib) 6= 0 and ẽiψ(b) 6= 0.

(3) We have ψ(f̃ib) = f̃iψ(b) if ψ(f̃ib) 6= 0 and f̃iψ(b) 6= 0.

An embedding (resp. isomorphism) is a crystal morphism such that the induced map B1 t {0} →
B2 t {0} is an embedding (resp. bijection).

Next, we consider types B and D. Here we recall a specific realization of the crystals for the
spinor representations due to Kashiwara and Nakashima [KN94] that is called the spinor crystal .
This is B(Λn) in type Bn and B(Λn−1) or B(Λn) in type Dn, which has an underlying set {+,−}n
with the additional condition in type Dn that for (s1, . . . , sn) ∈ B(Λk) we require

∏n
i=1 si = −,+

if k = n− 1, n respectively. The crystal operators are defined by

ẽi(s1, . . . , sn) =


(. . . , si−1,+,−, si+2, . . . ) if i < n and (si, si+1) = (−,+),

(. . . , sn−1,+) if i = n, type Bn and sn = −,
(. . . , sn−2,+,+) if i = n, type Dn and (sn−1, sn) = (−,−),

0 otherwise,

f̃i(s1, . . . , sn) =


(. . . , si−1,−,+, si+2, . . . ) if i < n and (si, si+1) = (+,−),

(. . . , sn−1,−) if i = n, type Bn and sn = +,

(. . . , sn−2,−,−) if i = n, type Dn and (sn−1, sn) = (+,+),

0 otherwise.

wt(s1, . . . , sn) =
1

2
(s1ε1 + s2ε2 + · · ·+ snεn) ,

We remark that these are distinct from the (reduced) signature described above. An element
(s1, . . . , sn) will be written as tableaux whose shape is a half-width column of height n. For
B(Λn−1) in type Dn we consider the box at height n as being a negative half-width box. This
is consistent with the identification of P+ with partitions, and following English convention for
tableaux, the entry in the i-th row counted from the top in the tableau is si.

3.2. The Lindström–Gessel–Viennot lemma. A useful tool for changing combinatorial infor-
mation into a determinant formula is the Lindström–Gessel–Viennot (LGV) Lemma [GV85, Lin73].
Let Γ denote an edge-weighted directed graph with weight function wt: V (Γ)→ R, for some com-
mutative ring R. Let u = (u1, u2, . . . , uk) and v = (v1, v2, . . . , vk) be tuples of vertices of Γ for some
fixed positive integer k. A family of nonintersecting lattice paths (NILP) from u to v is a tuple
(p1, p2, . . . , pk) of (directed) paths in Γ, where pi is a path from ui to vi such that no two paths
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An : 1 2 3 · · · n
1 2 3 n − 1

Cn : 1 · · · n n · · · 1
1 n − 1 n n − 1 1

Figure 1. Crystals of the natural representation B(Λ1) of types An and Cn.

have a common vertex. Let N(u,v) denote the set of all NILPs from u to v. Define the weight of
a path p = (η1, η2, . . . , η`), where ηi ∈ E(Γ), and NILP p = (p1, p2, . . . , pk) to be

wt(p) =
∏̀
i=1

wt(ai), wt(p) =
k∏
i=1

wt(pi).

Lemma 3.2 (LGV lemma [GV85, Lin73]). We have

det

 ∑
p∈N(ui,vj)

wt(p)

k
i,j=1

=
∑

p∈N(u,v)

wt(p).

Two applications of the LGV lemma is used to compute the multiplicity of V (λ) inside of
V (Λn)⊗2k in type Bn [OS19, Thm. 4.4] and V ⊗k, where V =

∧
V (Λ1), in type Cn [OS19, Thm. 4.12].

In both of these constructions, we are working on a square grid with two types of steps

• E : (i, j) 7→ (i+ 1, j),
• N : (i, j) 7→ (i, j + 1).

The highest weight condition on the corresponding tensor product of crystals is the nonintersecting
condition on a family of lattice paths and that the paths stay strictly below the antidiagonal.

3.3. Tableaux and patterns. A semistandard tableau of shape λ is a filling of the Young diagram
of λ with positive integers such that rows are weakly increasing and columns are strictly increasing.
It is a classical fact that the set of all semistandard tableaux of shape λ with entries in {1, . . . , n}
parameterize a basis for the irreducible highest weight gln-representation V (λ). This can be shown
by using the branching rule gln ↓ gln−1, which gives rise to Gelfand–Tsetlin (GT) patterns [GT50],
which are triangular arrays such that the top row is the partition λ and satisfy the local conditions

a c
b

a ≥ b ≥ c.

Furthermore, there is a natural crystal structure on semistandard tableaux by reading columns
bottom-to-top from left-to-right and applying the signature rule on the reading word realized as a
tensor product of B(Λ1) [KN94]. The bijection between GT patterns and semistandard tableaux is
given by the i-th row of the GT pattern is the shape of the tableau restricted to entries at most i.

For sp2n, a basis for V (λ) is indexed by the set of King tableaux of shape λ [Kin76], a semistandard
tableau in the alphabet {1 ≺ 1 ≺ 2 ≺ 2 ≺ · · · ≺ n ≺ n} such that smallest entry in the i-th row is at
least i. When λ is a single column (i.e., λ = Λh for some h ∈ I), then the King tableaux agree with
the Kashiwara–Nakashima tableaux [KN94] (which has a crystal structure from the reading word)
by reordering the column, but this does not hold for general shapes. This was described in terms
of branching rules by Proctor [Pro94, Thm 4.2] using a version of GT patterns for gl2n+1 first given
by Kirillov [Kir88]. These GT patterns satisfy the symmetry that when reflected over the middle,
we obtain the negative pattern. So it becomes sufficient to consider only a half GT pattern (and
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forgetting the middle column forced to be 0) as given in [Pro94, Thm 4.2], which we call a type Cn
Proctor pattern. We remark that this half pattern description was first given by Želobenko [Žel62].
Furthermore, we obtain a King tableau from a type Cn Proctor pattern analogous to the gln case.

Next, we look at the analog of GT patterns for soN , again following [Pro94]. We can index
the basis of V (λ) by symmetric (in the sense above) glN−1 patterns except the middle column no
longer has to be its own negative. Hence, we obtain half patterns as before except the rightmost
entries now can be positive or negative, but other satisfy the inequalities with respect to their
absolute value. For N = 2n+ 1, that is we are in type Bn, these near symmetric GT patterns are
in bijection with type Cn Proctor patterns except we can now allow the rightmost entry to be in
1
2Z≥0 by having an entry a < 0 going to −a − 1

2 . We call such a half pattern a type Bn Proctor
pattern. These are in bijection with Sundaram tableaux [Sun90b], which are King tableaux with
an extra symbol ∞ that can only appear at most once in any single row. A half pattern with the
sign for N = 2n will be called a type Dn Proctor pattern.

4. Combinatorial skew Howe duality

In this section, we will prove a combinatorial version of skew Howe duality. Recall that this
means that we show that the multiplicity of the representation V (λ) inside of V ⊗k for some G1-
representation V equals the dimension of another representation V (µ) for some other classical Lie
group G2. Our proofs uses combinatorial identities involving crystal bases and NILPs, which we
can then express as a determinant. Therefore, we express our results in terms of the corresponding
Lie algebras. We can then describe this duality in terms of lozenge tilings, where we are taking
paths along two different directions. Additionally, we give a q-deformation of the combinatorial
skew Howe duality in a number of cases, where we relate a natural q-deformation of our formula
with the q-dimension of V (µ).

The q-dimension of a highest weight irreducible g-representation V (λ) is given by

dimq V (λ) = dimq(λ) :=
∏
α∈Φ+

1− q〈λ+ρ,α∨〉

1− q〈ρ,α∨〉
,

where Φ+ denotes the set of positive roots of g and ρ =
∑

i∈I Λi is the Weyl vector. We can also
compute it using the principal gradation (see, e.g., [Kac90, §10.10]) on g by

dimq(λ) =
∑

u∈Z|I|≥0

q
∑
i∈I ui dimV (λ)λ−

∑
i∈I uiαi

.

4.1. Multiplicity in type A. We begin with g = gln with taking the exterior algebra of the
natural representation V =

∧
V (Λ1) and compute the multiplicity of V (λ) inside of V ⊗k. To

obtain the multiplicities for sln, we need to take the projection of the Zn+1 ambient space along
the vector (1, 1, . . . , 1).

Proposition 4.1. Let g = gln, and let V =
∧
V (Λ1). Then the multiplicity of V (λ) in V ⊗k is

det

[(
k + i

k + i− j − λn−j

)]n−1

i,j=0

= det

[(
k + i

j + λn−j

)]n−1

i,j=0

. (4.1)

Proof. We show that the multiplicity is equal to the number of NILPs on a square grid with the
initial points si = (0,−i) and the terminal points at tj = (j + λn−j , k − j − λn−j). We build a
bijection as follows. Consider the (m+ i)-th step on the path pi. If the step is a horizontal step E,
then there is an n− i appearing in the m-th tensor factor from the right. Thus, a vertical step N
does not contribute anything to the m-th factor. It is straightforward to see that the nonintersecting
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condition corresponds to the highest weight condition. Hence, the image is a highest weight element,
and the inverse map is clear. �

Example 4.2. Consider gl5, k = 6, and λ = (5, 4, 4, 2, 1). One such lattice path and the corre-
sponding highest weight element in V ⊗6 is

s0

s1

s2

s3

s4

t0

t1

t2
t3

t4

7−→
1

3

4

⊗

1

2

3

4

5

⊗ ∅ ⊗
1

2

3

⊗
1

2

3

⊗
1

2
.

Corollary 4.3. Let λ denote the complement of λ inside of an n× k rectangle. The multiplicity of
V (λ) in V ⊗k is equal to the number of semistandard tableaux of shape λ flagged by (f0, . . . , fn−1),
where fi = i+ 1 + λn−i.

Proof. The claim follows from the standard bijection between NILPs in a square grid (e.g., rotated
by π/2 counterclockwise from [Sta99, Thm. 7.16.1]) and semistandard tableaux. �

Example 4.4. Consider the NILP from Example 4.2. Corollary 4.3 yields the semistandard tableau

1 1 1 1 2

2 2 2 2

3 5

7 8

8

,

which satisfies the flagging (2, 4, 7, 8, 10).

Corollary 4.5. Let g = gln, and let V =
∧
V (Λ1). Let λ denote the complement of λ inside of an

n× k rectangle. The multiplicity of V (λ) and V (λ) in V ⊗k are equal.

Proof. This follows by interchanging the roles of the horizontal and vertical steps and noting that
we get the same set of NILPs if we instead have the starting points be si = (n − i,−n) (that is,
being along the bottom boundary instead of the left boundary). �

Another determinant formula for the multiplicity was given by Essam and Goodman in [EG95,
Eq. (53)] by applying the LGV lemma but instead only considering the portion of the paths that
are not fixed. Indeed, NILPs are precisely the vicious walkers in [EG95]. In Example 4.2, this is
the portion of the NILP that is between the dashed lines.

We will prove that the natural q-analog of our determinant formula gives a product formula
of q-integers. We note that the product formula from the determinant is known to experts, and
the product as a q-dimension can be seen from [BKW16, Lemma 3.2] from a straightforward
computation.
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Theorem 4.6. Let g = gln, and let V =
∧
V (Λ1). For a partition λ contained in an n×k rectangle,

define

MA
q (λ) = det

[[
k + i

j + λn−j

]
q

]n−1

i,j=0

.

Let ai = λi + n− i. Then we have

MA
q (λ) = q‖λ‖

n−1∏
m=0

[k +m]q!×
∏

1≤i<j≤n
[ai − aj ]q

n∏
i=1

[ai]q![k + n− 1− ai]q!
= q‖λ‖ dimq(λ

′
) = q‖λ‖ dimq(λ

′) ∈ Z≥0[q],

where dimq(ν) is the q-dimension of V (ν) for glk. Moreover, MA
1 (λ) is equal to the multiplicity of

V (λ) in V ⊗k.

Proof. We thank Christian Krattenthaler for the following simple proof evaluating the determinant
in the first equality. We first substitute j 7→ n − j. We factor out [k + i]q! from the i-th row and
1/([k+ n− 1− aj ]q![aj ]q!) from the j-th column for all i and j. What remains to compute is (after
reindexing by i 7→ i+ 1)

det

[
n−1∏
m=i

[k +m− aj ]q

]n
i,j=1

= [ai − aj ]q

by [Kra99, Prop. 1] with noting that the (i, j)-th entry is a polynomial in q−aj of degree n− i.
For the second equality, we use the LGV lemma in two different ways to build a bijection φ, which

we then will show is weight preserving up to the shift by ‖λ‖. We first note that the determinant
is equal to the sum over NILPs as in the proof of Proposition 4.1, but we can weight the m-th
vertical edges from the left by qm starting with m = 0. Indeed, this gives the q-binomial coefficient
by using the well-known description of [

a

b

]
q

=
∑
ν⊆ab

q|ν|.

To construct a tableau corresponding to a term in dimq(µ), we will construct a NILP using the
horizontal steps, but instead of vertical steps, we will use diagonal steps.

The NILP for dimq(µ) is constructed by setting initial points si = (−i, i) and terminal points

tj = (k− j+µj , j−µj), where 1 ≤ i, j ≤ k. Note that since µ = λ
′
, the points tj and tj′ correspond

to all points along the diagonal from (0, k) to (n+ k,−n). For every NILP p from (s, t), we build
p = (p1, . . . , pk) from (s, t) by having a diagonal step in p for each vertical step in p and connecting
the result. Indeed, the j-th diagonal step in pi corresponds to the i-th vertical step in pj−1, where
we take the choice to have the end of the diagonal step be the start of the vertical step (so the top
points touch).2 From the position of the starting points and terminal points, we see that this map
φ is a bijection. This is the case as the NILP p is just a semistandard tableaux from the usual LGV
lemma proof of the Jacobi–Trudi formula, where the j-th diagonal step of pi on the m-th diagonal
y = −x+m corresponds to the (i, j)-th entry being m in a tableau of shape µ.

To show that φ is weight preserving, we note that uλ 7→ uµ under this bijection given above,

which maps the weight ‖λ‖ to weight 0. Next, we note that every time we shift a vertical step

2The other choice would be to have the start of the diagonal step matching with the ends of the vertical steps. This
would make it so the initial step of each path from si → ti would be a horizontal step rather than the last step.
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right by 1, we move a diagonal step up by 1. Therefore, under these shifts, the bijection is weight
preserving (up to the shift by ‖λ‖). Since every semistandard tableau in V (µ) can by obtained
from uµ by a sequence of shifts (which simply changes some i 7→ i+ 1 in the tableau), we see this
bijection is weight preserving.

We can show the determinant equals dimq(λ
′) similarly by instead taking the starting points

si = (n− 1 + i,−i) and terminal points tj = (j − 1, j − 1 + n− λ′j). The rest of the proof is similar

with the j-th diagonal step in pi corresponds to the (j + i)-th horizontal step in pn−j . �

Example 4.7. We consider the NILP from Example 4.2. We have µ = λ
′
= (5, 4, 2, 2, 1, 0). Under

the bijection φ used to prove the second equality in Theorem 4.6, we have

s0

s1

s2

s3

s4

t0

t1

t2
t3

t4

s1

s2

s3

s4

s5

s6

t1

t2

t3

t4

t5

t6

←→

1 1 1 4 4

2 2 4 6

3 3

4 4

6

.

We can describe the bijection φ used in the proof of Theorem 4.6 explicitly in terms of the
semistandard tableaux. For a semistandard tableau T , let ψ(T ), the entry m in cell (i, j) goes to
m + i − j in the cell (j, i). Clearly ψ2 is the identity map (defined on the set of all semistandard
tableaux). It is a straightforward computation to see that the set given by Corollary 4.3 goes to

semistandard tableaux of shape λ
′

with the largest entry being k. Furthermore, we have that ψ is
φ translated to semistandard tableaux.

We remark that [EG95, Eq. (55)] is the q = 1 version of our product formula for the multiplicity
in Theorem 4.6. An alternative proof at q = 1 was given in [KGV00, Thm. 1], which could also
be extended to the general q case by taking the principal specialization. Additionally, the equality

q‖λ‖ dimq(λ
′
) = q‖λ‖ dimq(λ

′) is the q-analog of Corollary 4.5.
We describe another connection with a more classical enumeration problem attributed to Verner

Hoggatt by Fielder and Alford [FA89]. The n-Hoggatt triangle is the array of integers (Hkm)0≤m≤k
given by

Hkm =
bn(k)

bn(m)bn(k −m)
, where bn(k) =

k∏
j=1

(
j + n− 1

n

)
.

As first proven by Qiaochu Yuan (see [Cig21, Sec. 3]), Hkm equals the number of semistandard
Young tableaux with max entry k with the shape of an n × m rectangle by the hook-content
formula. By Theorem 4.6 at q = 1, we have the following.

Corollary 4.8. Let δ = ε1 + · · ·+εn ∈ P for gln. The multiplicity of V (mδ) in V ⊗k equals Hk,k−m.

Corollary 4.5 then yields the symmetry Hkm = Hk,k−m [Cig21, Eq. (3)]. Furthermore, Theo-
rem 4.6 gives a natural q-analog of the Hoggatt triangles, along with determinant formulas for the
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entries and a connection with representation theory from another perspective. That is, define the
q-analog of the n-Hoggatt triangle by

Hkm(q) := dimq

(
(k −m)δ

′)
= dimq(n

m)

for glk. Consequently, from this perspective, Theorem 4.6 was recently proven independently in the
case λ = mδ by Johann Cigler [Cig21, Thm. 8]. For alternative proof, we can manipulate [BKW16,
Eq. (3.13)] for λ = mδ to obtain the q-analog of Hoggatt’s triangle given by [Cig21, Eq. (22)].

Next we consider the projection to sln, where all of the weights mδ 7→ 0. Here, the multiplicity of
V (0) equals the n-Hoggatt sums: the rows sums of the n-Hoggatt triangle. Alternatively, these are
the diagonals of the generalized Catalan number triangle as described in OEIS A116925 [Slo18]. In
particular, the case of n = 3 yields a correspondence with Baxter permutations. The multiplicities
for sln can also be described by the (generalized) hypergeometric series evaluation nFn−1(−n+ 1−
k, . . . ,−k; 2, . . . , n; (−1)n). For the q-analog, it is equal to

nφn−1

[
q−n+1−k · · · q−k−1 q−k

q2 · · · qn ; q, (−1)n
]

= 2φ1

[
qn q−(n+k−1)

q
; qn, (−1)n

]
.

We thank Ole Warnaar for the simplification to using 2φ1.

4.2. Multiplicity in types BC. In this section, we consider the power of the spinor representation
V (Λn)⊗K for SO2n+1. We give a determinant formula and closed product formula for the q-analog
of the multiplicity of V (λ) similar to the case for GLn in the previous section. When K = 2k + 1,
this also equals the multiplicity of V (λ) inside of V ⊗k for Sp2n, where V =

∧
V (Λ1). We recover

the formula from [NNP20, Eq. (15)] and unify [OS19, Thm. 4.4, Thm. 4.12].
We start by considering the natural q-analog of the determinant formula from [OS19, Thm. 4.4]

for the multiplicity of V (λ+ pΛn) inside of V (Λn)⊗2k+p, where p = 0, 1, in type Bn:

MBC
q (λ+ pΛn) := det

[
C(a(i,j),b(i,j))(q)

]n
i,j=1

, (4.2)

where

a(i, j) = 2n− i− j + k + p+ λj , b(i, j) = j − i+ k − λj .
We remark that the p = 1 is a straightforward extension of the p = 0 case.

Theorem 4.9. Let λ be a partition inside an n× k rectangle.

p = 0: We have

MBC
q (λ)

k−1∏
a=1

(qa + 1) = q‖λ‖ dimq(λ
′
+ ωk),

where ωk = 1
2(ε1 + · · ·+ εk) for type Dk and dimq(λ

′
+ωk) is the q-dimension of V (λ

′
+ωk)

in type Dk. Furthermore, MBC
1 (λ) equals the multiplicity of V (λ) in V (Λn)⊗2k for type Bn

and MBC
q (λ) ∈ Z≥0[q].

p = 1: We have

MBC
q (λ+ Λn) = q‖λ‖ dimq(λ

′
) ∈ Z≥0[q],

where dimq(λ
′
) is the q-dimension of V (λ

′
) in type Ck. Furthermore, MBC

1 (λ+ Λn) equals

the multiplicity of V (λ+Λn) in V (Λn)⊗2k+1 for type Bn and V (λ) in V ⊗k for V =
∧
V (Λ1)

in type Cn.

Proof. We first prove the p = 0 case. The multiplicity claim was proven in [OS19, Thm. 4.4].
From [OS19, Thm. 3.8, Thm. 4.4], we have a bijection between the NILPs and King tableaux.

https://oeis.org/A116925
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In [Pro94, Thm. 8.1], the character of V (λ
′

+ ωk) is given by a pair of a King tableau and a
±-vector of length k − 1. When we look at the q-dimension, this ±-vector contributes a factor of

dimq(ωk) =

k−1∏
a=1

(qa + 1). (4.3)

Hence it remains to show that the bijection between NILPs and King tableaux is weight preserving

up to a shift by q‖λ‖. This follows from noting that the q-dimension for the King tableau is
formula [OS19, Thm. 3.8] with a slight modification to compute the q-dimension by the i-th diagonal

having weight qi and the shift by q‖λ‖.
Now we consider the case when p = 1. As previously mentioned, the multiplicity claim for type

Bn is a straightforward extension of [OS19, Thm. 4.4], and type Cn is proven in [OS19, Thm. 4.12].
Since the rightmost tensor factor has to be uΛn , the NILPs for the multiplicities in V (Λn)⊗2k+1

are exactly those used to compute the multiplicities in type Cn. Moreover, we note that these are

precisely the same NILPs used to compute the dimension of V (λ
′
) of type Ck by [OS19, Thm. 3.8].

This also holds for the natural q-deformation and the result follows. �

We note that Equation (4.3) is almost the q-analog of 2k that comes from the factor of 2 difference
in dimension between

∧
V (Λ1) and V (Λn)⊗V (Λn). The extra factor of 2, which would become the

a = 0 factor in Equation (4.3), comes from the order 2 symmetry of type Dn, which replaces the
coefficient of εk ↔ −εk. This can also be seen as coming from the fact we are using SO2n rather
than O2n to describe the crystals. Hence, this is the q-combinatorial version of the Howe duality

of (
∧
V (Λ1))⊗k with SO2k.

For the next proof, we use the Dodgson condensation method that is based off the Desnanot–
Jacobi identity (see [Kra99, Sec. 2.3]) to give proof using induction on n. We note that removing
the initial vertex un increases k by 1 and removing the terminal vertex vn increases λi by 1 for all
i, yet the values {ai}n+1

i=1 do not change in each of the minors. The base case of n = 1 is trivial. We
leave the details to the reader.

Theorem 4.10. Fix positive integers k and n. Let λ be a partition contained inside of a n × k
rectangle. Let ai = λi + (n− i) + p+1

2 . Then we have

MBC
q (λ+ pΛn) = q‖λ‖

n∏
i=1

[2k + p+ 2i− 2]q! [2ai]q ×
∏

1≤i<j≤n
[ai − aj ]q[ai + aj ]q

n∏
i=1

[
k + n− ai +

p− 1

2

]
q

!

[
k + n+ ai +

p− 1

2

]
q

!

.

Theorem 4.10 for q = 1 was proven using different techniques in [KGV00, Thm. 6], where our ai is
their ei+1. Their proof can be modified for the general q case by taking the principal specialization.
The product formula for the q-dimension is also given by [BKW16, Lemma 3.3,Lemma 3.5].

4.3. Multiplicity in type D. Now we consider the case for representations of SO2n. Let V =
V (Λn−1)⊕V (Λn). The goal of this section is to compute the multiplicity of V (λ) inside of V ⊗K as a
determinant and a product formula for the natural q-analog. We continue our approach of giving a
determinant formula via crystal bases and the LGV lemma, but a little more care is needed because
of the two types of spinors involved. We relate our formula when K = 2k+ 1 to a q-dimension and
conjecture that it is a q-dimension up to a simple ratio for K = 2k, which is precisely the dimension
of a representation when q = 1.
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For an element (s1, . . . , sn) in a spinor crystal in type Dn, we note that the last sign sn is uniquely
determined by the product of the first n − 1 signs s1 · · · sn−1. However, since V is the direct sum
of both spinors, we can freely choose sn, which uniquely determines which of the two summands
the element belongs to. Therefore, we can use the same identification as in type Bn to identify
elements in V ⊗2k with lattice paths in a square grid. However, for the highest weight condition,
we are not allowed to freely choose the sign for sn nor is it as simple as keeping the paths below
the antidiagonal. We still want the nonintersecting condition to be the translation of the highest
weight condition for all i < n− 1, so we can restrict ourselves to the rank 2 case with i = n− 1, n.

In this case, we have four elements for (sn−1, sn)

+

+
,

+

−
,

−
+

,
−
−

.

The first and second cases are highest weight elements, which pair with the fourth and third cases
respectively. Hence, we no longer require the path pn to stay strictly below the antidiagonal, but
there is some influence from pn−1. We fix the path pn−1 and we then mirror the path from un−1

across the antidiagonal; i.e., we swap N ↔ E steps.

Lemma 4.11. Let B be the corresponding crystal of V in type D2. All of the highest weight
elements in B⊗2k of weight λ = cn−1εn−1 + cnεn ∈ P+ are in bijection with NILPs (pn−1, pn) in
the grid with

• starting vertices un = (0, 0) and un−1 = (−1,−1),
• terminal vertices vn = (k + cn, k − cn) and vn−1 = (k + 1 + cn−1, k − 1− cn−1), and
• pn does not intersect pn−1 reflected across the antidiagonal.

Proof. We note that for any (sn−1, sn) ∈ V there is a corresponding element obtained by sending
sn ↔ −sn, which applied to every factor translates to reflecting the path pn. Therefore, if there
is an intersection, it is sufficient to consider the case when the first intersection point is below
the antidiagonal. The bijection between the paths (pn−1, pn) and highest weight elements is the
same as the type B2 case in [OS19, Thm. 4.4]. This reflection is also a manifestation of the
Dynkin diagram symmetry that sends n − 1 ↔ n, so it is only sufficient to consider en−1. Hence,
the highest weight condition corresponds to the nonintersecting condition and is proven similar
to [OS19, Thm. 4.4]. �

Next, we want to convert this to an honest NILP, which means we need to remove the symmetric
path pn−1. We do this by noting that every time the path touches the antidiagonal, we have
two choices. Therefore, we “fold” the path pn to stay below the antidiagonal but we still need to
retain the fact that we have two choices, which we encode by having two edges N±. We have N+

correspond to the case when the previous step in the path was below the antidiagonal and N− when
it was above antidiagonal. We note that reflecting part of a path over the antidiagonal corresponds
to interchanging E ↔ N . Hence, the number of these paths are in bijection with paths from (0, 0)
to (x, y) on a square grid.

To make this precise in terms of the LGV lemma, let D denote the (infinite) “grid” (directed
graph) that consists of E : (i, j) 7→ (i + 1, j) and N : (i, j) 7→ (i, j + 1) steps that do not have
an endpoint on the antidiagonal (that is, either endpoint has coordinates (i, i)) and two steps
N± : (i, i− 1) 7→ (i, i) that end on the antidiagonal. As a consequence, the directed paths must lie
weakly below the antidiagonal line of y = x.
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Example 4.12. We demonstrate Lemma 4.11 when λ = 0 with a pair of lattice paths (p1, p2) in
the symmetric and folded versions and the corresponding highest weight element:

←→ ←→
−
+
⊗
−
−
⊗

+

+
⊗

+

−
⊗
−
−
⊗

+

+
.

Lemma 4.13. The number of paths from (0, 0) to (x, y) on the grid D, where necessarily x ≥ y, is(
x+ y

y

)
.

Proof. We unfold the path and the underlying graph to be on a square grid. �

Now we can prove a determinant formula and product formula for the multiplicity.

Theorem 4.14. Let g = so2n and let V = V (Λn−1)⊕ V (Λn). Let p = 0, 1. Define

MD
q (λ+ pΛn) := det

[[
2(k + i) + p

k + i− j − |λn−j |

]
q

]n−1

i,j=0

.

Then the multiplicity of V (λ+ pΛn−1) and V (λ+ pΛn) in V ⊗2k+p is MD
1 (λ+ pΛn). Furthermore,

we have

MD
q (λ+ pΛn) = q‖λ‖

n∏
i=1

[2k + 2n− 2i+ p]q!×
∏

1≤i<j≤n
[ai − aj ]q[ai + aj ]q

n∏
i=1

[
k + n− 1− ai +

p

2

]
q
!
[
k + n− 1 + ai +

p

2

]
q
!

∈ Z≥0[q], (4.4)

where ai = λi + n− i+ p
2 .

Proof. The proof of the first claim is similar for the type Bn case from [OS19, Thm. 4.4]. Indeed,
we note that we have the starting vertices ui = (−i,−i) and the terminal vertices vj = (k + j +
|λn−j | , k− j−|λn−j |). From Lemma 4.13 and the LGV lemma, we see that the number of paths in
this graph is equal to the determinant (4.14) at q = 1. From the definition of the crystal operators
and the folded version of Lemma 4.11, a NILP corresponds to a highest weight element read along
diagonals, where in the k-th path, the k-th entry is given by E 7→ + and N 7→ −.

We can show the product formula for MD
q (λ) by using Dodgson condensation similar to the proof

of Theorem 4.10. To show MD
q (λ) ∈ Z≥0[q], we apply the LGV lemma. �

Example 4.15. Consider the NILP from Figure 2. The corresponding highest weight element is

−
+

+

+

⊗

+

+

+

−

⊗

+

−
−
−

⊗

−
+

+

−

⊗

+

−
−
+

⊗

+

−
+

+

⊗

+

+

+

+

⊗

+

+

−
+

⊗

−
+

+

−

⊗

+

−
−
−

⊗

+

+

+

+

⊗

+

+

+

−

An alternative formulation of Theorem 4.14 was given by Grabiner and Magyar [GM93, Eq. (47)].
For the case of V ⊗2k+1, we can show the result is equal to a q-dimension.
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s1

s2

s3

s4
t1

t2

t3

t4

Figure 2. An example of an NILP on the grid D for type D4 and k = 6.

Remark 4.16. Christian Krattenthaler has provided an alternative proof of Theorem 4.10 and
Theorem 4.14 by using [Kra99, Thm. 27] with A = −2k−p+1, Li = −ai+ p+1

2 +k−1 and A = −2k−
1, Li = −ai + p

2 + k − 1, respectively, after reversing the rows (and columns for Theorem 4.14 and

an index shift), transposing the matrix, and applying the identity
[
a
b

]
q

= (−1)bqb(2a−b+1)/2
[
b−a−1
b

]
q
.

Theorem 4.17. Fix positive integers k and n. Let λ be a partition contained inside of a n × k
rectangle. Then we have

MD
q (λ+ Λn) = q‖λ‖ dimq(λ

′
),

where dimq(λ
′
) be the q-dimension of V (λ

′
) in type Bk. Moreover, MD

1 (λ + Λn) equals the multi-

plicity of V (λ+ Λn′) for n′ = n− 1, n in V ⊗2k+1.

Proof. The first claim follows from the analogous bijection between Sundaram tableaux and NILPs
as in the type Bn case with King tableaux with the ∞ entries in the Sundaram tableaux being one
of the choices N± for the vertical steps. The fact that this equals the multiplicity is analogous to
the proof of Theorem 4.14. �

When we look at an even power of V , we have the following simple ratio relating the two formulas.
This can be shown by comparing the product formula (4.4) and [BKW16, Lemma 3.6].

Corollary 4.18. Fix positive integers k and n. Let λ be a partition contained inside of a n × k
rectangle. Then we have

MD
q (λ) = q‖λ‖

k∏
i=1

qλ
′
i+k−i + 1

qk−i + 1
dimq(λ

′
), (4.5)

where dimq(λ
′
) be the q-dimension of V (λ

′
) in type Dk.

We note that the ratio in Equation (4.5) is 2k/2k = 1 at q = 1. In the sequel, we will provide a
combinatorial proof that Corollary 4.18 holds at q = 1.

4.4. Interpretation with lozenge tilings. We give a unified description for all of the combinato-
rial skew Howe duality discussed in this section using lozenge tilings. We realize the combinatorial
skew Howe duality by using the realization that lozenge tilings of a half hexagon has three different
paths that we can take. The lozenge tilings are naturally in bijection with GT patterns, so they can
be used to describe irreducible representations of gln. This also accounts for the natural symmetry
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of Corollary 4.5. The remaining cases then are based on imposing additional symmetries to the
lozenge tilings coming from [Pro94] on GT patterns. These can be seen as manifestations of the
branching rule from the natural embedding of g inside of glN . These symmetries on lozenge tilings
were discussed in [BG15, Sec. 3.2].

We begin by describing the lozenge tilings on a half hexagon. Fix a partition µ, and let ai =
µi + k + 1− i. We will be using the lozenge tiles R,G,B

respectively. The region we will be tiling is a half hexagon Hλ with the top and bottom sides having
length n, the left side having length k, which means the right side will have length n+ k. We will
place the B tiles along the right boundary at heights ai, where they protrude outside of the region.
Sometimes we consider these B tiles to actually be triangles, so the result lies perfectly inside the
half hexagon. Lozenge tilings of Hλ are in bijection with GT patterns, where for row µ(j) in a GT

pattern (µ(j))kj=1, we place B tiles at heights µ
(j)
i + k + 1− i in the j-th column from the right. It

is a classical fact that this uniquely determines a lozenge tiling as the B tiles can be seen as the
tops of cubes stacked in a corner, known as a plane partition in combinatorics (see, e.g., [Sta99]).

Now we can give an explanation of the two NILPs that appear in the proof of Theorem 4.6. From
an NILP that contributes to the multiplicity of V (λ), we obtain a lozenge tiling by considering pi to
be a path starting from the i-th position along left boundary from the bottom with every horizontal
(resp. vertical) step corresponding to an R (resp. G) tile. This also uniquely determines the lozenge
tiling as the only tiles missing must be B tiles. Next, we can take paths in this lozenge tiling that
avoid the R tiles, and this will correspond to the paths pi with si being on the left at the i-th
position from the top with B (resp. G tiles) translating to horizontal (resp. diagonal) steps. This

yields the semistandard tableaux that gives the dimension of V (λ
′
). Finally, by taking the paths in

the lozenge tiling avoiding the G tiles, we have the NILPs for the semistandard tableaux for V (λ′).

Example 4.19. We consider the semistandard tableau from Example 4.7, which recall that n = 5
and k = 6. We see that it has the corresponding GT pattern and lozenge tiling of

5 4 2 2 1 0
5 3 2 2 0

5 3 2 2
3 2 2

3 2
3

←→

s̃0

t0

s̃1

t1

s̃2

t2s̃3

t3s̃4

t4

Note that the path from s̃i → ti in the lozenge tiling that avoid the B tiles is the path from si → ti
in Example 4.2 between the dashed lines. Furthermore, the paths from si → ti in Example 4.7
correspond to the paths in the lozenge tiling that avoids the R tile. The NILP that would correspond
to a semistandard tableau of shape λ′ come from taking the paths that avoid the G tiles.
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We can realize the skew Howe duality in terms of lozenge tilings in a different way. We allow
ourselves to take only triangles along the middle of a hexagon, so no B tile can cross the middle,
with side lengths alternating between m and n. Therefore, one side corresponds to the multiplicity
of V (λ) in V ⊗k for gln as before. The other side we will consider as the representation V (λ′) for
glk from the GT pattern. Thus, this gives a natural combinatorial description of Equation (2.2)
and the skew Howe duality in (2.1).

Example 4.20. One tiling of a hexagon for n = 5 and k = 6 with λ = 44421 representing the
combinatorial skew Howe duality and their corresponding pair of GT patterns is

←→

5 5 2 2 1 0
5 3 2 2 0

5 3 2 1
4 3 2

4 2
4

4 4 4 2 1
4 4 2 1

4 3 2
3 2

3

Next, we will interpret Theorem 4.9 in terms of lozenge tilings. In this case for Sp2k, we want
to impose a horizontal reflection symmetry to the half hexagon, which further restricts us to the
quarter hexagon. Indeed, this requires that there are 2n steps on the left and 2k+1 steps along the
top and bottom sides and along the middle are all B tiles. We now consider the middle of the half
hexagon to be the position 0 on the boundary (i.e., height 0), and so this symmetry and indexing in
terms of the corresponding GT patterns is precisely those described for Sp2k. In particular, tilings
of this quater hexagon give the character for the corresponding sp2k representation by the natural
bijection with the type Ck Proctor pattern.

We can translate this symmetry to the NILPs on the rectangular grid as the lattice paths must
stay below the antidiagonal. This means the NILP corresponds to nonintersecting Dyck paths
(which do not necessarily have to end on the antidiagonal) and we obtain a determinant of triangle
Catalan numbers. Hence, the combinatorial skew Howe duality is simply taking two different types
of lattice paths on these lozenge tiling similar to the type A case.

Example 4.21. We consider a tiling of the quarter hexagon for n = 4 with k = 3 and the
corresponding Proctor pattern and NILP from [OS19, Thm. 3.8, Thm. 4.12]:

←→

3 2 0
3 1 0

2 1
2 0

2
1

←→

s0

s1

s2

s3

t3
t2

t1

t0
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Note that if we think of the lozenge tiling as a stacking of boxes in the corner with the B tiles at
height 0 being the floor, the heights along the diagonals are the diagonals of the Proctor pattern.
It is easy to see this holds in general.

For Theorem 4.9 with V (Λn)⊗2k in type Bn, we cannot have full symmetry of the (half) hexagon.
Instead we consider lozenge tilings of the half hexagon that are almost symmetric, where they are
symmetric up to the middle row of hexagons, which are then forced to be either

There are 2k such possible choices, where we take k−1 of them to correspond to the sign vector and
the last to correspond to the parity (that is taking µ+ωk or µ+ωk−1). The remaining part of the
lozenge tiling corresponds to the King tableaux as in the case of a symmetric lozenge tiling. This
choice is also the difference between the type Ck and Bk Proctor patterns allowing the rightmost
entries to be in 1

2Z≥0. So we can realize our combinatorial skew Howe duality as a full hexagon as
for the glk case with as much symmetry as possible.

Example 4.22. We consider the quarter hexagon from Example 4.21, reflect it vertically to a type
C4 symmetric half hexagon, and then adjoin a type B3 almost symmetric half hexagon:

Finally, we interpret Theorem 4.14 in terms of lozenge tilings similar to the previous case. For
the type Dn case, we have symmetry in the B tiles except for the middle B tile, which is a direct
translation of the Proctor pattern condition [Pro94, Thm. 7.2]. Note that this allows for a greater
amount of asymmetry than in a type Bn lozenge tiling. The paths along such tilings avoiding the
B tiles precisely correspond to the unfolded NILPs. In fact, this shows that Corollary 4.18 holds
at q = 1.

5. Limit shapes of Young diagrams

In this section, we demonstrate how the limit shapes of the random Young diagrams with respect
to the probability measure from skew Howe duality, see (5.1a) below, can be derived using the
techniques of determinantal point processes.
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Here we demonstrate that the limit shapes for the classical Lie groups are described by the same
function, which is computed explicitly. Therefore we need to use the parameters that are related
in a certain way. Furthermore, let l be such that n = 2l or n = 2l + 1 depending on if n is even
or odd. Recall that skew Howe duality acts on the space

∧(
Cn ⊗ Ck

)
, which has a natural action

of the group GLn ×GLk and a multiplicity-free decomposition given by (2.1). This space also has
an action of the Clifford algebra as discussed in Section 2 with an invariant subspace

∧(
Cn ⊗ Ck

)
.

The invariant subspace also has actions of

• SO2l+1 × Pin2k for n = 2l + 1,
• SO2l ×O2k for n = 2l, and
• Sp2l × Sp2k for n = 2l,

with multiplicity-free decompositions given by (2.4), (2.6), and (2.3), respectively, using (general-
ized) Young diagrams for the corresponding Lie groups. Let 1[a,b](x) denote the indicator function,
which is 1 if x ∈ [a, b] and 0 otherwise.

Theorem 5.1. The decomposition of
∧

(Cn ⊗ Cκ) gives rise to the probability measure

µn,κ(λ) =
dimVGLn(λ) · dimVGLκ(λ

′
)

2nκ
, (5.1a)

for the action of GLn ×GLκ and, for κ even,
∧(

Cn ⊗ Cκ/2
)

gives rise to

µn,κ/2(λ) =
dimVG1(λ) · dimVG2(λ

′
)

2nκ/2
, (5.1b)

for the actions of SO2l+1 × Pinκ for n = 2l + 1, SO2l ×Oκ for n = 2l, and Sp2l × Spκ for n = 2l.
Let fn denote the upper boundary of a Young diagram in a decomposition, rotated and scaled by

1
n as in Figure 3 and regarded as a function fn(x) of x ∈ [0, c + 1]. As n → ∞, κ → ∞, c =
limn,κ→∞

κ
n = const, the functions fn converge in probability with respect to the probability mea-

sure (5.1) in the supremum norm ‖·‖∞ to the limiting shape given by the formula

f(x) =


1 +

∫ x

0

(
1− 2ρ(t)

)
dt if c ≥ 1,

1 +

∫ x

0

(
2ρ(t)− 1

)
dt if c < 1,

(5.2)

where the limit density ρ(x) is written explicitly as

ρ(x) =
1[−
√
c,
√
c](x̃)

2π

[
arctan

(
−(c+ 1)x̃+ 2c

(c− 1)
√
c− x̃2

)
+ arctan

(
(c+ 1)x̃+ 2c

(c− 1)
√
c− x̃2

)]
, (5.3)

where x̃ = x − c+1
2 , for (5.1a) and with a shifted argument ρ

(
x + c+1

2

)
such that x ∈ [0, c+1

2 ]
for (5.1b).

Note that the limit shape of the diagrams for the special orthogonal and symplectic groups is
a “half” of the limit shape for the general linear groups (see Figures 9 and 10). The case c = 1
corresponds to a constant solution ρ(x) = 1

2 , for x ∈ [−1, 1] and a triangular diagram λi = n− i.
The proof of the theorem is presented case by case in the following Sections 5.1, 5.2, 5.3, 5.4.

We demonstrate the derivation of the limit shape in the GLn ×GLk Section 5.1.
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5.1. Limit shape for (GLn, GLk) skew Howe duality. For a partition λ, we will use the coor-
dinates ai := λi +n− i, which correspond to the rotated diagram as demonstrated in the Figure 3.
To derive the limit shape (5.3), we write the probability measure in the form

µn,k({ai}) = Cn,k
∏
i<j

(ai − aj)2 ×
∏
l

W (al), (5.4)

as the product of the square of the Vandermonde determinant and the product of single variable
dependent weights:

µn,k(λ) =
dimVn(λ) · dimVk(λ

′
)

2nk
=
Mk(λ) dimVn(λ)

2nk
=

=
n−1∏
m=0

(k +m)!

2km!(k + n− 1)!
×

∏
1≤i<j≤n

(ai − aj)2 ×
n∏
i=1

(k + n− 1)!

ai!(k + n− 1− ai)!
,

=

n−1∏
m=0

(k +m)!

2km!(k + n− 1)!
×

∏
1≤i<j≤n

(ai − aj)2 ×
n∏
i=1

(
k + n− 1

ai

)
, (5.5)

where we have used the Weyl dimension formula

dimVn(λ) =

∏
i<j(λi − λj + j − i)∏n−1

m=0m!
. (5.6)

In this form the probability measure µn,k(a1, . . . , an) is the measure for the configurations of the
Krawtchouk polynomial ensemble (cf. [BO07, Lemma 5.1]), since the weights are given by the
binomial coefficients and the asymptotic results of [Joh02] can be applied. Nevertheless, we will
see that the measures µn,k/2(λ) for Lie groups of series SO2l+1, Sp2l, SO2l do not exactly coincide
with the Krawtchouk ensemble (see (5.28), (5.32), and (5.33)). Therefore, in this subsection we
present a method for derivation of the limit shape for (GLn, GLk) that can then be applied with
slight modifications to other classical series of simple Lie groups in Sections 5.2, 5.3, 5.4.

We are interested in the limit n, k →∞ such that lim k
n = c. In this case GLn and GLk appear

in the same way, so without loss of generality we can assume that k > n. Rescale the coordinates
as xi = ai

n = λi+n−i
n and regard the upper boundary of the rotated diagram as a piecewise-linear

function fn(x), so f ′n(x) = ±1 for x 6= j
n , j ∈ Z. To derive the limit shape it is convenient to

consider the diagram as a particle configuration with particle coordinates {xi}ni=1. Introduce the
piecewise constant function ρn(x) = 1

2(1− f ′n(x)), that is equal to zero on an interval of the length
1
n if there is no particle in the left boundary of the interval and is equal to 1 if there is a particle.
Then ρn(x) can be called particle density. The convergence of the diagrams to the limit shape leads
to the convergence of particle density functions ρn to a limit particle density ρ(x), where the limit
density ρ(x) is connected to a derivative of limit function f(x) of the diagrams by the formula

f ′(x) = 1− 2ρ(x).

The limit shape can be recovered from the explicit expression for ρ(x) by the formula

f(x) = 1 +

∫ x

0
(1− 2ρ(t)) dt. (5.7)

It is more convenient to solve the variational problem for the limit density ρ(x).
The probability of a configuration {xi}ni=1 can be written as an exponent of a functional J [ρn]:

µn,k({xi}) =
1

Zn
exp
(
−n2J [ρn] +O(n lnn)

)
,
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Figure 3. Rotated diagram for GL5, coordinates ai = λi +n− i correspond to the
left boundaries of the intervals, where the upper boundary as a function fn is de-
creasing.

where

J [ρn] =

∫ c+1

0

∫ c+1

0
ρn(x)ρn(y) ln|x− y|−1 dx dy +

∫ c+1

0
ρn(x) V (x) dx (5.8)

and the normalization constant Zn does not depend on {xi}. We omit the computation of the
normalization constant and the estimate of the next order term O(n lnn), which are straightforward
and completely parallel to the computations for SO2n+1 presented in [NNP20, Lemmas 1,2]. The
potential V (x) appears from the use of Stirling formula for the factorials in Equation (5.5) and has
the form

V (x) = x lnx+ (c+ 1− x) ln(c+ 1− x).

The minimizer is constructed explicitly in the following lemma.

Lemma 5.2. The minimizer of the functional (5.8) is given by the formula (5.3).

Proof. If we shift the coordinates as x̃ = x− c+1
2 and introduce the function ρ̃n(x̃) = ρn(x), we can

make the functional invariant with respect to the sign flip x̃→ −x̃:

J [ρ̃n] =

∫ c+1
2

− c+1
2

∫ c+1
2

− c+1
2

ρ̃n(x)ρ̃n(y) ln|x− y|−1 dx dy

+

∫ c+1
2

− c+1
2

ρ̃n(x)

[(
x− c+ 1

2

)
ln

(
x− c+ 1

2

)
+

(
x+

c+ 1

2

)
ln

(
x+

c+ 1

2

)]
dx.

(5.9)
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Now we need to find a minimizer in the class of the even functions ρ̃(x) such that |ρ̃(x)| < 1 for
any x with the normalization condition ∫ c+1

2

− c+1
2

ρ̃(x) dx = 1. (5.10)

Assume that the minimizer ρ̃ is supported on an interval [−a, a]. Taking the variation by ρ̃ and

redefining the potential as Ṽ (x̃) = 1
2V (x), we obtain an Euler–Lagrange equation for x ∈ supp ρ̃:∫ a

−a
ln |x− y|−1ρ̃(y) dy + Ṽ (x) = const. (5.11)

To write the solution we take the derivative of Equation (5.11) and arrive at the electrostatic
equilibrium condition

−
∫ a

−a

ρ̃(y) dy

y − x
+ Ṽ ′(x) = 0. (5.12)

Then we denote the Hilbert transform of ρ̃(x) by

G(z) := −i
∫ a

−a

ρ̃(y)

y − z
dy,

which can be defined on any complex number z ∈ C. In the sequel, we will have z denoting a
complex number and x being a real number. Note that G(z) is analytic on C \ [−a, a] with limit
values given by

G±(x) = lim
ε→0

1

i

∫
ρ̃(y) dy

y − (x± iε)
= lim

ε→0

1

i

∫
y − x± iε

(y − x)2 + ε
ρ̃(y) dy

= −ip. v.

∫
ρ̃(y) dy

y − x
± πρ̃(x),

where we have used
ε

π(x2 + ε2)
→ δ(x). Thus we arrive at

G±(x) = ±πρ̃(x) + iṼ ′(x),

so on the support of ρ̃(x) we have

G+(x) +G−(x) = 2iṼ ′(x), x ∈ [−a, a], (5.13)

and outside of [−a, a] the following conditions appear

G+(x)−G−(x) = 0, x /∈ [−a, a], (5.14a)

G(z)→ 0, as z →∞. (5.14b)

Now we have a Riemann–Hilbert problem for G(z), but the condition (5.13) is in a non-standard
form with the sum instead of a difference. We need to redefine G in such a way as to obtain a
standard problem that can be solved by the Plemelj formula [Dei99]:

G̃(z) :=
G(z)√
z2 − a2

.

Then we get

G̃+(x)− G̃−(x) =
G+(x)(√
x2 − a2

)
+

− G−(x)(√
x2 − a2

)
−

=
G+(x) +G−(x)(√

x2 − a2
)

+

=
2iṼ ′(x)(√
x2 − a2

)
+

,
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where the branch of the square root changes the sign crossing the real line(√
x2 − a2

)
+

= −
(√

x2 − a2
)
−
, x ∈ [−a, a].

The conditions (5.14) are preserved for G̃:

G̃+(x)− G̃−(x) = 0, x /∈ [−a, a],

G̃(z)→ 0 as z →∞.

Then G̃(z) is a solution of the standard Riemann–Hilbert problem and is given by the Plemelj
formula

G̃(z) =
1

2πi

∫ a

−a

2iṼ ′(s) ds(√
s2 − a2

)
+

(s− z)
,

G(z) =

√
z2 − a2

π

∫ a

−a

Ṽ ′(s) ds(√
s2 − a2

)
+

(s− z)
.

To find the support of ρ̃, we need to consider the asymptotics of G(z) as z → ∞. We expand
the above expression into series:

G(z) =
z + · · ·
π

(
−1

z

)∫ a

−a

Ṽ ′(s)(√
s2 − a2

)
+

(
1 +

s

z
+ · · ·

)
ds. (5.15)

Consider the first term in the series. For G(z)→ 0 as z →∞ we need to have∫ a

−a

Ṽ ′(s)(√
s2 − a2

)
+

ds = 0,

which is automatically satisfied since Ṽ (x) is an even function and Ṽ ′(s) is an odd function. At
the same time

G(z) = −i
∫
ρ̃(y) dy

y − z
' i

z

∫
ρ̃(y) dy +O

(
1

z2

)
,

and comparing it to the second term in the series (5.15) we arrive at

− 1

π

∫ a

−a

Ṽ ′(s)s(√
s2 − a2

)
+
z

ds =
i

z
. (5.16)

Taking the derivative of the potential Ṽ (x) and substituting it into Equation (5.16), we get

1

2

∫ a

−a

s√
s2 − a2

· −1

π
ln

∣∣∣∣s+ (c+ 1)/2

s− (c+ 1)/2

∣∣∣∣ ds = i. (5.17)
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By taking a derivative, we can check that∫
s√

s2 − a2
ln

∣∣∣∣s+ (c+ 1)/2

s− (c+ 1)/2

∣∣∣∣ ds

=
1

2

((
2
√
s2 − a2 −

√
(c+ 1)2 − 4a2

)
log(c+ 1− 2s)

+
(√

(c+ 1)2 − 4a2 − 2
√
s2 − a2

)
log(c+ 1 + 2s)

−
√

(c+ 1)2 − 4a2 log
(√

(c+ 1)2 − 4a2
√
s2 − a2 − 2a2 − (c+ 1)s

)
+
√

(c+ 1)2 − 4a2 log
(√

(c+ 1)2 − 4a2
√
s2 − a2 − 2a2 + (c+ 1)s

)
−2(c+ 1) log

(√
s2 − a2 + s

))
+ const.

Substituting the integration limits we obtain the equation

c+ 1

2

1−

√
1−

(
2a

c+ 1

)2
 = 1, (5.18)

which can be solved for c ≥ 1, and we obtain

a =
√
c. (5.19)

We see that indeed a < c+1
2 for c > 1 and the solution ρ̃ of the variational problem (5.9) is given

by the formula

ρ̃(x) =
1

π
Re[G+(x)] =

1

π2
Re

√x2 − c
∫ √c
−
√
c

1
2

(
ln
(
c+1

2 + s
)
− ln

(
c+1

2 − s
))(√

s2 − c
)

+
(s− x)

ds

 .
To compute the integral, we combine the logarithms the same way as we did in Equation (5.17):

1

π2

∫ √c
−
√
c

(
ln
(
c+1

2 + s
)
− ln

(
c+1

2 − s
))

√
c− s2(s− x)

ds =
1

π

∫ √c
−
√
c

1√
c− s2(s− x)

· 1

π
ln

∣∣∣∣∣s− c+1
2

s+ c+1
2

∣∣∣∣∣ ds.

Notice that the function
1

π
ln

∣∣∣∣s− (c+ 1)/2

s+ (c+ 1)/2

∣∣∣∣
is the Hilbert transform of the indicator function 1[−(c+1)/2,(c+1)/2]. By using the following well-
known relation (see, for example, [Gia10])∫ ∞

−∞
f(s)g̃(s) ds = −

∫ ∞
−∞

f̃(s)g(s) ds,

where f̃ is a Hilbert transform of f and f ∈ Lp(R), g ∈ Lq(R) with 1
p + 1

q = 1, and taking

g = 1[−(c+1)/2,(c+1)/2], we obtain

1

π

∫ ∞
−∞

f(s) ln

∣∣∣∣s− (c+ 1)/2

s+ (c+ 1)/2

∣∣∣∣ ds = −
∫ (c+1)/2

−(c+1)/2
f̃(s) ds.
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Thus, we need to compute the Hilbert transform for the function

f(y) =


1

π

1√
y2 − c(y − x)

if y ∈ [−
√
c,
√
c],

0 otherwise.

and then integrate it from −(c+ 1)/2 to (c+ 1)/2. In order to compute the integral in the Hilbert

transform f̃ , we take the change of variables

y =
√
c
c− t2

c+ t2
,

dy√
c− y2

= −2
√
c dt

c+ t2
, (5.20)

and hence, we obtain

f̃(z) =
1

π2

∫ √c
−
√
c

ds√
c− s2(s− x)(s− z)

=
1

π

(
1√
z2 − c

− 1√
x2 − c

)
x− z

.

At last, we compute the integral

ρ̃(x) =
1

π
Re

[√
c− x2

∫ (c+1)/2

−(c+1)/2

1

2

(
1

(x− z)
√
z2 − c

− 1

(x− z)
√
x2 − c

)
dz

]
.

Here again we can use the substitution (5.20) or find the indefinite integral in a reference table of
integrals such as [GR15] and obtain

ρ̃(x) = − 1

2π

[
Im
(

log
(√

(c− 1)2
√
x2 − c− (c+ 1)x+ 2c

)
+ log

(√
(c− 1)2

√
x2 − c+ (c+ 1)x+ 2c

))
− π

]
.

(5.21)

This answer (5.21) is easily rewritten in terms of the inverse trigonometric functions for c ≥ 1 and
|x| ≤

√
c as

ρ̃(x) =
1

2π

[
arctan

(
−(c+ 1)x+ 2c

(c− 1)
√
c− x2

)
+ arctan

(
(c+ 1)x+ 2c

(c− 1)
√
c− x2

)]
. (5.22)

The typical graph of the function ρ̃(x) for c > 1 is presented in Figure 4. The limit shape of
the diagram is then obtained using the formula (5.7). An example for c = 9 and a diagram with
n = 10, k = 90 is presented in Figure 5.

For c < 1 it is no longer possible to find the minimizer such that ρ̃(x) < 1 for all x. The

potential Ṽ (x) becomes weaker as c tends to 1, and when c = 1 we have a “phase transition.” In
this case the particles are not confined strictly inside the interval [−1, 1] anymore, and instead we
have a constant density ρ̃(x) ≡ 1/2 on the whole interval. We have an obvious restriction ρ(x) ≤ 1,
therefore for c < 1 it is reasonable to expect

ρ̃(x) = 1− ρ1(x),

where supp ρ1 ⊂
[
− c+1

2 , c+1
2

]
. Note that ρ̃(x) ≡ 1

2 is a constant solution to Equation (5.12) for
a = 1. Then∫ (c+1)/2

−(c+1)/2

ρ̃(y) dy

x− y
=

∫ (c+1)/2

−(c+1)/2

(1− ρ1(y)) dy

x− y
= −2Ṽ ′(x) +

∫ (c+1)/2

−(c+1)/2

ρ1(y) dy

x− y
= −Ṽ ′(x),
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Figure 4. The function ρ̃(x) for c = 1 (blue), c = 3
2 (orange), c = 3 (green) and

c = 9 (red).
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Figure 5. The most probable (GLn, GLk) diagram for n = 10, k = 90 and the limit
shape for c = 9.

and the function ρ1(x) should also be a solution of (5.12), but with a different normalization
condition ∫ (c+1)/2

−(c+1)/2
ρ1(x) dx = −

∫ (c+1)/2

−(c+1)/2
ρ̃(x) dx +

∫ (c+1)/2

−(c+1)/2
1 dx = c.
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Figure 6. One of the most probable (GLn, GLk) diagrams for n = 20, k = 10 and
the limit shape for c = 0.5 on the left and one of the most probable diagrams for
n = 10, k = 20 and the limit shape for c = 2 on the right.

The integral representation of ρ1(x) is obtained in the same way as for the case c > 1, but Equa-
tion (5.18) becomes

c+ 1

2

1−

√
1−

(
2a

c+ 1

)2
 = c,

and we again get a =
√
c. The function ρ1 is derived in exactly the same way as in the case c > 1

and the final formula is

ρ̃(x) = 1− 1

2π

[
arctan

(
−(c+ 1)x+ 2c

(1− c)
√
c− x2

)
+ arctan

(
(c+ 1)x+ 2c

(1− c)
√
c− x2

)]
, (5.23)

which leads to the formula (5.2). This formula can be also obtained by interchanging n and k for
GLn ×GLk case.3 �

The most probable diagram for n = 20, k = 10 and the corresponding limit shape for c = 0.5 as
well as the most probable diagram for n = 10, k = 20 and the limit shape for c = 2 are presented
in Figure 6.

Proof of Theorem 5.1 for GLn ×GLk. The proof of the convergence to the limit shape is com-
pletely analogous to the proof for SO2n+1 presented in [NNP20].

The proof proceeds as follows. First the functional J is written in terms of the upper boundary
fn as J [fn] = Q[fn] + C, where Q is quadratic in the derivative f ′n:

J [fn] = Q[fn] + C, Q[fn] =
1

2

∫ (c+1)/2

0

∫ (c+1)/2

0
f ′n(x)f ′n(y) ln|x− y|−1 dx dy.

Since our definition of Q is similar to a definition in the book [Rom15], we can use [Rom15,
Prop. 1.15] and see that Q is positive-definite on compactly-supported Lipschitz functions. Then

3This does not hold for the SO and Sp cases we consider in the sequel.
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for a compactly supported Lipschitz function f : R→ [0,∞), the quadratic part Q of the functional
J is used to introduce a norm

‖f‖Q := Q[f ]1/2.

Consider a space of 1-Lipschitz functions f1 and f2 such that the derivative f ′1,2(x) = sgn x for

|x| > c+1
2 . Then the difference f1 − f2 is a compactly supported Lipschitz function and we can use

its norm to introduce a metric

dQ(f1, f2) := ‖f1 − f2‖Q. (5.24)

We can use [Rom15, Lemma 1.21] to obtain an estimate on the supremum norm for a Lipschitz
function f with a compact support:

‖f‖∞ = sup
x
|f(x)| ≤ C1Q[f ]1/4, (5.25)

where C1 is some constant.
Then we estimate the probability of the diagram that differs from the limit shape by ε. For a

highest weight λ with the boundary of rotated Young diagram given by a function fn(x) such that
d(fn, f) = ε, the probability is bounded by

µn,k(λ) ≤ C2e
−n2ε2+O(n lnn).

After that we need only to estimate total number of diagrams in the n × k box as at most C̃ecn

in order to have the convergence in probability in the metric dQ to the limiting shape given by the
formula (5.3). This estimate is easily obtained from the Hardy–Ramanujan formula, since total
number of boxes in the diagram is not greater than cn2. That is, for all ε > 0 we have

P (‖fn − f‖Q > ε) −−−→
n→∞

0, (5.26)

since the probability of each highest weight λ with a rotated Young diagram with boundary fn
such that ‖fn − f‖Q > ε is bounded by e−n

2ε2+O(n lnn).
At last we apply the relation (5.25) to complete the proof of the theorem. �

5.2. Limit shape for (SO2l+1,Pin2k) skew Howe duality. Now we will assume that n = 2l+1 is
odd. Then, as was discussed in Section 2, it has a multiplicity-free decomposition into the direct sum
of SO2l+1×Pin2k irreducible representations that are parametrized by generalized Young diagrams
given in Section 4.2. Regarding this decomposition as a SO2l+1 representation, we obtain the
formula for the multiplicities of the irreducible representations in the tensor power decomposition
of the exterior algebra of the defining representation

∧
V (Λ1):(∧

V (Λ1)
)⊗k

=
⊕
λ

M̃k(λ)V (λ).

Since
∧
V (Λ1) ∼= V (Λl)

⊗2 ⊗
∧
V (0), it is equivalent to compute the multiplicity of V (λ) in the

tensor power decomposition

V (Λl)
⊗2k =

⊕
λ

M2k(λ)V (λ)

since the multiplicities are related by M2k(λ) = 2−kM̃k(λ). Thus we recover the multiplicity
formula obtained in [KLP12c]:

M2k(λ) =

l∏
m=1

(2k + 2m− 2)!

22m−2
(

2k+am+2l−1
2

)
!
(

2k−am+2l−1
2

)
!
×

l∏
s=1

as ×
∏
i<j

(
a2
i − a2

j

)
,
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0 10 20a1a2a3a4a5

Figure 7. Rotated generalized Young diagram for SO2l+1 and the geometrical
meaning of the coordinates {ai}li=1.

where the coordinates {ai} we are related to the values λ =
∑n

i=1 `iΛi by the formula

ai = 2

l−1∑
j=i

`j + `l + 2(l − i) + 1 = 2(λi + l − i) + 1 (5.27)

and correspond to the rotated Young diagram, as demonstrated in Figure 7. We will use the
coordinates (5.27) for the remainder of this section.

The limit shape for this case was completely derived and presented with all the proofs in [NNP20].
Here we will present the limit shape in a special normalization so that the connection between limit
shapes for the diagrams of SO2l+1 and GLn becomes apparent.

Using the Weyl dimension formula, the probability measure is written as

µn,k(λ) =
2−l

2+2l−lkl!

(2l)!(2l − 2)! . . . 2!
×

l∏
m=1

(2k + 2m− 2)!

22m−2
(

2k+am+2l−1
2

)
!
(

2k−am+2l−1
2

)
!
×

l∏
s=1

a2
s ×

∏
i<j

(
a2
i − a2

j

)2
.

(5.28)
Now, we consider the limit n, k → ∞ such that lim 2k

n = c. Here the notation is different from
what was used in the paper [NNP20]. The coordinates {ai} are taking integer values in the domain
[0, n(c+ 1)].

To bring the expression (5.28) to the form (5.4), we denote by a2l+1−i, i > 0, i < l the “mirror
image” of ai:

a2l+1−i ≡ −ai. (5.29)

These points correspond to a continued diagram, as illustrated in Figure 8. Then we use Stirling
formula to rewrite the measure (5.28) in the form:

µn,k({ai}2li=1) =
1

Zl

2l∏
i 6=j
i,j=1

|ai − aj | ·
2l∏
s=1

exp
[
−(4l)V

(as
4l

)
− el (as)

]
,
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−2 −1 0 1 2

1

2

x1x−1 x2x−2 x3x−3 x4x−4 x5x−5

Figure 8. Rotated and scaled diagram for SO2l+1 with l = 5 and its continuation
to negative values of coordinate x. The function fl(x) is shown in solid black, the
points xi = ai

2l are the midpoints of intervals, where f ′l (x) = −1.

where

V (u) =
1

4

[(
c+ 1

2
+ u

)
ln

(
c+ 1

2
+ u

)
+

(
c+ 1

2
− u
)

ln

(
c+ 1

2
− u
)]

, (5.30)

el(u) =
1

4
ln
((

(c+ 2)l
)2 − u2

)
+

1

2
ln|u|+O

(
1

l

)
, (5.31)

and Zl does not depend on al and the additional conditions (5.29) are satisfied.

Introducing the coordinates
{
xi = ai

4l

}2l

i=1
, we arrive at the same variational problem (5.9). Yet

now we are interested only in values of ρ̃(x) for x > 0. The solution is given by the formula (5.22)
for c > 1 and by the formula (5.23) for c < 1. This coincidence of density ρ with GLn case leads
to a peculiar effect for the limit shapes of Young diagrams: for large n, k typical Young diagram of
SO2l+1 looks as a part of a typical diagram for GLn. This is demonstrated in Figure 9.

5.3. Limit shape for (Sp2l, Sp2k) skew Howe duality. This case is very similar to the SO2l+1

case. We can consider the exterior algebra
∧(

C2l ⊗ Ck
)

as the k-th tensor power of the exterior

algebra of the defining representation V =
∧
V (Λ1) since dimV = 22l. The multiplicity of V (λ) in

the decomposition of V ⊗k can be written as a product formula

Mk(λ) = 2l
l∏

i=1

(2k − 1 + 2i)!

(k + l + ai)!(k + l − ai)!
×

l∏
s=1

as ×
∏
i<j

(a2
i − a2

j ),

where we use the coordinates

ai = λi + l − i+ 1.

Using the Weyl dimension formula, we can write the probability measure as

µn,k({ai}) =
22l(1−k)∏

i<j(j − i)(2l + 2− i− j)

l∏
i=1

(2k − 1 + 2i)!

(k + l + ai)!(k + l − ai)!

l∏
s=1

a2
s

∏
i<j

(a2
i − a2

j )
2. (5.32)
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Figure 9. One of the most prob-
able Young diagrams for GL40

and k = 101 (white background).
We superimposed one of the most
probable diagrams for SO41 and
tensor power 50 (shaded blue
background).

Figure 10. One of the most
probable Young diagrams for
GL40 and k = 100 (white back-
ground). We superimposed one
of the most probable diagrams for
Sp40 and tensor power 50 (shaded
blue background).

We are again interested in the limit n, k → ∞ such that lim 2k
n = lim 2k

2l = c. To bring the
expression (5.32) to the form (5.4) we again denote by a2l−i ≡ −ai (i > 0 or i < l) the “mirror
image” of ai. Then we use Stirling formula to rewrite the measure (5.32) in the form:

µn,k({ai}2li=1) =
1

Zl

2l∏
i 6=j
i,j=1

|ai − aj | ×
2l∏
s=1

exp
[
−(2l)V

(as
2l

)
− el(as)

]
,

where V (u) is the same as in Equation (5.30), but the expressions for the correction term el(u) and
the normalization constant Zl are different.

Introducing the coordinates
{
xi = ai

2l

}2l

i=1
, we arrive at the same variational problem (5.9), and

thus we obtain the same limit shape as in the SO2l+1-case. This limit shape again coincides with
a half of non-linear part of limit shape for GL case. We illustrate this coincidence with a diagram
for Spn with n = 20, k = 50 and GLn-diagram for n = 40, k = 50, presented in Figure 10. Since
both cases correspond to c = 5 and n is large enough, we see a good but not a perfect coincidence
of the shapes of the most probable diagrams.

5.4. Limit shape for (O2l, SO2k) skew Howe duality. As before, consider the exterior algebra∧(
C2l ⊗ Ck

)
. Then this space can be seen as

(∧
C2l
)⊗k

, the k-th tensor power of the exterior
algebra of the first fundamental representation of O2l. On the other hand it can be seen as the

2k-th tensor power of the sum of the last two fundamental representations
(
V (Λl−1) ⊕ V (Λl)

)⊗2k

for SO2l (recall that as an O2l-representation, it is irreducible).
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The tensor product decomposition coefficient is obtained in Theorem 4.14. Similarly to all
previous cases, the coordinates

ai = 2λi + 2(l − i)
correspond to a rotated Young diagram. The probability measure is given by the formula

µn,k({ai}) =

2−4lk−2l(l−1)
l∏

i=1

(2k + 2l − 2i)!
∏

1≤i<j≤l
(a2
i − a2

j )
2

∏
i<j

(j − i)(2l − i− j)
l∏

i=1

(
2k + 2l − 2− ai

2

)
!

(
2k + 2l − 2 + ai

2

)
!

(5.33)

by applying the Weyl dimension formula. Similarly to SO2l+1 case we consider the limit n, k →∞
such that lim 2k

n = lim 2k
2l = c. Again we bring the expression (5.33) to the form (5.4) denoting by

a2l−i ≡ −ai (i > 0 or i < l) the “mirror image” of ai. The only difference here is that there are no
columns of the half-width. Using the Stirling formula to rewrite the measure (5.33) in the form

µn,k({ai}2li=1) =
1

Zl

2l∏
i 6=j
i,j=1

|ai − aj | ×
2l∏
s=1

exp
[
−(4l)V

(as
4l

)
− el(as)

]
,

we again obtain V (u) as in Equation (5.30), but the expression for the correction term el(u) and
the normalization constant Zl is different from the SO2l+1 case. We do not write these expressions
here since the limit shape does not depend upon them.

Introducing the coordinates
{
xi = ai

4l

}2l

i=1
, we again arrive at the same variational problem (5.9).

Thus we obtain the same limit shape as in the SO2l+1-case.

5.5. Limit shapes and the insertion algorithms. All skew Howe dualities considered above
can be seen as tensor power decompositions. The tensor product decompositions we consider here
can all be represented by an insertion algorithm for the corresponding generalized Young diagrams:

GLn: Schensted insertion (or dual RSK) [Sch61, Knu70],
Sp2l: Berele insertion [Ber86, Ter93],

SO2l+1: Benkart–Stroomer insertion [BS91],
SO2l: Okada insertion [Oka93].

Hence, by pushing forward the uniform distribution on matrices, these insertion algorithms give
the same probability measure as (5.1) on partitions. Therefore, our results provide the limit shape
for these insertion schemes and gives an algorithm to efficiently sample the random diagrams with
respect to this measure.

Let us discuss the (GLk, GLn) case in more detail, where the sampling algorithm proceeds as
follows. First, we generate a uniform random n× k matrix M with matrix elements taking values
0 and 1 with the probability 1

2 . This matrix M encodes the random basis element of
∧(

Cn ⊗ Ck
)

eM :=
∧

(i,j):Mij=1

(ei ⊗ ej),

where we go through the pairs (i, j) is some fixed order, such as lexicographic order (the sign
does not matter). Similarly, we consider a sequence of the pairs (i, j) such that Mij = 1 ordered
lexicographically, which is called a generalized permutation or a biword by Stanley [Sta99]. We then
apply Schensted insertion using the second value j in each pair, where an equal element is bumped
downwards in a row the insertion tableau P or added to the end [Knu70]. The new box added to P
has the first value i added to the corresponding position in the recording tableau Q. The shapes of
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P and Q are the same and Q and the transposed insertion tableau P ′ are semistandard. Then the
shape of Q is conjugate to the shape of P ′, and tableaux P ′ and Q encode the basis elements of the
decomposition (2.1), as demonstrated in [Knu70]. The shape of the tableau P ′ is sampled from the
distribution (5.1a). In Figure 11, we present a diagram, sampled by the dual RSK algorithm for
n = 50, k = 150, as well as the corresponding limit shape for c = 3 = k/n. The limit shape (5.2)
can be used to deduce the asymptotics of first row length of the random diagram as we obtain
λ1 ≈

√
kn+ k−n

2 as n, k →∞ from (5.19).
For the other series, we have analogous sampling algorithms by using the corresponding insertion

algorithm. We also present a diagram in Figure 11 sampled using Benkart–Stroomer insertion for
SO51 and 2k = 150 from the distribution (5.1b) since 2k/(2l + 1) ≈ 3 = c. We also obtain the

asymptotic of first row length as λ1 ≈
√

2kl as l, k →∞, 2k/l→ const from Theorem 5.1.

0 1 2 3 4

0

1

2

3

4

Figure 11. Blue: Random Young diagram sampled using dual RSK algorithm for
GL50 and k = 150 with the limit shape for c = 3. Shaded: Random Young diagram
sampled using the Benkart–Stroomer insertion algorithm for SO51 and 2k = 150.

5.6. Analytic continuation and orthogonal polynomial ensembles. We will discuss the re-
lation between our measures and limit shapes with other results in the literature. We begin with
the (GLn, GLk) skew Howe duality, discussing its relation with [PR07, PŚ18] and the Krawtchouk
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ensemble. We then briefly survey papers of Borodin, Johansson, Okounkov, and Olshanski to con-
nect it with the Meixner ensemble through the “analytic continuation” of the parameters n, k, the
z-measure. There is another related measure that we discuss called the zw-measure, which comes
from harmonic analysis of the infinite unitary group U∞ :=

⋃
m≥1 Um. We then sketch a possible

unification of these as a manifestation of the super Howe duality for (GLk, gl(m|n)) [How89]. We
conclude with showing that other skew Howe dual pairs from our paper are specializations of the
type BC z-measure introduced by Cuenca [Cue18a]. We discuss the relationship with orthogonal
polynomials and possible related super Howe dualities.

5.6.1. Type A. The decomposition of the exterior power∧m (
Cn ⊗ Ck

)
=
⊕
|λ|=m

VGLn(λ)⊗ VGLk(λ′) (5.34)

was considered by P. Sniady and G. Panova [PŚ18]. They proved the equality

dimVGLn(λ) dimVGLk(λ′)

dim
∧m (Cn ⊗ Ck)

=
fλfλ

fkn
, (5.35)

recalling fν is the dimension of the irreducible representation of the permutation group S|ν| (which
equals the number of standard Young tableaux of shape ν) and kn denotes a rectangular Young

diagram with n rows and k columns. In [PŚ18, Thm. 1.4], it was shown the random irreducible
component of (5.34) corresponds to a pair of Young diagrams (λ, λ′), where λ has the same dis-
tribution as the Young diagram formed by taking the boxes with its entry < m of a uniformly
random Young tableau of rectangular shape kn. Thus, the limit shape for Young diagrams with
the probability measure

µ
〈m〉
n,k (λ) =

dimVGLn(λ) · dimVGLk(λ
′
)(

nk
m

)
in the limit n, k,m → ∞, k

n → const, mnk → const is the same as the level lines of the limit shape
for plane partitions presented in [PR07].

Since ∧(
Cn ⊗ Ck

)
=

nk⊕
m=0

∧m (
Cn ⊗ Ck

)
,

the measure µn,k(λ) can be written as

µn,k(λ) =

nk∑
p=0

µ
〈m〉
n,k (λ)

(
nk
m

)
2nk

, (5.36)

for the finite values of n, k,m. In the limit n, k → ∞, the binomial distribution concentrates on

the point m = nk
2 . Therefore, the limit shape (5.3) coincides with the limit shape for µ

〈nk
2
〉

n,k (λ) that

was obtained in [PŚ18] and is the same as the corresponding level line of the plane partitions in
the box from the paper [PR07].

In the paper [BO07], it was demonstrated that the “binomialization” of the measure µ
〈m〉
n,k (λ)

given by (5.36) is the Krawtchouk ensemble and its limit shape was related to the m = nk
2 level

line of plane partitions in the box. In particular, compare the following:

• Equation (5.4) recalling W (ai) =
(
k+n−1
ai

)
with [BO07, Eq. (5.2)] (or [Joh02, Eq. (2.4)]) at

p = 1/2;
• Equation (5.35) with the probability measure denoted Mn,N,M in [BO07, Sec. 5]; and
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• Equation (5.36) with [BO07, Eq. (5.1)].

The relation of the Krawtchouk ensemble to the skew (GLn, GLk)-duality does not seemed to have

been noticed in [BO07, PŚ18]. However, it does appear indirectly in [Joh01, Prop. 5.1] through the
use of dual RSK and the result [BR01, Thm. 7.1]. From the Krawtchouk ensemble perspective, we
obtain Equation (5.35) from [BO06, Prop. 4.3].

We describe the appearance of the skew Howe duality in [Joh02] and connect the lozenge tilings
with domino tilings of Aztec diamonds. We note that the function denoted w[h] in the proof
of [Joh02, Thm. 2.2], where using our notation h = (an, . . . , a2, a1) and depends on a parameter ω,
can be described in terms of lozenge tilings as

w[h] = (1 + ω2)(
n
2) ×

∏
i<j

(ai − aj)×
n∏
i=1

ωλi

(i− 1)!
=
∑
L

(1 + ω2)#Bω#R, (5.37)

where we sum over all half hexagon lozenge tilings L giving V (λ) and #X denotes the number of
tiles X in L. We note that these formulas agree from the Weyl dimension formula (5.6) and the
fact that the number of B tiles and R tiles is fixed for any given λ. Similarly, the formula for w[h′]

is the same sum over the tilings for V (λ
′
). Therefore, we have [Joh02, Eq. (2.11)] at ω = 1 is our

probability measure µn,k(λ).
We can then think of the factor 1+ω2 as choosing between a pair of horizontal or vertical domino

tiles in the Aztec diamond, and therefore there exists a 2(n2)-to-1 mapping of Aztec diamond tilings
to lozenge tilings for V (λ). As a consequence, we have that there are

2(n2)2(k2)2nk = 2n(n−1)/2+k(k−1)/2+nk = 2(n+k)(n+k−1)/2 = 2(n+k2 )

tilings of the Aztec diamond of order n+ k− 1, first shown in [EKLP92].4 However, we are unable
to find such the explicit mapping to give a combinatorial proof of Equation (5.37).

We bring in another character into our ensemble cast, the z-measure, that comes from harmonic
analysis on the infinite symmetric group [KOV93]. To do so, we begin by looking at the Schur
measure [Oko00, Oko01], which is the measure on partitions λ from the Cauchy identity (1.1)
renormalized so the sum is 1. By specializing xi = 1 and yj = ξ, we obtain a ξ-deformed version of
the measure µ�∞n,k (λ) from the introduction

µ�∞n,k;ξ(λ) = (1− ξ)nkξ|λ| dimVGLn(λ) dimVGLk(λ). (5.38)

Note this does not make sense when ξ = 1 as the sum from the Cauchy identity would be infinite. By
using the hook-content formula [Sta71, Thm. 15.3] for dimVGLn(λ) and dimVGLk(λ) and replacing
n, k ∈ Z>0 with z, z′ ∈ C, we have the z-measure [Oko01, Eq. (2.4)] (cf. [BO06, Eq. (1.3)]). The
connection with the Meixner ensemble was given in [BO06, Joh01]5 (see also [BO05b, Ex. 1.5] for
an explicit statement) and by taking z = n and z′ = −k, we obtain the Krawtchouk ensemble with
ω = ξ/(ξ − 1) with ξ < 0 [BO06, Prop. 4.1].

We can also describe a relation to the zw-measure, which now comes from the “big” group
U∞ [BO05a, BO05c]. An alternative way of describing skew Howe duality is we have a natural left
action of Un×Uk acting on n× k matrices by (a, b) ·M = aMb−1. For any representation V of Un,
we can construct a probability measure PV by

χ̃(V ) =
∑
λ

χ̃(Vλ)PV (λ),

4The bijection between NILPs consisting of large Schröder paths and Aztec diamond tilings given by the DR paths
in [Joh02] was rediscovered in [BK05, ETS05].
5The Meixner ensemble, Howe duality, and a last passage percolation model have been linked in [Joh10, MS20, RS05].
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where χ̃ denotes the normalized irreducible character. Therefore, our measure µn,k is this probabil-
ity measure for the action given above. In the case k = n, skew Howe duality becomes the biregular
representation, and additionally we can describe Un as the symmetric space (Un × Un)/Un, where
we use the diagonal embedding ∆(Un). When taking the limit as n → ∞, we need to take a
slightly bigger space that still carries the U∞ × U∞ action. These give a family of representations
parameterized by two complex parameters z, w (with some restrictions), which give probabilities
that when restricting down to finite n are the zw-measures and have explicit formulas [BO05a].

Finally, we note that we can take the actions of Un on the left and the right to be different,
which means are irreducible representations are actually indexed by a pair of partitions. We can
induct a gln ⊕ glm representation, which we equate to a Un × Um (polynomial) representation,
to a representation of the Lie superalgebra gl(m|n), where we obtain what is known as a Kac
module, and the irreducible representations can be indexed by a pair of partitions with one being
the positive part and the other being the negative part. There is a super analog of Howe duality
for (GLk, gl(m|n)) [How89, Ser01, CW01] (see also, e.g., [CW12, Ch. 5.2]) on the supersymmetric

algebra of Ck ⊗ Cm|n, denoted S(Ck ⊗ Cm|n) (see, e.g., [CW12, Sec. 5.1.1] for a precise definition)
giving a super Cauchy identity that “interpolates” between the usual Cauchy identity and the dual
Cauchy identity: ∑

λ

sλ(x)sλ(y/w) =
∏
i,j

1 + wiyj
1− xiyj

,

where sλ(y/w) denotes the hook Schur or Schur supersymmetric function and are the characters
for gl(m|n) modules [Kac77] (see also [Mac15, Sec. I.5], where they can be defined in terms of
plethystic substitution). In [BO05a], they actually use a bigger space U that has a U∞×U∞ action
to describe the extreme characters. This suggests that U corresponds to a Kac representation or
the corresponding irreducible representation for gl(∞|∞) as a limit of the Kac representations for

gl(n|n) or the limit of S(Ck ⊗ Cm|n) when k, n,m→∞.

5.6.2. Types BCD. By instead considering the infinite orthogonal and symplectic groups and limits
of symmetric spaces [OO06], we arrive at the type BC z-measure [BO05b, OO12], which is defined
on partitions with `(λ) ≤ l by

µBCz,z′,α,β(λ) =

∏
1≤i<j≤l

(
(bi + ϑ)2 − (bj + ϑ)2

)2

Zl(z, z′, α, β)

l∏
i=1

Wz,z′,α,β;l(bi),

Wz,z′,α,β;l(x) =

(x+ ϑ)
Γ(x+ 2ϑ)Γ(x+ α+ 1)

Γ(x+ β + 1)Γ(x+ 1)

Γ(z − x+ l)Γ(z′ − x+ l)Γ(z + x+ l + 2ϑ)Γ(z′ + x+ l + 2ϑ)
,

Zl(z, z
′, α, β) =

l∏
i=1

Γ(z + z′ + β + i)Γ(α+ i)Γ(i)

Γ(z + i)Γ(z + β + i)Γ(z′ + β + i)Γ(z + z′ + l + α+ β + i)
,

where bi := λi + l − i and ϑ = α+β+1
2 . Note that Zl(z, z

′, α, β) is the normalization constant.
In [Cue18a, Cue18b], Cuenca constructed an explicit kernel for the corresponding point process
and showed a relation to the one for the zw-measure. Furthermore, as described in [Cue18a],
there are special values of the pairs (α, β) (there denoted (a, b)) that correspond to the limits of
symmetric spaces first examined in [OO06], where the BC z-measure describes an approximation of
the spectral measure from a generalization of the biregular representation at finite values. As given
in [BO05a, Sec. 8], the BC z-measure can be constructed from multivariate Jacobi polynomials,
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(α, β) (1/2, 1/2) (1/2,−1/2) (−1/2,−1/2) (0, 0)

G/K (Sp2l × Sp2l)/Sp2l (O2l+1 ×O2l+1)/O2l+1 (O2l ×O2l)/O2l U2n/(Un × Un)

(G1, G2) (Sp2l, Sp2k) (SO2l+1,Pin2k) (O2l, SO2k) “(O2l+1, SO2k+1)”

Table 2. The values of the parameters (α, β), the corresponding limit of symmetric
spaces G/K, and the corresponding skew Howe dual pair (G1, G2).

which are BCD analogs of Jack polynomials and are characters for the type BCD irreducible
representations when suitably normalized [OO98, Thm. 1.2]. This can also be considered as a
type BC Weyl group, the group of signed permutations, analog of z-measure from the Plancharel
measure.

Our goal is to show that our measure µn,k is equal to a specialization of µBCz,z′,α,β. Comparing

µBCz,z′,α,β with our measures, we should set ai = bi + ϑ, and hence we need to have α+ β = −1, 0, 1

(so ϑ = 0, 1
2 , 1, respectively) to make our coordinates to agree. This and the symmetric space

description suggests we should take (α, β) = (±1/2,±1/2), and these indeed yield our desired
specializations. For the case of α = β = 0, we will need an “odd” measure that would correspond
to the skew Howe duality for (O2l+1, SO2k+1) (or (SO2l,Pin2k+1)) if it existed:

µn,k(λ) = Z · dimVO2l+1
(λ) · dimVSO2k+1

(λ
′
) = Z · dimVSO2l+1

(λ) ·MD
1 (λ+ Λn)

= Z̃

l∏
i=1

ai ×
∏

1≤i<j≤l
(a2
i − a2

j )
2

l∏
i=1

(k + l − ai − 1/2)!(k + l + ai − 1/2)!

for some normalization constant Z and

Z̃ = Z

l∏
i=1

(2k + 2n− 2i+ 1)!

l∏
i=1

(l − i+ 1/2)i!×
∏

1≤i<j≤l
(2l + 1− i− j)

.

Theorem 5.3. Let k be an even positive integer. For (α, β) and the corresponding group given by
Table 2, we have

µn,k(λ) = (−1)
∑l
i=1 aiCn,k · µBCz,z′,α,β(λ).

and Cn,k is a constant that does not depend on λ.

Proof. We first recall some basic facts about the Gamma function Γ(z), where z ∈ C \ Z≤0. In
particular, it satisfies

Γ(1) = 1, Γ(z + 1) = zΓ(z), Γ(1− z)Γ(z) =
π

sin(πz)
,

where the last identity (Euler’s reflection formula) holds if and only if z /∈ Z. Note that for any
positive integer m, we have Γ(m) = (m− 1)!.
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As previously mentioned, we let

ai = bi + ϑ = λi + (n− i) +
α+ β + 1

2
.

Therefore, we have

µBCz,z′,α,β(λ) =

∏
1≤i<j≤l

(
(ai)

2 − (aj)
2
)2

Zn(z, z′, α, β)

l∏
i=1

Wz,z′,α,β;l(bi),

Wz,z′, 1
2
, 1
2

;l(bi) =

ai
Γ(ai + 1)Γ(ai + 1/2)

Γ(ai + 1/2)Γ(ai)

Γ(z − ai + l + 1)Γ(z′ − ai + l + 1)Γ(z + ai + l + 1)Γ(z′ + ai + l + 1)

=
a2
i

Γ(z − ai + l + 1)Γ(z′ − ai + l + 1)Γ(z + ai + l + 1)Γ(z′ + ai + l + 1)
,

Wz,z′, 1
2
,− 1

2
;l(bi) =

ai
Γ(ai + 1/2)Γ(ai + 1)

Γ(ai)Γ(ai + 1/2)

Γ(z − ai + l + 1/2)Γ(z′ − ai + l + 1/2)Γ(z + ai + l + 1/2)Γ(z′ + ai + l + 1/2)

=
a2
i

Γ(z − ai + l + 1/2)Γ(z′ − ai + l + 1/2)Γ(z + ai + l + 1/2)Γ(z′ + ai + l + 1/2)
,

Wz,z′,− 1
2
,− 1

2
;l(bi) =

ai
Γ(ai)Γ(ai + 1/2)

Γ(ai + 1/2)Γ(ai + 1)

Γ(z − ai + l)Γ(z′ − ai + l)Γ(z + ai + l)Γ(z′ + ai + l)

=
1

Γ(z − ai + l)Γ(z′ − ai + l)Γ(z + ai + l)Γ(z′ + ai + l)
,

Wz,z′,0,0;l(bi) =

ai
Γ(ai + 1/2)Γ(ai + 1/2)

Γ(ai + 1/2)Γ(ai + 1/2)

Γ(z − ai + l + 1/2)Γ(z′ − ai + l + 1/2)Γ(z + ai + l + 1/2)Γ(z′ + ai + l + 1/2)

=
ai

Γ(z − ai + l + 1/2)Γ(z′ − ai + l + 1/2)Γ(z + ai + l + 1/2)Γ(z′ + ai + l + 1/2)
,

Next, we set z = k and z′ = 1/2− l − ϑ, and hence every denominator above is equal to

Γ(k − ai + l + ϑ)Γ(1/2− ai)Γ(k + ai + l + ϑ)Γ(1/2 + ai)

= (k − ai + l + ϑ− 1)!(k + ai + l + ϑ− 1)!
π

sinπ(1/2 + ai)

= (−1)aiπ(k − ai + l + ϑ− 1)!(k + ai + l + ϑ− 1)!,

where we used Euler’s reflection formula for the first equality (recall that ai ∈ Z>0). The claim
follows by comparing these formulas to the corresponding measures. �

From this connection, the relationship between the kernels in [Cue18a] could be seen as the
reflection of the fact that we essentially get the same limit shapes for type A as for types BCD.
The agreement of the limit shapes for types BCD can also be seen as coming from the fact they
are all controlled by the BC z-measure in the limit as n→∞.

Additionally, our measure equals the spectral measure µωl,α,β for an extremal character ω of

a “big” group restricted down to its rank l subgroup (up to an overall constant). This is an
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immediate consequence of [OO12, Prop. 5.1], that the (appropriately normalized) multivariate
Jacobi polynomials Pλ(1l) = dimVG1(λ) with the rank of G1 being l, and the definition of µn,k,
where 1m = (1, . . . , 1) be the sequence with every entry 1 of length m. We note there is a minor

typo in [OO12, Eq. (26)], where the leading factor should be
∏K
j=1

βj(2−βj)
2 .

Corollary 5.4. Fix the extremal character ω = (0,1k, k). For (α, β) and the corresponding group
given by Table 2, we have µn,k = µωl,α,β.

Remark 5.5. There is another formula for the restricted spectral measures for β = −1
2 given

in [BK10, Thm. 2.8] involving a determinant. A natural question is if the matrix given there, which
we will denote by M(λ), is equal to ours up to some power of 2 multiplying each entry, but this
turns out to not be the case. If we consider (α, β) = (1/2,−1/2) and MBC

1 (∅) for l = 3 and k = 4,
then we compute:

MBC
1 (∅) =

275 75 20
297 90 28
132 42 14

 M(∅) =


55

1024
35
512

5
64

49
1024

17
256

7
64

5
256

7
256

7
128


Note that there is no element in MBC

1 (∅) that is a multiple of 17. We can also extend the construc-

tion for the case α = β = 1
2 by using the normalized Jacobi polynomials J

(a,b)
j (x) =

J
(a,b)
j (x)

2cj+1
, where

cj = 1·3···(2j−1)
2·4···2j for j > 0 and c0 = 1.

5.6.3. Relationship with Howe duality. For completeness, we discuss how our results in lozenge
tilings are related to Howe duality. Here, we assume k ∈ Z (not necessarily even). We start with
the classical result of Howe duality for (GLn, GLk) with restricting the partition λ to be inside
of an min(n, k) ×m rectangle from the lozenge tiling description, yielding the measure µ�mn,k from
the introduction. Without loss of generality, we assume k ≤ n. We can take a half hexagon tiling
parameterizing the crystal B(λ) for GLn and the one for B(λ) for GLk and join them together at
the top point after reflecting the GLk across the vertical axis. We can then ignore the portion of
the GLn half hexagon that is fixed by λk+1 = · · · = λn = 0. This gives us a lozenge tiling of a
partition inside of a n ×m × k box. As an example, consider n = 4, k = 2, and m = 1, one such
lozenge tiling for λ = (1, 1, 0, 0) ⊆ 12 is

where we have drawn in the fixed portion in light gray.
Now we describe Howe duality for the pairs (SOn, sp2k) or (Sp2k, so2l) using lozenge tilings with

bounding λ inside of a rectangle. We can perform the analogous joining of the quarter hexagons
for the SOn and Sp2k representations to form a half hexagon and removing the fixed parts, where
we also remove the bottom B tiles and leftmost R tiles from the Sp2k tiling (they are completely
fixed). The corresponding measure for (SOn, Sp2k) was investigated in [FN09, Lemma 2.2], which
can be seen as a specialization of the BC z-measure µBCk,k+l,α,β for `(λ) ≤ min(k, n), where we set

the variables in [FN09] to N = l + k and p = l.
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6. Open Problems

Here we gather some open problems and conjectures from this work.
Since we have q-analogs for our multiplicity and dimension formulas (hence our probability

measures), a natural question is to determine how the parameter q changes the limit shape. For
the case of (GLk, GLn), we can compute one such q-analog probability measure

µAn,k(λ; q) =
q‖λ‖ dimq

(
VGLn(λ)

)
· q‖λ

′‖ dimq

(
VGLn(λ

′
)
)

NA
n,k(q)

, (6.1)

where

NA
k,n(q) = qPk−1+(n−k)(k2)2k

k−1∏
i=1

(qi + 1)2(k−i) ×
n∏

j=k+1

k∏
i=1

(qj−i + 1) with Pk =
k(k + 1)(2k + 1)

6

the square pyramidal numbers OEIS A000330 [Slo18]. We obtain (6.1) by taking the principal
specialization of the alternative form of the dual Cauchy identity∑

λ⊆kn
sλ(x1, . . . , xn)s

λ
′(y1, . . . , yk) =

n∏
i=1

k∏
j=1

(xi + yj), (6.2)

which is constructed from the dual Cauchy identity by using

ch(V (λ
′
))(y1, . . . , yk) =

k∏
j=1

y
λ
′
1−n
i ch(V (λ′)∗)(y1, . . . , yk) =

k∏
j=1

yni ch(V (λ′))(y−1
1 , . . . , y−1

k ).

In particular, we substitute yi 7→ y−1
i to account for the λ′ → λ

′
change, and then we multiply by

yn1 · · · ynk to obtain (6.2). We can similarly construct other q-analogs of our probability measures
using the principal specializations of the formulas from, e.g., [Pro93].

However, the measure µAn,k(λ; q) is not a unique q-analogue of the measure µn,k(λ). Other choices
are given by the following conjecture based on experimental data.

Conjecture 6.1. We have probability measures on all partitions λ inside of a n× k rectangle:

µA2
n,k(λ; q) =

q‖λ‖ dimq

(
VGLn(λ)

)
· q‖λ

′‖ dimq

(
VGLk(λ

′
)
)

2

k+1∏
i=1

(qi + 1)k+2−i ×
n∏

j=k+1

k∏
i=1

(qj+2−i + 1)

, (6.3a)

µA3
n,k(λ; q) =

q‖λ‖ dimq

(
VGLn(λ)

)
· q|λ

′|+‖λ′‖ dimq

(
VGLk(λ

′
)
)

2k∏
i=1

(qi + 1)k−|k−i| ×
n∏

j=k+1

k∏
i=1

(qj+k−i + 1)

. (6.3b)

We note that the numerators of (6.3) become

q‖λ‖ dimq

(
VGLn(λ)

)
· q‖λ

′‖ dimq

(
VGLk(λ

′
)
)

= q‖λ
′‖ dimq

(
VGLn(λ)

)
·MA

q (λ),

q‖λ‖ dimq

(
VGLn(λ)

)
· q|λ

′|+‖λ′‖ dimq

(
VGLk(λ

′
)
)

= q|λ
′|+‖λ′‖ dimq

(
VGLn(λ)

)
·MA

q (λ).

We also remark that we can rewrite the numerator of µA2
n,k(λ; q) as the classical skew Howe duality

q‖λ‖ dimq

(
VGLn(λ)

)
· q‖λ′‖ dimq

(
VGLk(λ′)

)

https://oeis.org/A000330
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Figure 12. The most probable diagram for n = 25, k = 100, the limit shape for
c = 4 and the upper boundaries for the most probable diagrams for the measure
µn,k(λ; q) where q = 1 − γ/n and γ = −1

2 ,
1
10 ,

1
2 , 2, 10, 25. Black horizontal lines

correspond to γ = +∞ (upper) and γ = −∞ (lower).

by using the equality dimq VGLn(λ) = dimq VGLn(λ), which is immediate from the well-known fact

VGLn(λ)∗ ∼= VGLn(λ) up to a shift by the determinant representation (see also Theorem 4.6).
We have some initial data computed by using a discrete steepest descent method that suggests

that limit shapes are deformed in the limit n, k → ∞, q → 1 such that lim k
n = c, q = 1 − γ

n . For

the measure µAn,k(λ; q) in (6.1), we have produced the estimated limit shapes for various values of γ
in Figure 12. Derivation of the formulas that describe these limit shapes remains an open problem.
In the case q = const, which corresponds to γ = ±∞ the limit shape degenerates to one of the
straight horizontal lines, which are shown in black in Figure 12. The upper line is for q > 0 and
the lower for q < 0.

An even more general problem is to describe the asymptotic behavior of the character measure
that can be introduced for GLn ×GLk as follows:

µn,k(λ|{xi}ni=1, {yj}kj=1) =

∑
λ⊆kn

sλ(x1, . . . , xn)s
λ
′(y1, . . . , yk)

n∏
i=1

k∏
j=1

(xi + yj)

,

and similarly for other dual pairs of groups. We suggest that the limit shape for n, k → ∞ and
xi = eϕ(i/n), yj = eψ(j/n) with smooth ϕ,ψ is described by the Burgers equation. The asymptotic
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behavior of the character in the infinite rank limit is related to the asymptotic of the Harish-
Chandra–Itzykson–Zuber integral, which is described by Burgers equation as was derived in [Mat94]
and proven in [GZ02].

We now switch to looking at questions from the other skew Howe dual pairs. To account for the
sign difference in Theorem 5.3, we believe by using the “Jack parameter” ξ < 0 for the type BC
z-measure (which is analogous to the ξ from the type A z-measure), will yield a positive formula.
We note this extra parameter comes from the multivariate Jacobi polynomials [OO06, OO12].
Furthermore, by defining η = ξ/(1 − ξ), we will obtain a parameter 0 < η < 1 for a polynomial
ensemble. In particular, as a consequence of Corollary 5.4, we should obtain that these processes
are specializations of a “dual” version of specialized Jacobi polynomial ensembles (see, e.g., [BO05b,
Prop. 8.1] and [BK10, Thm. 5.7]) in parallel to the case with (GLn, GLk) with the Meixner and
Krawtchouk ensembles.

Conjecture 6.2. The specialized BC z-measure µBCk,1/2−l−ϑ,α,β with the extra parameter ξ < 0 is

equal to a discrete orthogonal polynomial ensemble with parameter η = ξ/(1 − ξ). Moreover, this
measure equals µn,k for a particular value of ξ.

We note the the cases of α = β = ±1
2 correspond to kernels from Chebyshev polynomials (of the

first or second kind depending on the sign), which are playing the role of the Meixner polynomials for
the orthogonal and symplectic groups. We also have the case when α = β = 0 in the BC z-measure,
where the Jacobi polynomials specialize to Legendre polynomials. However, this does not seem to
correspond to a known skew Howe duality or character identity. We remark that [Pro93, (BxBy)]
(with all variables specialized to 1) does not yield this identity because of the extra spin contribution,
which means we use MBC

1 (λ) rather than MD
1 (λ) since dimVSO2k+1

(µ + Λk) = 2k dimVSp2k(µ).
Hence, using [Pro93, (BxBy)] produces the same measure as for (Sp2n, Sp2k) (see [Pro93, Sec. 3]
for the character identity).

Problem 6.3. Determine if there is a (skew) Howe duality for the case when α = β = 0.

Let us expand on the potential relationship between the extremal characters of “big” groups and
super Howe duality. Now we note that the skew Howe duality for the other pairs is a special case
of the super Howe dualities (Sp2k, osp(2l|2m)) and (O(k), spo(2m|2l)) duality (see, e.g., [CW12,
Sec. 5.3]). In parallel to the (GLn, GLk) case with (U∞ × U∞)/U∞, it is natural to suppose the
corresponding infinite symmetric spaces in question (see Table 2) are related to one or both of
these super Howe dualities. There is also a relationship between infinite rank Lie algebras and Lie
superalgebras discussed in [CW12, Ch. 6].

Problem 6.4. Describe the relationship between harmonic analysis on “big” groups and represen-
tations of Lie superalgebras.

We can push this parallel even further. In Section 5.6.3, we noted a connection with the prob-
ability measure from [FN09, Lemma 2.2] and Howe duality via lozenge tilings. This yields Howe
duality versus skew Howe duality based on the sign choice of z′ for the BC z-measure as in the (type
A) z-measure. Furthermore, a similar picture for a half hexagon lozenge tiling is given in [BK10,
Fig. 1] in the special case of b = c+ 1.6 Examining the probability measure from [BK10, Thm. 2.8],
we see one factor being the dimension of a representation and the other being a determinant in the
finite case. We remark that a similar process for the symplectic group was constructed by Warren
and Windridge [WW09], which should correspond to α = β = 1

2 .

6When we take the infinite limit b, c→∞ of the [BK10] quarter hexagon, we obtain our quarter hexagon with k →∞
after reflecting over the line y = x.
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From Corollary 5.4, another natural problem is to see if there is an extremal character so the
spectral measure for positive s from [OO12, Eq. (16)] corresponds to Howe duality and the or-
thosymplectic analog of the measure µ�mn,k with possibly with m = ∞. This would imply the

specialized Jacobi polynomial ensemble can be described by (a restriction of) Howe duality.

Problem 6.5. Determine if there exists an extremal character ω such that the corresponding
spectral measure is equal to the measure induced from Howe duality or restricted to partitions
inside of an min(n, k)×m rectangle.

We note that for the extremal characters (1m, 0,m) and (1m,1k,mk) with (α, β) = (±1
2 ,±

1
2),

the matrix from [BK10, Thm. 2.4] appears to has rational entries with positive determinants by
computational evidence. Furthermore, for (1m, 0,m), the support appears to be limited to `(λ) ≤
m. However, these do not appear to correspond to any Howe duality. It is possible that using
(ξ1m, 0, ξm) will lead to a ξ-deformed version of a Cauchy identity from a Howe duality analogous
to µ�∞n,k;ξ from (5.38).

As noted in Remark 5.5, the matrix from [BK10, Thm. 2.4] is distinct from our determinants
for the extremal character ω = (0,1k, k). Computational evidence suggests that all of the entries
are positive integers divided by some power of 2, which could be considered as contributing to the
normalization constant. Hence, there should be a combinatorial interpretation of these matrices
M(λ) through the LGV lemma.

Problem 6.6. Find a nonintersecting lattice path interpretation of the matrices M(λ).

There is also a Howe duality for (Sp2l, GLk) and (GLk, On) [How95, Ch. 3] (recall l = bn/2c)
decomposing the coordinate ring of the null fiber as

R(N ) ∼=
∑

`(λ)≤min(l,k)

VG1(λ)⊗ VG2(λ). (6.4)

On the other hand, there are other limits of symmetric spaces considered in [OO06, Table II], which
should produce z-measures. This leads to the following problems.

Problem 6.7. Find a z-measure that specializes to the measure induced from (6.4).

Problem 6.8. Determine if there are corresponding z-measures for the other spaces in [OO06,
Table II] and if they correspond to a (skew) Howe duality.
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[RS05] A. Rákos and G. M. Schütz. Current distribution and random matrix ensembles for an integrable asym-
metric fragmentation process. J. Stat. Phys., 118(3-4):511–530, 2005.

[RW17] Eric C. Rowell and Hans Wenzl. SO(N)2 braid group representations are Gaussian. Quantum Topol.,
8(1):1–33, 2017.

[SCc08] The Sage-Combinat community. Sage-Combinat: enhancing Sage as a toolbox for computer exploration
in algebraic combinatorics, 2008. https://combinat.sagemath.org.

[Sch61] Craige Schensted. Longest increasing and decreasing subsequences. Canadian J. Math., 13:179–191, 1961.
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[Žel62] D. P. Želobenko. Classical groups. Spectral analysis of finite-dimensional representations. Uspehi Mat.
Nauk, 17(1 (103)):27–120, 1962.

https://combinat.sagemath.org
https://www.oeis.org
https://www.oeis.org


54 A. NAZAROV, O. POSTNOVA, AND T. SCRIMSHAW

(A. Nazarov) Department of High Energy and Elementary Particle Physics, St. Petersburg State
University, University Embankment, 7/9, St. Petersburg, Russia, 199034

E-mail address: antonnaz@gmail.com

URL: http://hep.spbu.ru/index.php/en/1-nazarov

(O. Postnova) Laboratory of Mathematical Problems of Physics, St. Petersburg Department of
Steklov Mathematical Institute of Russian Academy of Sciences, 27 Fontanka, St. Petersburg, Rus-
sia, 191023

E-mail address: postnova.olga@gmail.com

(T. Scrimshaw) School of Mathematics and Physics, The University of Queensland, St. Lucia, QLD
4072, Australia

E-mail address: tcscrims@gmail.com

Current address: OCAMI, Osaka City University, 3–3–138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
URL: https://tscrim.github.io/


	1. Introduction
	Acknowledgements

	2. Classical groups and skew Howe duality
	2.1. Clifford algebras and orthogonal groups
	2.2. Skew Howe duality

	3. Combinatorics
	3.1. Crystals
	3.2. The Lindstrom–Gessel–Viennot lemma
	3.3. Tableaux and patterns

	4. Combinatorial skew Howe duality
	4.1. Multiplicity in type A
	4.2. Multiplicity in types BC
	4.3. Multiplicity in type D
	4.4. Interpretation with lozenge tilings

	5. Limit shapes of Young diagrams
	5.1. Limit shape for (GL(n), GL(k)) skew Howe duality
	5.2. Limit shape for (SO(2l+1), Pin(2k)) skew Howe duality
	5.3. Limit shape for (Sp(2l), Sp(2k)) skew Howe duality
	5.4. Limit shape for (O(2l), SO(2k)) skew Howe duality
	5.5. Limit shapes and the insertion algorithms
	5.6. Analytic continuation and orthogonal polynomial ensembles

	6. Open Problems
	References

